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Abstract: This contribution concerns studying a realistic predator–prey interaction, which was
achieved by virtue of formulating a modified Leslie–Gower predator–prey model under the influence
of the double Allee effect and fear effect in the prey species. The initial theoretical work sheds light on
the relevant properties of the solution, presence, and local stability of the equilibria. Both analytic and
numerical approaches were used to address the emergence of diverse bifurcations, like saddle-node,
Hopf, and Bogdanov–Takens bifurcations. It is noteworthy that while making the assumption that
the characteristic equation of the Jacobian matrix J has a pair of imaginary roots C(ρ)± ιD(ρ), it
is sufficient to consider only C(ρ) + ιD(ρ) due to symmetry. The impact of the fear effect on the
proposed model is discussed. Numerical simulation results are provided to back up all the theoretical
analysis. From the findings, it was established that the initial condition of the population, as well
as the phenomena (fear effect) introduced, played a crucial role in determining the stability of the
proposed model.

Keywords: fear effect; double Allee effect; stability; bifurcation; Leslie–Gower predator–prey system

1. Introduction

The ecosystem encompasses numerous interactions between species that are dynamic
and complex in nature. One such interaction is the ever-changing relationship between
predators and their prey. The study of dynamical behavior of predator–prey interactions
is essential for understanding various aspects like ecosystem stability, ecological health,
resource management, and the balance of natural systems. Lotka and Volterra [1,2] were
the first to develop a model that represented the relationship shared by prey with its
predator, which was later developed by various researchers to make the model more
realistic. One such proposed model is the Leslie–Gower predator–prey (LGPP) model [3],
which incorporates the concept that a predator’s carrying capacity is a function of the prey
population, restricting the increase in the predator’s growth rate. The coupled differential
equations that govern the LGPP model are as follows:

dN
dT

= rN
(

1 − N
K

)
− f (N)P,

dP
dT

= sP
(

1 − bP
N

)
,

(1)

with the initial conditions N(0) > 0 and P(0) > 0. Here, N ≡ N(T) and P ≡ P(T) are
the densities of the prey and predator at time T, respectively, and f (N) represents the
functional response, depicting the rate at which prey are consumed by the predator per unit
time for a given number of prey and predators. The parameters r, s, K, and b are positive
and represent the intrinsic growth rate of the prey, intrinsic growth rate of the predator,
environmental carrying capacity, and maximal per capita reduction rate, respectively.
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The prey population N is not abundant in the environment, so, in times of scarcity,
the predator can switch to alternate food sources [4]. So, the model itself is modified in
various ways to account for this. This phenomenon can be represented in the model by
adding a constant (positive) to the denominator of the Leslie–Gower term bP

N [5,6]. So,
the model (1) is transformed into the following system:

dN
dT

= rN
(

1 − N
K

)
− f (N)P,

dP
dT

= sP
(

1 − bP
a1 + N

)
,

(2)

with the initial conditions N(0) > 0 and P(0) > 0. Here, a1 represents the extent of
protection provided by the environment to the predators.

The functional response f (N) can take various forms, among which Holling type-II
( αN

a+N ) has been studied widely, as it best describes the feeding pattern of many predators
by including the handling time they require to consume their prey [6–10]. Introducing the
Holling type-II functional response in the above model gives

dN
dT

= rN
(

1 − N
K

)
− αNP

a2 + N
,

dP
dT

= sP
(

1 − bP
a1 + N

)
,

(3)

with the initial conditions N(0) > 0 and P(0) > 0. Here, α and a2 represent the maximal
predator per capita consumption rate and the extent of protection provided by the environ-
ment to prey. This model has also been studied under the condition that environmental
protections given to the prey and predators are the same, that is, a1 = a2 = a [6,11]. Ji
et al. [6] studied how this model will behave in the long term with stochastic perturbation.
Gupta and Chandra [11] undertook a bifurcation analysis of a modified LGPP model with
non-linear harvesting.

The Allee effect [12], coined by ecologist W.C. Allee, is associated with the occurrence of
a decrease in the fitness of the population at low densities. It is often the result of a reduction
in cooperative behavior, like mating, herding, and parental care, among individuals of a
species. In the literature, this phenomenon is divided into two types: strong and weak.
The key that differentiates between these two is the existence of a threshold or critical
value. In the weak Allee effect, the absence of a threshold value leads to the growth rate
staying positive all the time, while in the strong Allee effect, the growth rate becomes
negative as the population goes below the critical value [13,14]. This phenomenon has
been analyzed by many researchers, as it plays a crucial role in determining the survival
or extinction of a species. The possibility of the existence of more than one Allee effect
has also been explored by ecologists, and the joint influence that a few such phenomena
have on the species is named the multiple Allee effect [15–17]. González-Olivares et al. [18]
studied the LGPP model when the Allee effect is introduced in prey. They emphasized
how the Allee effect changed the behavior of the original model in terms of the existence of
equilibrium points, along with their stability. Cai et al. [19] studied the LGPP model with
the additive Allee effect and discovered how a new steady state comes into actuality when
this phenomenon is introduced in the model. Feng and Kang [20] focused their interest
on studying stability and bifurcation when the Allee effect is introduced both in predator
and prey species in the modified LGPP model. Pal and Saha [21] studied a ratio-dependent
predator–prey model with the double Allee effect. Singh et al. [22] analyzed a modified
LGPP model under the influence of strong and weak Allee effects. They established
conditions for all possible equilibrium points and local bifurcations. Rahmi et al. [23]
analyzed the Beddington–DeAngelis functional response, memory effect, and double Allee
effect in a modified LGPP model. Wang et al. [24] explored a predator–prey model with the
double Allee effect and self-diffusion terms. Various researchers studied the Allee effect
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phenomenon in predator–prey systems, along with other phenomena, like prey refuge [25],
delay [26], non-local competition [27], and hunting cooperation [28].

For a very long time, the sole focus of researchers studying the impact that predators
have on prey was direct killing. But over time, it was established that the prey population
can be affected by just the mere presence of predators [29–31]. Predators induce fear in
their prey, which leads the prey to display anti-predator behavior in various forms, like
foraging, herding, and abandoning high-risk areas [30,31]. So, along with direct predation,
indirect interaction with the predator also alters the behavior of prey [32], which makes the
study of this phenomenon, the fear effect, crucial.

Wang et al. [33] modeled the fear effect in the predator–prey model and established
how the system becomes stable barring the existence of limit cycles with a high level of
fear, while a low level of fear leads to multiple limit cycles, leading to bistability. Sarkar
and Khajanchi [34] studied the impact that the fear effect has on prey because of the
predator in a predator–prey interaction. A ratio-dependent LGPP model with fear and
the Allee effect was examined by Li et al. [35]. Chen et al. [36] studied a modified LGPP
model with the fear effect. Wu et al. [37] studied the fear effect, along with non-linear
harvesting, in the LGPP model. They established the occurrence of two limit cycles, along
with saddle-node and Bogdanov–Takens bifurcations of codimension three. A study of
the LGPP model incorporating the fear effect was also undertaken, along with various
phenomena like harvesting [38], prey refuge [39–41], disease transmission [42], and hunting
cooperation [43,44].

Singh et al. [22] concluded in their study that the double Allee effect can accelerate
the extinction of vulnerable species. Also, Preisser and Bolnick [32] commented on how
indirect interaction with the predator, that is, the presence of fear, can alter the behavior of
prey. A study where both of these phenomena are explored simultaneously has not been
conducted thus far. Therefore, exploring both effects together can uncover complex dy-
namics of predator and prey interactions. In this article, our aim is to unveil the dynamical
complexity of a modified LGPP model when both of these phenomena occur together.

This entire work contains seven sections in total. Section 2 includes the formulation of
the proposed model by the incorporation of the double Allee effect and fear effect. It also
presents the positivity and boundedness of the model. Following this, Section 3 comprises
the computation of the equilibrium points that emerge in the proposed system, along with
their stability analysis. Section 4 includes the emergence of various bifurcations, namely,
saddle-node, Hopf, and Bogadanov–Takens bifurcations. Section 5 comprises the numerical
simulation and the phase portraits for the proposed system. Following this, Section 6
delves into the impact of the Allee effect and fear effect parameters. This work concludes
with Section 7, where we discuss the dynamic behavior of the proposed model in detail.

2. Mathematical Model

We studied model (3) with a double Allee effect and fear effect in the prey species,
where we have

dN
dT

=
rN

1 + f P

(
1 − N

K

)(N − m
N + n

)
− αNP

a + N
,

dP
dT

= sP
(

1 − bP
a + N

)
,

(4)

with the initial conditions N(0) > 0 and P(0) > 0. Here, −K < m < K and n > 0 represent
the Allee threshold and auxiliary parameter with m > −n. Parameter m has a significant
influence in determining whether the prey population will survive or face extinction. When
the population size goes below the threshold value of m, the species will move toward
extinction. The parameter f indicates the degree of fear induced in the prey by the predator.

