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Abstract: The Hirota equation, an advanced variant of the nonlinear Schrödinger equation with cubic
nonlinearity, incorporates time-delay adjustments and higher-order dispersion terms, offering an
enhanced approximation for wave propagation in optical fibers and oceanic systems. By utilizing the
traveling wave transformation generated from Lie point symmetry analysis with the combination of
generalized exponential differential rational function and modified Bernoulli sub-ODE techniques,
several traveling wave solutions, such as periodic, singular-periodic, and kink solitons, emerge.
To examine the solutions visually, parametric values are adjusted to create 3D, contour, and 2D
illustrations. Additionally, the dynamic properties of the model are explored through bifurcation
analysis. The exact results demonstrate that both techniques are practical and robust.

Keywords: solitary wave solutions; the Hirota equation; generalized exponential rational differential
function method; generalized Bernoulli sub-ODE method

1. Introduction

A nonlinear evolution equation (NLEE) represents a type of differential equation
that captures the evolution of a system in a nonlinear fashion, meaning the system’s rate
of change does not simply scale proportionally with alterations in its variables. Unlike
linear equations, which follow the principle of superposition, NLEEs exhibit intricate
behaviors like turbulence, wave breaking, and self-organization. These equations are
pivotal in modeling phenomena across fields such as fluid dynamics, plasma physics,
optical fibers, and biological systems, as the nonlinear terms allow for the representation
of interactions that lead to emergent properties often critical for accurate portrayals of
natural systems. Classic examples include the nonlinear Schrödinger equation, prominent
in optical communications, and the Korteweg–de Vries (KdV) equation, which applies to
shallow water wave dynamics.

In contemporary scientific and technological research, NLEEs play a crucial role in
studying soliton solutions. A soliton is a unique type of solution to NLEEs that typically
bypasses dependency on boundary or initial value constraints, setting it apart from other
differential equation solutions. Solitons manifest as stable, localized waveforms due to a
natural balance between the system’s nonlinearity and dispersion. This distinctive property
enables solitons to maintain their shape and energy over considerable distances without
dissipating, which is an advantage over ordinary waves that tend to disperse over time.
This self-preserving nature makes solitons invaluable for applications where stability across
long distances is essential, as seen in optical fibers [1] and water waves.
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A range of fields, including engineering, fluid dynamics, applied mathematics, biology,
and hydrodynamics, extensively utilize applications grounded in diverse mathematical
methods. Effective techniques to obtain exact and numerical solutions for NLEEs include
the Lie group method [2], the Bäcklund transformation [3], the G′/(bG′ + G + a) expansion
technique [4], the modified simple equation method [5,6], the sine–cosine technique [7], the
Sardar sub-equation [8], the Hirota bilinear method [9,10], the modified tanh expansion
approach [11], and the sine Gordon expansion method [12]. These methodologies provide
structured tools for unlocking solutions to complex nonlinear systems, advancing both
theoretical understanding and practical applications across scientific disciplines.

By employing the bifurcation theory of planner dynamical systems [13], all possible
scenarios for parameter dependency are investigated in order to produce phase pictures
of the behavior of the controlling differential equation. The dynamics of waves must
be examined as a part of many differential equation investigations. The method known
as bifurcation analysis is widely used to analyze dynamic systems [14,15]. One of the
characteristics of a bifurcation is an abrupt qualitative change in the system. For a long
time, this topic has been acknowledged as a crucial resource for comprehending any
physical event governed by differential equations.

An important model that has extensively been studied in the literature is the nonlinear
Schrodinger equation (NLSE) [16]. Here, we use a modified form of the NLSE with third-
order dispersion components and a time-delay correction to the cubic nonlinearity. The
coefficients are used to form an integrable model. The Hirota equation is as follows [17,18]:

i
∂Υ
∂t

+
∂2Υ
∂x2 + 2|Υ|2Υ + iλ1

∂3Υ
∂x3 + 6iλ1|Υ|2

∂Υ
∂x

= 0, (1)