To investigate the model given in system (4) further, we introduce the non-dimensional
variables x, y, and t defined as

N = Kx, P =
K
b

y, t = rT.
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Using the new change of variables, system (4) becomes

dx
dt

=
x(1 − x)(x − β)

(1 + θy)(x + γ)
− ξxy

x + δ
,

dy
dt

= ρy
(

1 − y
x + δ

)
,

(5)

with the initial conditions x(0) > 0 and y(0) > 0. Here, β = m
K , γ = n

K , θ = f K
b , ξ = α

br ,
ρ = s

r , and δ = a
K . The parameter θ is directly proportional to the fear effect parameter f .

The system is defined on the set Ω = {(x, y) ∈ R2
+ : x ≥ 0, y ≥ 0}.

Positivity and Boundedness

This part of the article demonstrates that the solution (x(t), y(t)) of system (5) con-
sistently maintains positivity and boundedness. Ecologically, this is significant to prove,
as the population of a species can neither be negative nor infinite.

Lemma 1.

1. Under the initial conditions x(0) > 0 and y(0) > 0, every solution (x(t), y(t)) of system (5)
is positive.

2. Under the initial conditions x(0) > 0 and y(0) > 0, every solution (x(t), y(t)) of system (5)
is bounded.

Proof.

1. To prove this, we start by integrating the equations in system (5) under the initial
conditions x(0) > 0 and y(0) > 0 to obtain the solution (x(t), y(t)). So, system (5)’s
solution can be expressed as

x(t) = x(0)exp
[ ∫ t

0

(1 − x(s))(x(s)− β)

(1 + θy(s))(x(s) + γ)
− ξy(s)

x(s) + δ
ds
]
> 0, (6)

y(t) = y(0)exp
[
ρ
∫ t

0
y(s)

(
1 − y(s)

x(s + δ)

)
ds
]
> 0. (7)

Therefore, we can conclude that every solution starting in the interior of set Ω, that is,
Int(Ω), remains in Int(Ω) for t ≥ 0. Along with this, for all future time, any solution
trajectory that starts from the positive x-axis (or y-axis) will remain on it. Hence,
the set Ω is an invariant set.

2. Under the initial conditions x(0) > 0 and y(0) > 0, if (x(t), y(t)) represents any
solution of the system, then we have two cases:
Case 1: Let us suppose x(0) ≤ 1 and we make the claim that x(t) ≤ 1 ∀t ≥ 1.
Otherwise, there will exist t1, t2 ∈ R+ such that t2 > t1, x(t1) = 1, and x(t) > 1 ∀
t ∈ (t1, t2). Then, Equation (6) can be written as

x(t) = x(0)exp
[ ∫ t1

0

(1 − x(s))(x(s)− β)

(1 + θy(s))(x(s) + γ)
− ξy(s)

x(s) + δ
ds
]

exp
[ ∫ t2

t1

(1 − x(s))(x(s)− β)

(1 + θy(s))(x(s) + γ)
− ξy(s)

x(s) + δ
ds
]

= x(t1)exp
[ ∫ t2

t1

[ (1 − x(s))(x(s)− β)

(1 + θy(s))(x(s) + γ)
− ξy(s)

x(s) + δ

]
ds
]
< x(t1),

as
[

(1−x(s))(x(s)−β)
(1+θy(s))(x(s)+γ)

− ξy(s)
x(s)+δ

]
< 0 ∀ t ∈ (t1, t2), which is a contradiction to our

hypothesis. Thus, x(t) ≤ 1 for all t ≥ 0.
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Case 2: Now, let us suppose x(0) > 1; then, as long as x(t) ≥ 1,

x(t) = x(0)exp
[ ∫ t

0

(1 − x(s))(x(s)− β)

(1 + θy(s))(x(s) + γ)
− ξy(s)

x(s) + δ
ds
]
< x(0),

as
[

(1−x(s))(x(s)−β)
(1+θy(s))(x(s)+γ)

− ξy(s)
x(s)+δ

]
< 0 for x(t) ≥ 1.

Hence, based on these two cases, we can deduce that every positive solution satisfies
x(t) ≤ max{x(0), 1} ≡ M1 ∀ t ≥ 0.
Next, we proceed to the predator equation of system (5):

dy
dt

= ρy
(

1 − y
x + δ

)
≤ ρy

(
1 − y

M1 + δ

)
So, we have y(t) ≤ max{y(0), M1 + δ} ∀ t ≥ 0, which completes our proof.

3. Existence of Equilibrium Points and Local Stability

This section emphasizes establishing the presence of the equilibria of system (5) and
analyzes their local stability. Studying the system in the case of the strong Allee effect
(β > 0), we find that system (5) exhibits axial and interior equilibria.

All possible equilibria that the system can possess are as follows:

• Axial: along with the origin, that is, E0 = (0, 0), system (5) exhibits three other axial
equilibrium points: Eδ = (0, δ), E1 = (1, 0), and Eβ = (β, 0).

• Interior: The abscissa and ordinate of the interior equilibria can be acquired by solving
the subsequent equations:

(1 + θξ)x2 − (1 + β − ξ(1 + θδ + θγ))x + β + ξγ(1 + θδ) = 0 (8)

y = x + δ (9)

The ordinate of the interior equilibrium points is given by (9). The discriminant of
Equation (8) is ∆(θ) = ξ2(δ − γ)2θ2 + 2ξ(2γδ + 2β + (δ + γ)(1 + β)− ξ(δ − γ))θ +
(1+ β − ξ)2 − 4β − 4γξ. For the ease of calculation, consider ∆1 = (1+ β − ξ(1+ θδ +
θγ),

∆2 = 4(1 + θξ)(β + ξγ + θξγδ), and θ1 = (2γδ+2β+(δ+γ)(1+β)−ξ(δ−γ))−
√

∆∗

ξ(δ−γ)2 , where

∆∗ = (2γδ + 2β + (δ + γ)(1 + β)− ξ(δ − γ))2 − (δ − γ)2((1 + β − ξ)2 − 4β − 4γξ).
For the feasibility of positive equilibrium points, we must have ∆1 > 0, δ < γ, and (1+
β − ξ)2 > 4β + 4γξ. Under these conditions, system (5) exhibits the following:

1. Two equilibrium points E∗
2 = (x∗2 , y∗2) and E∗

3 = (x∗3 , y∗3) if 0 < θ < θ1, where

x∗2 =
∆1+

√
∆2

1−∆2
2(1+θξ)

, x∗3 =
∆1−

√
∆2

1−∆2
2(1+θξ)

, y∗2 = x∗2 + δ, and y∗3 = x∗3 + δ.

2. A unique equilibrium point E∗ = (x∗, y∗) if θ = θ1, where x∗ = ∆1
2(1+θξ)

and
y∗ = x∗ + δ.

3. No equilibrium point if θ > θ1.

Now, we shift our focus toward studying the local stability of each equilibrium point.
For system (5), the Jacobian matrix at any given point E comes out to be

JE =

[
a11 a12
a21 a22

]
(10)

where a11 = x(1+β−2x)
(1+θy)(x+γ)

− x(1−x)(x−β)
(1+θy)(x+γ)2 +

ξxy
(x+δ)2 +

(1−x)(x−β)
(1+θy)(x+γ)

− ξy
x+δ , a12 = −θx(1−x)(x−β)

(x+γ)(1+θy)2 −
ξx

x+δ , a21 = ρy2

(x+δ)2 , and a22 = ρ − 2ρy
(x+δ)

.
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Theorem 1. The equilibrium point E0 is consistently a saddle, Eδ is consistently an asymptotically
stable point, E1 is consistently a saddle, and Eβ is consistently unstable.

Proof. From the Jacobian matrix given in (10), we have the following:

• The eigenvalues at point E0 are −β
γ and ρ, which clearly indicate that E0 is a saddle.

• The eigenvalues at point Eδ are −( β
γ(1+δθ)

+ ξ) and −ρ, which clearly indicate that Eδ

is an asymptotically stable point.
• The eigenvalues at point E1 are − 1−β

1+γ and ρ, which clearly indicate that E1 is a saddle,
as 0 < β < 1.

• The eigenvalues at point Eβ are β
1−β
β+γ and ρ, which clearly indicate that Eβ is an

unstable point, as 0 < β < 1.

Theorem 2. The equilibrium points E∗
2 , E∗

3 , and E∗, if they exist, are stable if x∗2
1+β−2x∗2−ξ(1+θy∗2)

(1+θy∗2)(x∗2+γ)
+

ξx∗2
x∗2+δ − ρ < 0, consistently a saddle point, and a degenerate singularity, respectively.