where λ1 ̸= 0 and Υ is a complex function. This model has been approached using a range
of mathematical techniques. Among these is the New Sine-Gordon Expansion Method,
which is effective in deriving both periodic and soliton solutions [19]. Another is the First
Integral Method, which is recognized for using conserved quantities to uncover unique
solutions [20]. Exact N-envelope-soliton solutions of the Hirota equation are derived
through the trace method [21]. High-order rational solutions have been formulated through
the parameterized Darboux transformation, while intricate solution structures have also
been reached using the Hirota bilinear method [22]. The extraction of solutions of variable-
coefficient Hirota equations is conducted through the Hirota bilinear method and symbolic
computation [23]. Furthermore, the Inverse Scattering Transform (IST) has been widely
employed to extract various soliton solutions, including single-, double-, and multi-soliton
types [24]. Here, we will utilize two alternative strategies to find new exact soliton solutions
to the Hirota equation, namely, the generalized exponential differential rational function
method (GERFM) [25] and the modified Bernoulli sub-ODE technique (GBSOM) [26].

2. The Generalized Exponential Differential Rational Function Method

The following are the key steps of the procedure.
[Step 1.] Given a nonlinear partial differential equation (NLPDE) for ϱ, we assume it to be
in the form

N1(ϱ, ϱx, ϱt, ϱxx, . . .) = 0. (2)

Using the transformations u1 = u1(ϑ1) and ϑ1 = µ1(x − ζt), we convert the NLPDE to an
ordinary differential equation (ODE).

N1(u1, u′
1, u′′

1 , . . .) = 0, (3)

[Step 2.] The new method’s main step is to assume that Equation (3) has a rational form.

Θ(ϑ1) =
Ξ1exp(Λ1ϑ1) + Ξ2exp(Λ2ϑ1)

Ξ3exp(Λ3ϑ1) + Ξ4exp(Λ4ϑ1)
. (4)
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where Ξ1, Ξ2, Ξ3, Ξ4 and Λ1, Λ2, Λ3, Λ4 are real numbers. The traveling wave solution of
Equation (2) is

u1(ϑ1) = W0 +
M

∑
j=1

Wj

(
dk

dϑk
1

Θ(ϑ1)

)j

+
M

∑
j=1

Gj

(
dk

dϑk
1

Θ(ϑ1)

)−j

. (5)

We have unknown coefficients W0, Wj, Gj (1 ≤ j ≤ M), Ξn, and Λn(1 ≤ n ≤ 4), such that
solution (5) satisfies the nonlinear ordinary differential (NLODE) Equation (3). Applying
the balancing principle to Equation (3) can be used to determine M.
[Step 3.] After inserting Equation (5) into (3), Equation (3) will change into a polynomial
equation. We obtain a series of algebraic equations by setting each coefficient to zero and
then compute j, λ1, W0, W1, and G1 by using Maple.
[Step 4.] The soliton solutions of Equation (2) can be obtained by solving the algebraic
equations in Step 3 and then putting that solution in (5).

3. The Generalized Bernoulli Sub-ODE Method

Here, we explain the strategy of the GBSOM to find a solution.
[Step 1.] One is given an NLPDE for ϱ and an NLODE using the transformation in
Equation (2) and Equation (3), respectively.
[Step 2.] Assume that Equation (3) has a solution of form

u1(ϑ1) =
M

∑
k=0

Bk θk, (6)

where B0, Bk(1 ≤ k ≤ M) are unknown coefficients. The balancing rule gives the value of
M. Here, θ = θ(ϑ1) satisfies the following equation:

θ ′ + Ω θ = δ θ 2. (7)

When δ ̸= 0, Equation (7) has solution forms as

θ1(ϑ1) = − Ω
2 δ

(
tanh

(
Ω
2

ϑ1

)
− 1
)

, (8)

θ2(ϑ1) = − Ω
2 δ

(
coth

(
Ω
2

ϑ1

)
− 1
)

. (9)

[Step 3.] Equation (3) is turned into a polynomial in θ by putting (6) into (3) and collecting
all terms. Each coefficient of the like exponent of θ is set to zero, resulting in a series of
algebraic equations which give Bk, Bk−1, ..., Ω, δ.
[Step 4.] We can build wave solutions of the NLPDE by utilizing the solutions of Equation (7)
and the values of constants acquired in Step 3.