Proof. The equilibrium points E∗
2 , E∗

3 , and E∗ are obtained from the subsequent equations:

(1 − x)(x − β)

(1 + θy)(x + γ)
− ξy

x + δ
= 0, y = x + δ.

Using the above two equations and the Jacobian matrix in (10), we have the determi-
nant and trace as follows:

det(JE) =
−ρx

(1 + θy)(x + γ)
(1 + β − ξ(1 + θδ + θγ)− 2(1 + θξ)x)

and

Tr(JE) = x
1 + β − 2x − ξ(1 + θy)

(1 + θy)(x + γ)
+

ξx
x + δ

− ρ.

It is clear that at E∗
2 , det(JE∗

2
) > 0. Now, the condition x∗2

1+β−2x∗2−ξ(1+θy∗2)
(1+θy∗2)(x∗2+γ)

+
ξx∗2

x∗2+δ − ρ <

0 leads to Tr(JE∗
2
) < 0. So, E∗

2 is asymptotically stable. At E∗
3 , det(JE∗

3
) < 0. Therefore,

E∗
3 constitutes a saddle point. And at E∗, det(JE∗) = 0. Therefore, it is evident that E∗

constitutes a degenerate singularity.

From the aforementioned theorem, we established that the point E∗ is identified as a
degenerate singularity. Hence, we proceed to explore system (5)’s dynamics in the vicinity
of this point.

Theorem 3. If it exists, the positive equilibrium point E∗ is characterized as follows:

a. A saddle node when x∗(1+β−2x∗−ξ(1+θy∗))
(1+θy∗)(x∗+γ)

+ ξx∗
x∗+δ ̸= ρ holds.

b. A cusp of codimension two when x∗(1+β−2x∗−ξ(1+θy∗))
(1+θy∗)(x∗+γ)

+ ξx∗
x∗+δ = ρ, ᾱ20 ̸= 0, and (2 ¯α20 −

ᾱ11) ̸= 0 holds.

Proof. Consider the transformation x̂ = x − x∗ and ŷ = y − y∗ to shift E∗ to the origin;
then, using a Taylor series, system (5) reduces to

dx̂
dt

= α10 x̂ − α01ŷ + α20 x̂2 + α02ŷ2 + α11 x̂ŷ + O|(x, y)3|

dŷ
dt

= ρx̂ − ρŷ − ρ

x∗ + δ
x̂2 − ρ

x∗ + δ
ŷ2 +

2ρ

x∗ + δ
x̂ŷ + O|(x, y)3|

(11)
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where α10 = α01 = ξθx∗
1+θy∗ + ξx∗

x∗+δ , α20 = −x∗
(1+θy∗)(x∗+γ)

+ γ(1+β−ξ(1+θy∗)−2x∗)
(1+θy∗)(x∗+γ)2 + 2ξδ

(x+δ)2 ,

α02 = θ2ξx∗

(1+θy∗)2 , and α11 = −θx∗(1−2x∗+β)
(1+θy∗)2(x∗+γ)

− θγξ
(1+θy∗)(x∗+γ)

− ξδ
(x∗+δ)2 .

Now, the following two cases arise:

a. If ξθx∗
1+θy∗ + ξx∗

x∗+δ ̸= ρ, then Tr(JE∗) ̸= 0 and det(JE∗) = 0. This implies that one
eigenvalue of the Jacobian matrix JE∗ is zero, while the other is non-zero, which
indicates that E∗ is a saddle node.

b. If ξθx∗
1+θy∗ +

ξx∗
x∗+δ = ρ, then system (11) reduces to

dx̂
dt

= ρx̂ − ρŷ + α20 x̂2 + α02ŷ2 + α11 x̂ŷ + O|(x, y)3|,

dŷ
dt

= ρx̂ − ρŷ − ρ

x∗ + δ
x̂2 − ρ

x∗ + δ
ŷ2 +

2ρ

x∗ + δ
x̂ŷ + O|(x, y)3|.

(12)

Introducing variables τ = ρt, system (12) becomes

dx̂
dτ

= x̂ − ŷ + ˆα20 x̂2 + ˆα02ŷ2 + ˆα11 x̂ŷ + O|(x, y)3|,

dŷ
dτ

= x̂ − ŷ − 1
x∗ + δ

x̂2 − 1
x∗ + δ

ŷ2 +
2

x∗ + δ
x̂ŷ + O|(x, y)3|,

(13)

where ˆα20 = 1
ρ α20, ˆα11 = 1

ρ α11, and ˆα02 = 1
ρ α02.

Taking x1 = x̂ and x2 = x̂ − ŷ, system (13) converts to

dx1

dτ
= x2 + ᾱ20x2

1 + ˆα02x2
2 − ᾱ11x1x2 + O|(x1, x2)

3|,

dx2

dτ
= ᾱ20x2

1 + ( ˆα02 +
1

x∗ + δ
)x2

2 − ᾱ11x1x2 + O|(x1, x2)
3|,

(14)

where ᾱ20 = ˆα20 + ˆα11 + ˆα02 and ᾱ11 = ˆα11 + 2 ˆα02.

Consider the transformation y1 = x1 and y2 = x2 − 1
x∗+δ x1x2; system (14) then

reduces to

dy1

dτ
= y2 + ᾱ20y2

1 + ˆα02y2
2 + (−ᾱ11 +

1
x∗ + δ

)y1y2 + O|(y1, y2)
3|,

dy2

dτ
= ᾱ20y2

1 + ˆα02y2
2 − ᾱ11y1y2 + O|(y1, y2)

3|.
(15)

Consider the final transformation z1 = y1 − 1
2 (−ᾱ11 +

1
x∗+δ )y

2
1 + ˆα02y2

2, and
z2 = y2 + ᾱ20y2

1 + O|(z1, z2)
3|; then, system (15) reduces to

dz1

dτ
= z2,

dz2

dτ
= ᾱ20y2

1 + ˆα02y2
2 + (2 ¯α20 − ᾱ11)y1y2 + O|(z1, z2)

3|.
(16)

Now, if ᾱ20 ̸= 0 and (2 ¯α20 − ᾱ11) ̸= 0, then in the z1z2 plane, the origin presents as a
cusp of codimension two, which corresponds to E∗ being a codimension-two cusp in the
xy-plane.

4. Bifurcation Analysis

This section emphasizes analyzing various bifurcations, such as saddle-node, Hopf,
and Bogdanov–Takens bifurcations, that system (5) may experience.
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4.1. Saddle-Node Bifurcation

In Section 3, we show that if 0 < θ < θ1, system (5) possesses two positive equilibria:
E∗

1 and E∗
2 . And when θ = θ1, the two equilibrium points coincide and give rise to

the unique equilibrium point E∗. Also, system (5) exhibits no equilibrium point when
θ > θ1. This kind of change, that is, the change in the number of equilibrium points in
a system, occurs due to an inherent property called saddle-node bifurcation. Consider
θ = θSN = θ1. Treating θ as a bifurcation parameter, to guarantee the emergence of a
saddle-node bifurcation in system (5), we use Sotomayor’s theorem.

Theorem 4. A saddle-node bifurcation emerges in system (5) around the unique interior equilibrium
point E∗ = (x∗, y∗) with respect to parameter θ.

Proof. Evidently det(JE∗) = 0. Thus, the Jacobian matrix JE∗ has one eigenvalue that is
zero. We suppose two eigenvectors, say, V and W, corresponding to matrix’s JE∗ and JT

E∗ ,
zero eigenvalue, respectively, then,

V =

[
1
1

]
; W =

[
1

− 1
ρ (

ξθx∗
1+θy∗ +

ξx∗
x∗+δ )

]
.

Now, we have WT Fθ(E∗, θSN) = −ξ(x∗+δ)
(1+θy∗) ̸= 0, where Fθ(E∗, θSN) =

[
−ξ(x∗+β)
(1+θy∗)

0

]
, and

WT[D2F(E∗, θSN)(V, V)] = −2+2θδ+θ(1+β+ξ(1+θδ−θγ))
(1+θy∗)2(x∗+γ)

≠ 0, where

D2F(E∗, θSN) =

[
− 2+2θδ+θ(1+β+ξ(1+θδ−θγ))

(1+θy∗)2(x∗+γ)

0

]
̸= 0, as 1 + β − ξ((1 + θδ + θγ)) > 0

Thus, the transversality condition required for a saddle-node bifurcation is satisfied.

4.2. Hopf Bifurcation

In Section 3, we show that E∗
3 , if it exists, is consistently a saddle point and E∗

2 , if it exists,

is stable whenever x∗2
1+β−2x∗2−ξ(1+θy∗2)

(1+θy∗2)(x∗2+γ)
+

ξx∗2
x∗2+δ < ρ. Also, det(JE∗

2
) > 0 and Tr(JE∗

2
) = 0

when x∗2
1+β−2x∗2−ξ(1+θy∗2)

(1+θy∗2)(x∗2+γ)
+

ξx∗2
x∗2+δ = ρ. Then, a purely imaginary nature is exhibited by the

eigenvalues of JE∗
2
. Therefore, E∗

2 will manifest as either a center or a weak focus.