4. Application

To solve Equation (1) analytically, we need to convert the model into an ODE. Since
all the coefficients of Equation (1) are not functions of x or t, therefore, it is compulsory
that this model has translation symmetries such that ∂

∂x and ∂
∂t , so their combination makes

Abelian algebra. So, the best optimal condition they possess is the following traveling
wave transformation:

Υ(x, t) = u1(ϑ1)ei( b x+r t), ϑ1 = µ1(x − ζt), (10)
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where µ1, ζ, b, and r are unknowns. Employing the above equation with Equation (1)
transforms the governing model into the following equations:(

b2 + r − λ1b3
)

u1 + (6λ1b − 2)u3
1 + µ2

1(3λ1b − 1)u′′
1 = 0, (11)

from the real part, and

µ1(ζ + b(3λ1b − 2))u′
1 − 6λ1µ1u2

1u′
1 − µ3

1λ1u′′′
1 = 0, (12)

from the imaginary part. Integrating Equation (12) once, we have

(ζ + b(3λ1b − 2))u1 − 2λ1u3
1 − µ2

1λ1u′′
1 = 0. (13)

Using Equation (13) in Equation (11), we obtain the following conditions:

b2 + r − λ1b3

ζ + b(3λ1b − 2)
= −µ1 − 12(3λ1b − 1)

µ2
1λ1

. (14)

Then, it is easily verified that

ζ =
λ1b2 + λ1r − λ2

1b3

3λ1b − 1
− b(3λ1b − 2). (15)

Using Equation (15) in Equation (13), we obtain

µ2
1u′′

1 −
(

b2 + r − λ1b3

3λ1b − 1

)
u1 + 2u3

1 = 0. (16)

4.1. Applying GERFM

Homogeneous balancing of Equation (16) gives 3M = M + 2, so M = 1. Hence, from
Equation (5), the solution of Equation (1) is

u1(ϑ1) = W0 + W1

(
d

dϑ1
Θ(ϑ1)

)
+

G1(
d

dϑ1
Θ(ϑ1)

) , (17)

where Θ(ϑ1) is given by Equation (4). The non-trivial solutions of Equation (1) are listed below:
[Case 1:] For Ξn = [1,−1, i, i] and Λn = [i,−i, 0, 0], it gives

Θ(ϑ1) = sin(ϑ1). (18)

Considering Equations (18) and (17), the solution set for Equation (16) can be identified as
G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .

By integrating the given constants into the equation specified in Equation (17), one
can derive a solution for Equation (16) as follows:

u1(ϑ1) = W0 + W1 cos(ϑ1) +
G1

cos(ϑ1)
. (19)

Therefore, the solution to Equation (1) is represented as follows:

Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 + W1 cos(µ1(−ζt + x)) +

G1

cos(µ1(−ζt + x))

)
. (20)

[Case 2:] For Ξn = [i,−i, i, i] and Λn = [1,−1, 0, 0], we have

Θ(ϑ1) = cos(ϑ1). (21)
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Based on Equation (21) and (17), the solution set for Equation (16) can be determined as
G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .

Substituting the mentioned constants into the formula presented in Equation (17)
provides a solution for Equation (16) as follows:

u1(ϑ1) = W0 − W1 sin(ϑ1)−
G1

sin(ϑ1)
. (22)

Consequently, the solution for Equation (1) is given by the following expression:

Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 − W1 sin(µ1(−ζt + x))− G1

sin(µ1(−ζt + x))

)
. (23)

[Case 3:] We attain Ξn = [1,−1, i, i] and Λn = [i,−i, i,−i], which gives

Θ(ϑ1) = tan(ϑ1). (24)

Referring to Equation (24) and (17), the solution set for Equation (16) can be concluded as
G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .

Applying the stated constants in the expression of Equation (17) results in solving
Equation (16) as follows:

u1(ϑ1) = W0 + W1

(
1 + tan(ϑ1)

2
)
+

G1

1 + tan(ϑ1)
2 . (25)

As a result, Equation (1) yields the solution shown below:

Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 + W1

(
1 + tan(µ1(−ζt + x))2

)
+

G1

1 + tan(µ1(−ζt + x))2

)
. (26)

[Case 4:] We attain Ξn = [i, i, 1,−1] and Λn = [i,−i, i,−i], which gives

Θ(ϑ1) = cot(ϑ1). (27)

In view of Equations (27) and (17), the solution set for Equation (16) can be established as
G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .

Inserting the above constants into the formulation of Equation (17) leads to a resolution
of Equation (16) as follows:

u1(ϑ1) = W0 + W1

(
−1 − cot(ϑ1)

2
)
+

G1

−1 − cot(ϑ1)
2 . (28)

Thus, the solution for Equation (1) can be expressed as follows:

Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 + W1

(
−1 − cot(µ1(−ζt + x))2

)
+

G1

−1 − cot(µ1(−ζt + x))2

)
. (29)

[Case 5:] We attain Ξn = [1,−1, i, i] and Λn = [i,−i, 0, 0], which gives

Θ(ϑ1) = sinh(ϑ1). (30)

With reference to Equations (30) and (17), the solution set for Equation (16) can be ob-
tained as G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .
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When incorporating the specified constants into the equation from Equation (17), it
produces a solution for Equation (16) as follows:

u1(ϑ1) = W0 + W1 cosh(ϑ1) +
G1

cosh(ϑ1)
. (31)

Accordingly, the solution to Equation (1) is presented in the following form:

Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 + W1 cosh(µ1(−ζt + x)) +

G1

cosh(µ1(−ζt + x))

)
. (32)

[Case 6:] We attain Ξn = [i,−i, i, i] and Λn = [1,−1, 0, 0], which gives

Θ(ϑ1) = cosh(ϑ1). (33)

Given Equations (33) and (17), the solution set for Equation (16) can be worked out as
G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .

Plugging the defined constants into the equation outlined in Equation (17) leads to the
solution of Equation (16) as follows:

u1(ϑ1) = W0 + W1 sinh(ϑ1) +
G1

sinh(ϑ1)
. (34)

Hence, the solution for Equation (1) is outlined as follows:

Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 + W1 sinh(µ1(−ζt + x)) +

G1

sinh(µ1(−ζt + x))

)
. (35)

[Case 7:] We attain Ξn = [1,−1, 1, 1] and Λn = [1,−1, 1,−1], which gives

Θ(ϑ1) = tanh(ϑ1). (36)

Referring back to Equations (36) and (17), the solution set for Equation (16) can be deter-
mined as G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .

By embedding the provided constants into the expression within Equation (17),
Equation (16) can be solved as follows:

u1(ϑ1) = W0 + W1

(
1 − tanh(ϑ1)

2
)
+

G1

1 − tanh(ϑ1)
2 . (37)

For this reason, Equation (1) has the following solution:

Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 + W1

(
1 − tanh(µ1(−ζt + x))2

)
+

G1

1 − tanh(µ1(−ζt + x))2

)
. (38)

[Case 8:] We attain Ξn = [1, 1, 1,−1] and Λn = [1,−1, 1,−1], which gives

Θ(ϑ1) = coth(ϑ1). (39)

By considering Equations (39) and (17), the solution set for Equation (16) can be resolved as
G1 = G1; W0 = W0; W1 = W1; b = b, µ1 = µ1; r = − 2b2

3 ; λ1 = 1
3b .

The integration of the aforementioned constants into the equation from Equation (17)
yields a solution to Equation (16) as follows:

u1(ϑ1) = W0 + W1

(
1 − coth(ϑ1)

2
)
+

G1

1 − coth(ϑ1)
2 . (40)

Thus, the solution to Equation (1) is written as follows:
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Υ(x, t) = ei(− 2
3 b2t+bx)

(
W0 + W1

(
1 − coth(µ1(−ζt + x))2

)
+

G1

1 − coth(µ1(−ζt + x))2

)
. (41)

4.2. Applying GBSOM

By employing the balancing rule in the previous section, the solution of Equation (1)
is given as [27]

u1(ϑ1) = β0 + β1θ. (42)

We obtain the system of equations using the proposed model in Section 3. Then, solving
the system gives

β0 =
1√
2

√
b2 + r − λ1 b3

3 λ1 b − 1
, β1 = i δ µ1, Ω =

√
2

µ1

√
−b2 − r + λ1 b3

3 λ1 b − 1
, δ = δ.