Theorem 5. A Hopf bifurcation emerges at equilibrium point E∗
2 in system (5) if ρ = ρ[hf] =

x∗2
1+β−2x∗2−ξ(1+θy∗2)

(1+θy∗2)(x∗2+γ)
+

ξx∗2
x∗2+δ , and its direction is supercritical (or subcritical) if Λ < 0 (or Λ > 0).

Proof. To establish the emergence of a Hopf bifurcation in system (5), we show that the
transversality conditions are fulfilled. Consider ρ as a bifurcation parameter; then, a critical

value ρ = ρ[hf] = x∗2
1+β−2x∗2−ξ(1+θy∗2)

(1+θy∗2)(x∗2+γ)
+

ξx∗2
x∗2+δ exists for which det(JE∗

2
) > 0, Tr(JE∗

2
) = 0,

and ∂
∂ρ (Tr(JE∗

2
)) = −1 ̸= 0.

Due to the occurrence of Hopf bifurcation, a limit cycle will arise in the system. We
now explore the stability of the emergent limit cycles. We start by shifting E∗

2 = (x∗2 , y∗2)
to the origin by considering x̂ = x − x∗2 and ŷ = y − y∗2 . Thus, system (5) is reduced to the
following (retaining x and y in place of x̂ and ŷ, respectively):

dx
dt

=
(x + x∗2)(1 − x − x∗2)(x + x∗2 − β)

(1 + θ(y + y∗2))(x + x∗2 + γ)
− ξ(x + x∗2)(y + y∗2)

x + x∗2 + δ

dy
dt

= ρ(y + y∗2)(1 −
y + y∗2

x + x∗2 + δ
)

(17)
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System (17) can be represented as
[

xt
yt

]
= J

[
x
y

]
+

[
f (x, y)
g(x, y)

]
,

where J = JE∗
2
=

[
x∗2

1+β−2x∗2−ξ(1+θy∗2)
(1+θy∗2)(x∗2+γ)

+
ξx∗2

x∗2+δ − ξθx∗2
1+θy∗2

− ξx∗2
x∗2+δ

ρ −ρ

]
, f (x, y) = α20x2 + α11xy +

α02y2 + α30x3 + α21x2y + α12xy2 + α03y3 + . . . , g(x, y) = β20x2 + β11xy + β02y2 + β30x3 +

β21x2y + β12xy2 + . . . , α20 = −x
(1+θy)(x+γ)

+ γ(1+β−2x−ξ(1+θy))
(1+θy)(x+γ)2 + ξδ

(x+δ)2 , α02 = θ2ξx
(1+θy)2 ,

α11 = −θx(1−2x+β)
(1+θy)2(x+γ)

− θγξ
(1+θy)(x+γ)

− ξδ
(x+δ)2 , α30 = γ(−1−β+2x+ξ(1+θy))

(1+θy)(x+γ)3 − γ
(1+θy)(x+γ)2 − δξ

(x+δ)3 ,

α03 = θ3ξx
(1+θy)3 , α21 = θx

(1+θy)2(x+γ)
− θγ(1+β−2x−ξ(1+θy))

(1+θy)2(x+γ)2 + ξδ
(x+δ)3 , α12 = θ2x(1−2x+β)

(1+θy)3(x+γ)
+

θ2γξ
(1+θy)2(x+γ)

, β10 = ρ, β01 = −ρ, β20 = b02 = −ρ
x+δ , β11 = 2ρ

x+δ , β30 = ρ

(x+δ)2 , β03 = 0,

β21 = −2ρ

(x+δ)2 , and β12 = 2ρ

(x+δ)2 .
The characteristic roots of the Jacobian matrix J are λ(ρ) = C(ρ)± ιD(ρ) if det(J) >

( 1
2 Tr(J))2, where C(ρ) = 1

2 Tr(J) and D(ρ) =
√

det(J)− ( 1
2 Tr(J))2. C(ρ[h f ]) = 0 and

D(ρ[h f ]) =
√

det(J) if ρ = ρ[h f ], which implies that the eigenvalues λ1 and λ2 are purely
imaginary. For further computation, due to symmetry, it is sufficient to take only one root

of the characteristic equation of J: λ = C(ρ) + ιD(ρ). We define a matrix P =

[
1 0
M N

]
such that

[
1

M − ιN

]
is the eigenvector of J corresponding to λ = A(ρ) + ιB(ρ), where

M = 1
ξθx

1+θy +
ξx

x+δ

( x(1+β−ξ(1+θy)−2x)
(1+θy)(x+γ)

+ ξx
x+δ − A(ρ)) and N = B(ρ)

ξθx
1+θy +

ξx
x+δ

. The inverse of matrix

P is P−1 =

[
1 0

−M
N

1
N

]
. Consider the transformation

[
x
y

]
= T

[
u
v

]
, where we obtain x = u

and y = Mu + Nv. Thus, system (17) reduces to[
ut
vt

]
= J(ρ)

[
u
v

]
+

[
F(u, v)
G(u, v)

]
, (18)

where J(ρ) =

[
C(ρ) −D(ρ)
D(ρ) C(ρ)

]
, F(u, v) = f (u, Mu + Nv) = (α20 + α11M + α02M2)u2 +

(α11N + 2α02MN)uv + α02Nv2 + (α30 + α21M + α12M2 + α03M3)u3 + (α21N + 2α12MN +
3α03M2N)u2v +
(α12N2 + 3α03MN2)uv2 + α03N3v3 + . . . , and G(u,v) =−M

N F(u,v)+ 1
Ng(u,Mu+Nv) = 1

N((β20+
β11M+β02M2 −α20M−α11M2 −α02M2)u2 +(β11N+2β02MN−α11MN−2α02M2N)uv+(β02N2 −
α02MN)v2+(β30+β21M+β12M2+β03M3−α30M−α21M2−α12M3−α03M4)u3+(β21N+2β12MN+
3β03M2N−α21MN−2α12M2N−3α03M3N)u2v+(β12N+3β03MN2−α12MN2−
3α03M2N2)uv2+(β03N2−α03MN3)v3 . . .).

Rewriting system (18) in polar coordinates, we obtain

ṙ = C(ρ)r + c(ρ)r3 + . . . ,

ϕ̇ = D(ρ) + d(ρ)r2 + . . .
(19)

Using Taylor’s expansion, at ρ = ρ∗, system (19) reduces to

ṙ = C′(ρ∗)(ρ − ρ∗)r + c(ρ)r3 + . . .

ϕ̇ = D(ρ∗) + D′(ρ∗)(ρ − ρ∗) + d(ρ∗)r2 + . . .
(20)
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The stability of the Hopf bifurcation relies on the sign of

Λ = − c(ρ∗)
C′(ρ∗)

,

where c(ρ∗) = 1
16 (Fxxx + Fxyy + Gxyy + Gyyy)(0,0,ρ∗) +

1
16B(ρ∗) (Fxy(Fxx + Fyy)− Gxy(Gxx +

Gyy)− FxxGxx + FyyGyy)(0,0,ρ∗), C′(ρ∗) = −1, Fxx = 2(α20 + α11M + α02M2),

Fyy = 2α02N, Fxy = α11N + 2α02MN, Fxxx = 6(α30 + α21M + α12M2 + α03M3),

Fxyy = 2(α12N2 + 3α03MN2), Gxx = 2
N (β20 + β11M + β02M2 − α20M − α11M2 −

α02M2), Gyy = 2(β02N − α02M), Gxy = β11 + 2β02M − α11M − 2α02M2,

Gxxx = 6
N (β30 + β21M + β12M2 + β03M3 − α30M − α21M2 − α12M3 − α03M4), and

Gyyy = 6(β03N2 − α03MN2).

After simplification, we have

Λ =
1
8
(α30 + β21 +

B(ρ∗)α02

a2
12

(α11 − 2α02
a11

a12
+ 2β02) +

B2(ρ∗)

a2
12

(α21 + 3β03)− 2
a11

a12
(α21 + β21)

+
a2

11
a2

12
(α12 + 3β03) +

β11β02

a12
+

α11

a12
(

α11a11

a12
− α20) +

α02a11

a2
12

(2α20 − 3
α11a11

a12
+

2
α02a2

11
a2

12
− 2

α02

a12
) +

β02a11

a2
12

(α11 − 2β02 − 2
α02a11

a12
)) +

1
8B(ρ∗)

(
α02a11

a12
(2

β02a11

a12

− α11a11

a12
+ 2

α02a2
11

a2
12

− β11)) +
1

8B2(ρ∗)
(β11(β02a12 − β11a11) +

β11a2
11

a12
(3β02 − α02)

+ α20a11(2α20 − β11) + (2α20a11 − 2
β02a2

11
a12

−
α11a2

11
a12

)(
β02a11

a12
+

β20a12

a11
− α02a11

a12
)

+
α11a2

11
a12

(
α11a11

a12
− 3α20 + 2

β02a11

a12
)− α20a11(2β11 + 2

β02a11

a12
)). (21)

4.3. Bogdanov–Takens Bifurcation

From Theorem (3) in Section 3, it is evident that point E∗ is a cusp of codimension
two whenever x∗(1+β−2x∗−ξ(1+θy∗))

(1+θy∗)(x∗+γ)
+ ξx∗

x∗+δ ̸= ρ, ᾱ20 ̸= 0, and (2 ¯α20 − ᾱ11) ̸= 0. There
might be a chance of occurrence of a Bogdanov–Takens bifurcation of codimension two.
The intersection of saddle-node and Hopf bifurcation curves is called the BT-point. Now,
to explore the emergence of the Bogdanov–Takens bifurcation, θ and ρ are designated as
the bifurcation parameters.

Theorem 6. A Bogdanov–Takens bifurcation of codimension two emerges in system (5) around the
equilibrium point E∗ = (x∗, y∗) in regard to parameters θ and ρ whenever x∗(1+β−2x∗−ξ(1+θy∗))

(1+θy∗)(x∗+γ)

+ ξx∗
x∗+δ ̸= ρ, ᾱ20 ̸= 0, and (2 ¯α20 − ᾱ11) ̸= 0. Moreover, three bifurcation curves in the λ1λ2-plane

exist through the BT-point and are given by the following:

1. The saddle-node bifurcation curve:
SN = (λ1, λ2) : ζ1(λ1, λ2) = 0, ζ2(λ1, λ2) ̸= 0;

2. The Hopf bifurcation curve:
H = (λ1, λ2) : ζ2(λ1, λ2) = ±

√
−ζ1(λ1, λ2), ζ1(λ1, λ2) < 0;
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3. The homoclinic bifurcation curve:
HL = (λ1, λ2) : ζ2(λ1, λ2) = ± 5

7

√
−ζ1(λ1, λ2), ζ1(λ1, λ2) < 0.

Proof. With the assumption that the bifurcation parameters θ and ρ undergo small varia-
tions within the vicinity of the BT-point (θ0, ρ0), we move ahead with the analysis. Consider
a point (θ0 + λ1, ρ0 + λ2) in the vicinity of the BT-point (θ0, ρ0), where λ1 and λ2 are small.
Then, system (5) becomes

dx
dt

=
x(1 − x)(x − β)

(1 + (θ + λ1)y)(x + γ)
− ξxy

x + δ
,

dy
dt

= (ρ + λ2)y(1 −
y

x + δ
).

(22)

With respect to the variables x and y, system (22) exhibits C∞ smoothness in the
vicinity of (θ0, ρ0).
Taking u = x − x∗ and v = y − y∗, system (22) turns out to be

du
dt

= α00 + α10u + α01v + α20u2 + α11uv + α02v2 + R1(u, v),

dv
dt

= β10u + β01v + β20u2 + β11uv + β02v2 + R2(u, v),
(23)

where α00 = x∗(1−x∗)(x∗−β)
(1+(θ+λ1)y∗)(x∗+γ)

− ξx∗, α01 = − (θ+λ1)x∗(1−x∗)(x∗−β)
(1+(θ+λ1)y∗)2(x∗+γ)

− ξx∗
x∗+δ ,

α10 = x∗(1−2x∗+β)
(1+(θ+λ1)y∗)(x∗+γ)

+ γ(1−x∗)(x∗−β)
(1+(θ+λ1)y∗)(x∗+γ)2 − ξδ

(x∗+δ)2 ,

α20 = − 2x∗
(1+(θ+λ1)y∗)(x∗+γ)

+ 2γ(1−2x∗+β)
(1+(θ+λ1)y∗)(x∗+γ)2 −

2γ(1−x∗)(x∗−β)
(1+(θ+λ1)y∗)(x∗+γ)3 +

2ξδ
(x∗+δ)2 ,

α11 = −(θ+λ1)x∗(1−2x∗+β)
(1+(θ+λ1)y∗)2(x∗+γ)

− (θ+λ1)γ(1−x∗)(x∗−β)
(1+(θ+λ1)y∗)2(x∗+γ)2 − ξδ

(x∗+δ)2 , α02 = 2(θ+λ1)
2x∗(1−x)

(1+(θ+λ1)y∗)3(x∗+γ)
,

β10 = ρ + λ2, β01 = −(ρ + λ2), β20 = −(ρ+λ2)
x+δ , β02 = −(ρ+λ2)

x+δ , and β11 = 2 ρ+λ2
x+δ ; further-

more, R1 and R2 are power series in (u, v) with powers ui and vj satisfying i + j ≥ 3,
and the coefficients smoothly depend upon λ1 and λ2.

Now, we use the affine transformations y1 = u and y2 = α10u + α01v such that system
(23) becomes

dy1

dt
= y2+ + ξ00 + ξ20y2

1 + ξ11y1y2 + ξ02y2
2 + R̃1(y1, y2),

dy2

dt
= η00 + η10y1 + η01y2 + η20y2

1 + η11y1y2 + η02y2
2 + R̃2(y1, y2),

(24)

where ξ00 = α00, ξ20 = α20 − α11α10
α01

+
α02α2

10
α2

01
, ξ02 = α02

α2
01

, ξ11 = α11
α01

− 2α02α10
α2

01
,

η00 = α00α10, η10 = α01β10 − α10β01, η01 = α10 + β01, η20 = α20α10 + α01β20 − α10β11 −
α11α2

10
α01

+
α2

10β02
α01

+
α3

10α02

α2
01

, η02 = α10α02
α2

01
+ β02

α01
, and η11 = α11α10

α01
+ β11 − 2β02α10

α01
− 2α02α2

10
α2

01
; further-

more, R̃1 and R̃2 are power series in (y1, y2) with powers yi
1 and yj

2 satisfying i + j ≥ 3,
and the coefficients smoothly depend upon λ1 and λ2.

Next, we perform the C∞ transformations x1 = y1 and x2 = y2+ + ξ00 + ξ20y2
1 +

ξ11y1y2 + ξ02y2
2 such that system (24) becomes

dx1

dt
= x2 + R̂1(x1, x2),

dx2

dt
= γ00 + γ10y1 + γ01y2 + γ20y2

1 + γ11y1y2 + γ02y2
2 + R̂2(x1, x2),

(25)

where γ00 = η00 − ξ00η01 + . . . , γ10 = η10 − ξ00η11 + ξ11η00 + . . . , γ01 = η01 − 2ξ00η02 +
ξ02η00 − ξ00ξ11 + . . . , γ20 = η20 + ξ11η10 − ξ20η01 + . . . , γ01 = η02 + ξ11 − ξ02η01 + . . . ,
and γ11 = η11 + 2ξ20 + 2ξ02η10 + . . . ; furthermore, R̂1 and R̂2 are power series in (x1, x2)
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with powers xi
1 and xj

2 satisfying i + j ≥ 3, and the coefficients smoothly depend upon λ1
and λ2.

Now, consider a new time variable τ where dt = (1 − γ02x1)dτ. Rewriting τ as t,
system (25) can be rewritten as

dx1

dt
= (1 − γ02x1)x2 + R̂1(x1, x2),

dx2

dt
= (1 − γ02x1)(γ00 + γ10y1 + γ01y2 + γ20y2

1 + γ11y1y2 + γ02y2
2 + R̂2(x1, x2)).

(26)

Next, using the transformations z1 = x1 and z2 = (1 − γ02x1)x2 + R̂1(x1, x2), sys-
tem (26) transforms to

dz1

dt
= z2,

dz2

dt
= δ00 + δ10z1 + δ01z2 + δ20z2

1 + δ11z1z2 + R̄2(z1, z2),
(27)

where δ00 = γ00, δ10 = γ10 − 2γ02γ00, δ01 = γ01, δ20 = γ20 + γ00γ2
02 − 2γ02γ10, and

δ11 = γ11 − γ02γ01; furthermore, R̄1 and R̄2 are power series in (z1, z2) with powers zi
1 and

zj
2 satisfying i + j ≥ 3, and the coefficients have a smooth dependence upon λ1 and λ2.

When λ1 and λ2 are small, determination of the sign of δ20 is not possible. Hence, it is
crucial to examine the following two cases:

Case 1: δ20 > 0
Consider U = z1, V = z2√

δ20
, and dτ =

√
δ20dt; then, system (27) becomes

dU
dτ

= V,

dV
dτ

= p00 + p10U + p01V + U2 + p11UV + R3(U, V),
(28)

where p00 = δ00
δ20

, p10 = δ10
δ20

, p01 = δ01√
δ20

, and p11 = δ00√
δ20

; furthermore, R3 is a power series

in (U, V) with powers Ui and V j satisfying i + j ≥ 3, and the coefficients smoothly depend
upon λ1 and λ2.