Inserting Ω and δ in Equations (8) and (9) yields

θ1(ϑ1) = − 1√
2 µ1 δ

√
−b2 − r + λ1 b3

3 λ1 b − 1

tanh

 1√
2 µ1

√
−b2 − r + λ1 b3

3 λ1 b − 1
ϑ1

− 1

, (43)

θ2(ϑ1) = − 1√
2 µ1 δ

√
−b2 − r + λ1 b3

3 λ1 b − 1

coth

 1√
2 µ1

√
−b2 − r + λ1 b3

3 λ1 b − 1
ϑ1

− 1

. (44)

Using equations (42) and (43), the solutions of (1) are as follows:

Υ1(x, t) =
1√
2

√
b2 + r − λ1 b3

3 λ1 b − 1

2 − tanh

 1√
2

√
−b2 − r + λ1 b3

3 λ1 b − 1
(x − ζ t)

× ei(b x+r t), (45)

Υ2(x, t) =
1√
2

√
b2 + r − λ1 b3

3 λ1 b − 1

2 − coth

 1√
2

√
−b2 − r + λ1 b3

3 λ b − 1
(x − ζ t)

× ei(b x+r t). (46)

5. Bifurcation Behaviors and Phase Portrait

The bifurcation behavior of the given equation is analyzed in the next section. For
this purpose, we employed the traveling wave transformation to transform Equation (1) to
an ODE.

5.1. Planer Dynamical System

It is crucial to keep in mind that a dynamical system’s phase pictures might alter
dramatically based on its equilibrium points. A solution for the associated NLPDE is
shown by each orbit in the phase picture of a dynamical system. The bifurcation of
Equation (16) is examined here. Due to the modification of the first equation, it is now an
ensemble of first-order ODEs. For that, Equation (16) is used as shown below:

µ2
1Υ

′′ −
(

p2 + r − λ1 p3

3λp − 1

)
Υ + 2Υ3 = 0. (47)

The following is a demonstration of Equation (47):
dΥ′
dη = z,
dz
dη =

(
p2+r−λ1 p3

µ2(3λ1 p−1)

)
Υ − 2

µ2
1
Υ3.

(48)
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5.2. Equilibrium Points

The roots of
(

b2+r−λ1b3

µ2
1(3λ1b−1)

)
Υ − 2

µ2
1
Υ3 are the equilibrium positions for perturbed system

(48) on the axis z = 0. Thus, we obtain

c1

c2
Υ − 2

c2
Υ3 = 0, (49)

where

c2 = µ2
1, c1 =

(
b2 + r − λ1b3

µ2
1(3λ1b − 1)

)
, (50)

So, Equation (49) possesses a stable point Υ1 = (0, 0) if c1c2 < 0; however, the equilibrium

points in dynamical system (48) are as follows if c1c2 > 0: Υ1 = (0, 0), Υ2 =

(√
b
2 , 0
)

,

Υ3 =

(√
− b

2 , 0
)

. Consider that M(Υ, z) represents the linearized system’s coefficient

matrix in dynamical system (48) at equilibrium point (Υ, z). It is called the Jacobian matrix
of the system. According to a perturbed system, the determinant of the Jocobi matrix is
as follows:

det[J(Υ, z)] =
6
c2

Υ − c1

c2
. (51)

The stable point for system (48) is (Υ, 0). According to the theory of planer dynamical
systems, (Υ, 0), the stable point of dynamical system (48) is a saddle when det[J(Υ, 0)] < 0,
a center when det[J(Υ, 0)] > 0, or a cusp when det[J(Υ, 0)] = 0.

The bifurcation of the planer dynamical system depends upon the parameters c2 and
c1 in the perturbed system. Six cases are considered to be inside the parameters’ domain:

R1 = [(c2, c1)|c2 > 0, c1 > 0],

R2 = [(c2, c1)|c2 > 0, c1 < 0],

R3 = [(c2, c1)|c2 > 0, c1 = 0],

R4 = [(c2, c1)|c2 < 0, c1 = 0],

R5 = [(c2, c1)|c2 < 0, c1 < 0],

R5 = [(c2, c1)|c2 < 0, c1 > 0].

With the use of Matlab and the previously indicated parameter, the phase picture of the
dynamical system in plane (Υ, z) may be given.
Case I:

The dynamical system (48) possesses three equilibrium values when (c2, c1) ∈ R1,

where the saddle is Υ1 = (0, 0). Moreover Υ2,3 =
(
±
√

c1
2 , 0
)

are the two centers. Figure 1a
represents the phase plots of this case for c2 = 1 and c1 = 1.
Case II:

When (c2, c1) ∈ R2, the system has one stable point, Υ1 = (0, 0), and it is a center. The
phase plot for this case is shown in Figure 1b when c2 = 1 and c1 = −1.
Case III:

When ((c2, c1) ∈ R3, the system has one equilibrium, Υ1 = (0, 0), and it is a cusp.
Figure 1c represents this case for c2 = 1, and c1 = 0 using green lines.
Case IV:

When ((c2, c1) ∈ R4, the system has one stable point, Υ1 = (0, 0) , and, therefore,
in this region Υ1 is cusp. Figure 1c represents this case for c2 = −1 and c1 = 0 using
green lines.
Case V:

Since the determinant of the Jacobi matrix (50) is negative, the system has one stable
point, Υ1 = (0, 0), and it is saddle when ((c2, c1) ∈ R5. The phase plots for the current
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region is denoted by red lines in Figure 1c for c2 = −1 and c1 = −1.
Case VI:

When ((c2, c1) ∈ R6, the system has three stable points where Υ1 = (0, 0) is the center

point. Moreover, Υ2,3 =
(
±
√

c1
2 , 0
)

are the two saddle points. Figure 1d represents the
phase plots of this case for c2 = −1 and c1 = 1.

(a) Phase portrait of case 1 (b) Phase portrait of case 2

(c) Phase portrait of cases 3, 4, and 5 (d) Phase portrait of case 6

Figure 1. Qualitative analysis.

6. Graphical Representation

Examining the behavior of nonlinear wave phenomena through their graphical repre-
sentations becomes more effective and advantageous when using exact solutions generated
through mathematical computations. The exact solutions of the Hirota equation are graphi-
cally represented below:

Initially, we display Re[(26)] and Abs[(26)] in Figures 2 and 3 and illustrate their 3D,
contour, and 2D plots by setting parametric values such as W0 = 1.25, W1 = 1.8, G1 = 0.87,
µ1 = 0.75, ζ = 1, and b = 1.5. The solution Re [(26)] displays the periodic bright soliton
in subplot (a), while subplots (b,c) depict its 2D and contour plots. The solution Abs [(26)]
displays the periodic dark solitary wave in subplot (a), while subplots (b,c) depict its 2D
and contour plots. In Figures 4 and 5, we represent 3D, contour, and 2D graphs by letting
the parameters be b = 0.23, λ1 = 1.06, r = 0.39, and ζ = 0.78 of the solutions obtained
through the GBSOM. In Figure 4, subplot (a) shows a periodic bright solitary wave and
subplots (b,c) depict the 2D and contour plots of Re [(45)], respectively. The solution Abs
[(45)] displays the kink-type behavior in subplot (a) of Figure 5, while subplots (b,c) depict
its associated 2D and contour plots.
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(a) (b) (c)

Figure 2. The 3D (a), contour (b), and 2D (c) plots of Re [Equation (26)].

(a) (b) (c)

Figure 3. The 3D (a), contour (b), and 2D (c) plots of Abs [Equation (26)].

(a) (b) (c)

Figure 4. The 3D (a), contour (b), and 2D (c) plots of Re [Equation (45)].

(a) (b) (c)

Figure 5. The 3D (a), contour (b), and 2D (c) plots of Abs [Equation (45)].

7. Conclusions

In our research, we utilized the GERFM and GBSOM with a combination of traveling
wave transformation generated from Lie point symmetry analysis to derive novel exact
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soliton solutions for the Hirota equation. This equation, with its distinctive components,
offers a potentially more accurate representation of wave behavior in optical fibers and
oceanic contexts compared to the conventional nonlinear Schrödinger equation. The
exact solutions obtained from these approaches include traveling wave solutions, yielding
singular, periodic, and kink solitons. Although the GERFM and GBSOM were successful
in analytically solving the Hirota equation, some limitations remain as they do not yield
bright solitons. Furthermore, we performed a bifurcation analysis to explore the dynamic
behavior of the planar system under varied parameters, with each scenario represented by
phase portraits. Our results reveal unique solutions that were previously unreported, and
the methodologies presented can extend to other complex nonlinear systems.
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