Next, we use the affine transformations v1 = U + p10
2 and v2 = V; then, system (28)

becomes
dv1

dτ
= v2,

dv2

dτ
= q00 + q01v2 + v2

1 + q11v1v2 + R4(v1, v2),
(29)

where q00 = p00 −
p2

10
4 , q01 = p01 − p11 p10

2 , and q11 = p11; furthermore, R4 is a power series

in (v1, v2) with powers vi
1 and vj

2 satisfying i + j ≥ 3, and the coefficients smoothly depend
upon λ1 and λ2.

Making the change of variables w1 = q2
11v1, w2 = q3

11v2, and t = τ
q11

, system (29)
becomes

dw1

dt
= w2,

dw2

dt
= ζ1(λ1, λ2) + ζ2((λ1, λ2))w2 + w2

1 + w1w2 + R5(w1, w2),
(30)

where
ζ1(λ1, λ2) = q00q4

11, ζ2(λ1, λ2) = q01q11; (31)

furthermore, R5 is a power series in (w1, w2) with powers wi
1 and wj

2 satisfying i + j ≥ 3,
and the coefficients smoothly depend upon λ1 and λ2.
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Case 2: δ20 < 0

Consider Ū = z1, V̄ = z2√
−δ20

, and dτ =
√
−δ20dt; then, system (27) becomes

dŪ
dτ

= V̄,

dV̄
dτ

= p̄00 + p̄10Ū + p̄01V̄ + Ū2 + p̄11ŪV̄ + R̄3(Ū, V̄),
(32)

where p̄00 = −δ00
δ20

, p̄10 = −δ10
δ20

, p̄01 = δ01√
−δ20

, and p̄11 = δ00√
−δ20

; furthermore, R̄3 is a power

series in (Ū, V̄) with powers Ūi and V̄ j satisfying i + j ≥ 3, and the coefficients smoothly
depend upon λ1 and λ2.

Next, we use the affine transformations v̄1 = Ū − p̄10
2 and v̄2 = V̄; then, system (32)

becomes
dv̄1

dτ
= v̄2,

dv̄2

dτ
= q̄00 + q̄01v̄2 + v̄2

1 + q̄11v̄1v̄2 + R̄4(v̄1, v̄2),
(33)

where q̄00 = p̄00 +
p̄2

10
4 , q̄01 = p̄01 +

p̄11 p̄10
2 , and q̄11 = p̄11; furthermore, R̄4 is a power series

in (v̄1, v̄2) with powers v̄i
1 and v̄j

2 satisfying i + j ≥ 3, and the coefficients smoothly depend
upon λ1 and λ2.

Consider new variables w̄1 = −q̄2
11v̄1, w̄2 = q̄3

11v̄2, and t = − τ
q̄11

; then, system (33)
becomes

dw̄1

dt
= w̄2,

dw̄2

dt
= ζ̄1(λ1, λ2) + ζ̄2(λ1, λ2)w̄2 + w̄2

1 + w̄1w̄2 + R̄5(w̄1, w̄2),
(34)

where
ζ̄1(λ1, λ2) = −q̄00q̄4

11, ζ̄2(λ1, λ2) = −q̄01q̄11; (35)

furthermore, R̄5 is a power series in (w̄1, w̄2) with powers w̄i
1 and w̄j

2 satisfying i + j ≥ 3,
and the coefficients smoothly depend upon λ1 and λ2.

The number of cases can be minimized by using ζ1(λ1, λ2) and ζ2(λ1, λ2) to denote

ζ̄1(λ1, λ2) and ζ̄2(λ1, λ2) in (35). If
∣∣∣ ∂(ζ1,ζ2)

∂(λ1,λ2)

∣∣∣
λ1=λ2=0

̸= 0, that is, it is non-singular, then

the parameter transformations in (31) and (35) are topologically equivalent in the small
neighborhood of origin. So, it can be deduced that system (22) experiences a Bogdanov–
Takens bifurcation when (λ1, λ2) is in the vicinity of the origin by the result in Perko [45].
The depictions of the bifurcation curves are as follows:

1. The saddle-node bifurcation curve SN = (λ1, λ2) : ζ1(λ1, λ2) = 0, ζ2(λ1, λ2) ̸= 0;
2. The Hopf bifurcation curve H = (λ1, λ2) : ζ2(λ1, λ2) = ±

√
−ζ1(λ1, λ2), ζ1(λ1, λ2) < 0;

3. The homoclinic bifurcation curve HL = (λ1, λ2) : ζ2(λ1, λ2) = ± 5
7

√
−ζ1(λ1, λ2),

ζ1(λ1, λ2) < 0.

5. Numerical Simulation

To support and visualize all the above analysis, numerical simulation was undertaken
using MATLAB R2013a and Mathematica version 12.0, and the phase portraits were drawn
using MATLAB R2013a. The non-linear equations were solved using the “ode45” function
present in MATLAB R2013a and the “NSolve” function present in Mathematica version 12.

1. We fixed the parameters as β = 0.1, γ = 0.3, δ = 0.1, ρ = 2, and ξ = 0.2 in system (5).
The acquired results are presented in Table 1.
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Table 1. Number and characteristics of equilibria that resulted from the emergence of a saddle-node bi-
furcation.

θ
Equilibrium Points (Stability)

Figure
Axial Interior

0 < θ < θSN =
0.576118

E0 = (0, 0) (saddle) E∗
2 = (0.620942, 0.720942) (stable),

E∗
3 = (0.253568, 0.353568) (saddle) Figure 1a

θ = θSN Eδ = (0, δ) (stable)
E∗ = (0.382843, 0.482843) (degen-
erate singularity), emergence of
saddle-node bifurcation

Figure 1b,d

θ > θSN
Eβ = (β, 0) (unsta-
ble), E1 = (1, 0)
(saddle)

None Figure 1c

(a) (b)

(c)

Prey

Predaror

θ=0.576118

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

θ

P
o
p
u
la
ti
o
n
s

(d)

Figure 1. Existence of equilibrium points. (a) At θ = 0.1. (b) At θ = θSN = 0.576118. (c) At θ = 0.6.
The blue and red (separatrix) curves represent the solution trajectories of the system 5 and the arrows
depict the direction of these trajectories in (a–c). (d) Saddle-node bifurcation diagram (upper and
lower curves represent stable equilibria and unstable equilibria, respectively).

2. The occurrence of a limit cycle around the stable point, which led to a Hopf bifurcation,
is shown in Figure 2. We fixed the parameters as θ = 0.4, β = 0.1, γ = 0.3, δ = 0.1,
and ξ = 0.2; the obtained results are in Table 2.
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Table 2. Number and characteristics of equilibrium points that resulted from the emergence of a
Hopf bifurcation.

ρ
Equilibrium Points (Stability)

Figure
Axial Interior

ρ = 0.15 E0 = (0, 0) (saddle) E∗
2 = (0.507277, 0.607277) (stable),

E∗
3 = (0.296426, 0.396426) (saddle) Figure 2a

ρ = 0.1031 Eδ = (0, δ) (stable)
Homoclinic loop enclosing
E∗

2 = (0.507277, 0.607277) (stable),
E∗

3 = (0.296426, 0.396426) (saddle)
Figure 2b

ρ = ρh f =
0.0845887

Eβ = (β, 0) (unstable)

Unstable limit cycle (as
Λ = 0.66667 > 0) around
E∗

2 = (0.507277, 0.607277) (stable),
E∗

3 = (0.296426, 0.396426) (saddle)

Figure 2c

ρ = 0.01 E1 = (1, 0) (saddle) E∗
2 = (0.507277, 0.607277) (unstable),

E∗
3 = (0.296426, 0.396426) (saddle) Figure 2d

(a) (b)

(c) (d)

Figure 2. Phase potraits of system 5. The blue, red (separatrix) and green (limit cycle) curves represent
the solution trajectories of the system 5 and the arrows depict the direction of these trajectories. (a) At
ρ = 0.15, E∗

3 was consistently a saddle and E∗
2 was stable. (b) At ρ = 0.1031, E∗

2 was enclosed within
a homoclinic loop. (c) At ρ = ρh f = 0.0845887, an unstable limit cycle emerged at point E∗

2 . (d) At
ρ = 0.01, E∗

2 was unstable.

3. Fixing the parameters as β = 0.1, γ = 0.3, δ = 0.1, and ξ = 0.2 in (22), we first
found the threshold values, which come out to be θ0 = 0.576118 and ρ0 = 0.193091.
Corresponding to these parameters, system (5) exhibited a unique equilibrium point
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E∗ = (0.382843, 0.482843). By incorporating all the specified parameters, we derived
the subsequent system:

dx
dt

=
x(1 − x)(x − 0.1)

(1 + (0.576118 + λ1)y)(x + 0.3)
− 0.2xy

x + 0.1
,

dy
dt

= (0.193091 + λ2)y(1 −
y

x + 0.1
).

(36)

To transfer this equilibrium point to the origin, we made the transformations
u = x − 0.382843 and v = y − 0.482843. Then, we made the affine transformations
y1 = u and y2 = α10u + α01v. So, the system reduced to

dy1

dt
= y2+ + ξ00 + ξ20y2

1 + ξ11y1y2 + ξ02y2
2 + R̃1(y1, y2)

dy2

dt
= η00 + η10y1 + η01y2 + η20y2

1 + η11y1y2 + η02y2
2 + R̃2(y1, y2)

(37)

where ξ00 = −0.0765685 + 0.097868
1.27817+0.482843λ1

, ξ20 = (−0.100088 · · · − 0.0369706λ2
1)

2,
ξ02 = (0.195736 · · · − 0.0369706λ2

1)
2, ξ11 = (0.0666203 · · · − 0.0369706λ2

1)
2,

η00 = (3.42781 ∗ 10−15 − · · ·+ 0.482843λ1)
2, η10 = (−2.60784 ∗ 10−13 · · ·+ 0.482843λ1)

2,
η01 = (3.9968 ∗ 10−15 − · · ·+ 0.482843λ1, η20 = (−0.024702 − · · · − 0.0369706λ2

1)
2,

η02 = (0.222134 + · · · − 0.0369706λ2
1)

2, and η11 = (0.0164421 + · · · − 0.0369706λ2
1)

2;
furthermore, R̃1 and R̃2 were power series in (y1, y2) with powers yi

1 and yj
2 satisfying

i + j ≥ 3, and the coefficients had a smooth dependence upon λ1 and λ2.
Next, we performed the C∞ transformations x1 = y1 and x2 = y2 + ξ00 + ξ20y2

1 +
ξ11y1y2 + ξ02y2

2. We made a change in the time variable dt = (1 − γ02x1) and rewrote
T as t. Then, using the transformations z1 = x1 and z2 = (1 − γ02x1)x2 + R̂1(x1, x2),
system (37) is reduced to

dz1

dt
= z2

dz2

dt
= δ00 + δ10z1 + δ01z2 + δ20z2

1 + δ11z1z2 + R̄2(z1, z2)

(38)

where δ00 = (8.45997 ∗ 10−16 − · · ·+ 0.482843λ1)
2, δ10 = (−4.31962 ∗ 10−14 + · · · −

0.0369706λ2
1)

2), δ01 = (−1.24357∗ 10−15 + · · ·− 0.0369706λ2
1)

2), δ20 = (−0.00656111−
· · · − 0.0369706λ2

1)
4), and δ11 = (−0.0298712 − · · · − 0.0369706λ2

1)
4); furthermore,

R̄2 was a power series in (z1, z2) with powers zi
1 and zj

2 satisfying i + j ≥ 3, and the
coefficients smoothly depended upon λ1 and λ2.
When λ1 and λ2 were very small, then δ20 = −0.151939. Now, we first considered
U = z1, V = z2√

−δ20
, and dτ =

√
−δ20dt; then, we used v1 = U − p10

2 and v2 = V.

Then, making a change in the variables w1 = −q2
11v1, w2 = q3

11v2, and t = − τ
q11

, the
system reduced to

dw1

dt
= w2

dw2

dt
= ζ1(λ1, λ2) + ζ2(λ1, λ2)w2 + w2

1 + w1w2 + R̄5(w1, w2)

(39)

where
ζ1(λ1, λ2) = −q00q4

11, ζ2(λ1, λ2) = −q01q11, (40)

q00 = (1.46715 ∗ 10−19 − · · · − 3.16471 ∗ 10−7λ14
1 λ3

2)
2, q01 = (−6.37002 ∗ 10−16 − · · · −

0.0369706λ2
1)

4), and q11 = (−0.0298712 · · · − 0.0369706λ2
1)

4); furthermore, R̄5 was
a power series in (w1, w2) with powers wi

1 and wj
2 that satisfied i + j ≥ 3, and the

coefficients smoothly depended upon λ1 and λ2.
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The determinant E =
∣∣∣ ∂(ζ1,ζ2)

∂(λ1,λ2)

∣∣∣
λ1=λ2=0

= −65.9058 ̸= 0; from this, it is evident that

the rank of the matrix E was 2. So, the parametric transformation (31) was non-singular.
In the neighborhood of the BT-point (0, 0), the three bifurcation curves divided the

λ1λ2-plane into four distinct regions, as shown in Figure 3a. The blue line represents the
saddle-node bifurcation curve, the red line represents the Hopf bifurcation curve, and the
green line represents the homoclinic bifurcation curve.

Behavior of the system in different regions:
When λ1 = λ2 = 0, then system (36) possessed a unique positive equilibrium point

that was identified as a codimension-two cusp, as shown in Figure 3b. When we varied
the values of λ1 and λ2 in such a way that we entered region 1, system (36) exhibited the
absence of an interior equilibrium point, which implies that the system moved toward
a prey-free equilibrium point, as shown in Figure 3c. As λ1 and λ2 entered region 2 by
crossing the saddle-node bifurcation curve, the system went from exhibiting no interior
equilibrium point to exhibiting two interior equilibrium points. One of the equilibrium
points was consistently a saddle, while the other was characterized as unstable, as shown
in Figure 3d. As the values of λ1 and λ2 entered region 3 by crossing the Hopf bifurcation
curve, the positive equilibrium point was enclosed within an unstable limit cycle, as shown
in Figure 3e. As the values of λ1 and λ2 entered region 4 by crossing the homoclinic
bifurcation curve, the system lost the limit cycle and attained an interior equilibrium point
that was stable, along with a saddle interior equilibrium point (cf. Figure 3f). The behavior
of the system 5 in each region has been comprised in Table 3.

Table 3. Behavior of system in various regions.

Region Number of Interior Equilib-
rium Points

Dynamic Behavior Exhibited
by Regions Figure

Origin One Cusp Figure 3b

Region 1 Zero Figure 3c

Region 2 Two One was consistently a saddle while the
other was unstable Figure 3d

Region 3 Two
One was consistently a saddle while the
other was enclosed by an unstable limit
cycle

Figure 3e

Region 4 Two One was consistently a saddle while the
other was stable Figure 3f

(a) (b) (c)

Figure 3. Cont.
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(d) (e) (f)

Figure 3. (a) Bifurcation diagram. (b) Cusp at λ1 = λ2 = 0. (c) Region 1: no interior equilibrium point.
(d) Region 2: two positive equilibrium points (one exhibiting instability and the other characterize as
a saddle point). (e) Region 3: two positive equilibrium points (unstable limit cycle that enclosed one
interior point and a saddle point). (f) Region 4: two positive equilibrium points (one that exhibited
stability and the other characterized as a saddle point). The blue curves represent the solution
trajectories of the system 5 and the arrows depict the direction of these trajectories in (b–f).

6. Impact of Fear Effect

The emphasis of this section is on exploring the influence that fear and the double
Allee effect have on prey species. The impact was studied in two parts: the first part dealt
with a scenario where the predator’s population was constant, and the second part dealt
with a scenario when the predator’s population was governed by the second differential
equation of model (4).

1. Consider the prey equation of model (4) while the predator was taken as a constant.
In this scenario, model (4) is reduced to

dN
dT

=
rN

1 + f P

(
1 − N

K

)(N − m
N + n

)
− αNP

a + N
. (41)

In reality, this scenario where the predators remain constant in an environment is
highly unlikely, but there do exist some cases in which keeping a species’ population
constant is possible, and this allows us to control the dynamics of an ecological system
to some extent. To fulfill the aim of this study, the predator species was considered
constant so that the impact of the fear effect could be explored at great length. Since
fear is a feeling that is induced in prey due to the presence of predators only, we
cannot disregard the existence of predators even while doing a study on just the
growth function of the prey.
In addition to the fear effect, we also considered the influence of the double Allee
effect on the growth rate of prey species. This purpose could be served by plotting
the per capita growth rate of the prey, i.e., 1

N
dN
dT against the population of the prey

N (see Figure 4). From Figure 4a, we can see that the incorporation of phenomena
like the double Allee effect and the fear effect led to a decline in the growth rate of
the prey species. Figure 4b–d reflects that as the values of the parameters m, n, and f
increased, respectively, the per capita growth rate of prey species decreased. The prey
population possessed a threshold value for these parameters, which was crucial in
determining the extinction or survival of the species.
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(a) (b)

(c) (d)

Figure 4. (a) Population growth rate of prey species with constant predators when governed by
logistic growth only, by double Allee effect, by fear effect, and by both double Allee and fear effect.
(b) Effect of m on growth curve of system (41). (c) Effect of n on growth curve of system (41). (d) Effect
of f on growth curve of system (41).

Consider N = Kx, P = Ky, and T = t
r ; then, system (41) reduces to the following

non-dimensional form:

dx
dt

=
x(1 − x)(x − β)

(1 + θy)(x + γ)
− ξxy

x + δ
= f (x), (42)

where β = m
K , γ = n

K , δ = a
K , θ = f K, and ξ = α

r .
Except x = 0, system (42) has non-trivial equilibrium points given by

x3 − Jx2 − Kx + L = 0, (43)

where J = 1 + β − δ, K = βδ + δ − β − ξy − ξθy2, and L = βδ + γ(ξy + ξθy2). If any
one of the conditions J > 0, K ≥ 0; J > 0, K ≤ 0; or J ≤ 0, K ≥ 0 holds, then by
Descartes’ sign rule, it is clear that (43) has a negative root. Let this root be −ν, ν > 0.
Dividing (43) by (x + ν), we obtain the following quadratic equation:

x2 − (J + ν)x + ν(J + ν)− K = 0, (44)

Taking ∆1 = (J + ν)2 − 4(ν(J + ν) − K), the ensuing outcome is described in the
following theorem.

Theorem 7. If any of the conditions (i) J > 0, K ≥ 0, (ii) J > 0, K ≤ 0, or (iii) J ≤ 0,
K ≥ 0 hold, then system (42) has the following:

(a) Two equilibrium points Ē1 = x̄1 and Ē2 = x̄2 when ∆1 > 0, where x̄1 = J+ν−
√

∆1
2

and x̄2 = J+ν+
√

∆1
2 ;

(b) One equilibrium point Ē3 = x̄3 when ∆1 = 0, where x̄3 = J+ν
2 ;

(c) No equilibrium point when ∆1 < 0.
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The stability of system (42) can be determined by the sign of f ′(x) at various equilib-
rium points [46]. Differentiating f (x) given in Equation (42), we obtain

f ′(x) =
x(1 − 2x + β)

(1 + θy)(x + γ)
− x(1 − x)(x − β)

(1 + θy)(x + γ)2 +
ξxy

(x + δ)2 +
(1 − x)(x − β)

(1 + θy)(x + γ)
− ξy

x + δ

The theorem stated below and Figure 5 show the stability of system (42).

Theorem 8. (a) The trivial equilibrium point is always stable, as f ′(x) < 0.

(b) The equilibrium points Ē1, Ē2, and Ē3, if they exist, are unstable when x̄1(1−2x̄1+β)
(1+θy)(x̄1+γ)

+

ξ x̄1y(γ−δ)
(x̄1+γ)(x̄1+δ)2 > 0, stable when x̄2(1−2x̄2+β)

(1+θy)(x̄2+γ)
+ ξ x̄2y(γ−δ)

(x̄2+γ)(x̄2+δ)2 < 0, and semi-stable
(saddle-node bifurcation), respectively.

Figure 5. Behavior of the solution for system (42), where blue curves represent the constant solution
of system (42) and green curves represent the non-constant solutions of system (42).

2. Now, coming back to the original system (5), we present the influence of fear and
the double Allee effect. Figure 6a–c illustrate that as the Allee effect parameters (β
and γ) and fear effect parameter (θ), respectively, were increased, the equilibrium
point E∗

2 moved downward. This implies that an increase in the double Allee effect
parameters and the fear effect led to the existence of an equilibrium point at a lower
population. As soon as the critical value of these parameters was crossed, the system
moved toward the prey-free equilibrium, which is stable in nature.

(a) (b)

(c)

Figure 6. (a) Impact of β on E∗
2 . (b) Impact of γ on E∗

2 . (c) Impact of θ on E∗
2 .
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Now, to observe the collective influence of the fear effect and the double Allee effect,
3D phase portraits were used. Figure 7a shows the behavior of the prey population
at the stable equilibrium point E∗

2 against the parameters θ and β, and it can be seen
that the prey population decreased as the values of the parameters θ and β increased.
Similarly, Figure 7b reflects the same result with respect to the parameters θ and γ.
Now, we know that y∗2 = x∗2 + δ, which implies the predator population will also
behave in the same way as the prey population regarding the parameters θ and β,
as well as θ and γ. From this, we could conclude that the higher the fear and value
of the Allee effect parameters, the lower the population where system (5) attained
stability. Ecologically, one can infer that escalation in the fear effect leads to a decline in
prey and predator populations. As this fear intensifies, the prey population indulges
less in foraging, and their interaction with each other decreases, which ultimately
leads to a lower reproduction rate and, consequently, a reduced overall population.
The diminishing predator–prey interaction is attributed to a declining prey population,
which results in a decline in the population of predators. The populations of both
species drop to the point where prey go extinct and predators survive (due to the
presence of additional food).
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Figure 7. (a) Effects of θ and β on x∗2 . (b) Effects of θ and γ on x∗2 .

7. Discussion

The conservation of the ecosystem relies on our capability to comprehend the delicate
and dynamic intricacy of ecology. A better comprehension of the dynamics enables us
to recognize potential threats to ecological stability. The ecosystem comprises various
interactions between species that are complex and dynamic. In this work, we studied
one such complex part of the ecosystem, which is the predator–prey interaction. For this
purpose, we modified the system presented by Singh et al. [22], which focuses on the
study of the double Allee effect in the modified LGPP model. In their study, the authors
considered direct killing as the only way in which predator populations alter the population
of prey. In the current paper, we improved the realism of this system by incorporating the
fear effect.

The relevant properties for the feasibility of the proposed model were studied. An-
alytically and numerically, the proposed system exhibits at most six equilibrium points,
including both axial and interior equilibria. The existence of axial equilibria remains un-
affected whatever the values of parameters, while the system admits zero, one, or two
interior equilibria depending on the parametric conditions. After examining the stability, it
is seen that the trivial equilibrium point is consistently a saddle; the prey-free equilibrium
point is an asymptotically stable point; and one of the two predator-free equilibrium points
is consistently a saddle, while the other is an unstable point. In terms of ecology, it can be
said that the predator and prey population cannot go extinct simultaneously, but in some
cases, the prey species will move toward extinction while predators will never go extinct.
If there are two interior equilibrium points, one is consistently a saddle, while the other
will switch between a stable point, unstable point, or surrounded by an unstable limit cycle
depending on certain parametric restrictions. Ecologically speaking, this means that either
both prey and predator populations will coexist, prey will cease to exist, or there will be
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oscillating behavior. If there is a unique interior equilibrium point, then it is either a saddle
node or a cusp of codimension two, contingent on the parametric restrictions. Ecologically,
we can say that either the species will coexist or the prey will go extinct, contingent upon
the initial population that the system commenced with. The initial values of both species
has a great influence in determining the future dynamics of the system.

The diverse bifurcations exhibited by the proposed system were also analyzed. The phe-
nomenon under study, that is, the fear effect, plays a vital role in the occurrence of the
bifurcation. The possibility of the existence of zero, one, or two positive equilibrium points
depends on the critical value of the fear effect parameter in the proposed model. The emer-
gence of saddle-node bifurcation was proved by using Sotomayer’s theorem. Ecologically,
both populations will coexist if θ does not cross the critical value θ = θSN , and if the critical
value is crossed, then the prey will go extinct; that is, after a certain degree of fear, the prey
population will tend to extinction. The proposed model also exhibits a limit cycle because
of the emergence of a Hopf bifurcation. The stability of this limit cycle and the presence
of a homoclinic loop (formed by the convergence of a saddle point and limit cycle) were
also studied numerically. The system also possesses a Bogdanov–Takens bifurcation of
codimension two and is explored using both analytical methods and numerical simulation.
Ecologically speaking, this bifurcation leads to the emergence of various regions in the
vicinity of the BT-point, each possessing unique properties, like the extinction of prey
species, the coexistence of both species, or the oscillating behavior of prey and predator.

The influence of fear and the double Allee effect on the species’ growth rate was also
examined. The analysis of the system was undertaken using two scenarios: considering
the predator as constant and then variable. Furthermore, to dig deeper into the study of
the fear effect, the influence of fear with each Allee effect parameter, individually, was also
explored. It was observed as the Allee effect parameters and fear effect were increased,
the stable equilibrium point E∗

2 moved downward. And as these parameters crossed their
critical value, the system moved toward the prey-free equilibrium point. From an ecological
point of view, it can be said that the proposed system is highly dependent on the double
Allee effect and fear effect parameters and the prey species can cease to exist if the degree
of these phenomena is increased beyond certain values of these parameters.

In conclusion, the present study can help in better understanding the predator–prey
system, as it incorporates the fear effect, which takes us one step closer to a more realistic
ecological model.
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