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Abstract: Degenerative diseases are one of the leading causes of chronic disability on a global scale,
significantly affecting the quality of life of sufferers. These diseases also burden the health care system
and individuals financially. The implementation of preventive strategies can be postponed until an
accurate prediction of the disease status can be achieved. Degenerative diseases that are the leading
cause of death in many countries are coronary heart disease (CHD), while diabetes mellitus disease
(DMD) increases the risk of CHD. Most of the predictor variables from the dataset to predict the
status of both diseases are continuous. However, not all prediction methods, including the Decision
Tree Iterative Dichotomiser3 (DTID3) method, can process continuous data. This work aims to predict
the status of both degenerative diseases, CHD and DM, using the DTID3 method with continuous
type predictor variables transformed using discretization with the concept of set membership. Seven
prediction models using the DTID3 method are proposed to predict the status of each degenerative
disease. One DTID3 model uses the concept of crisp set membership, and six DTID3 models use
the concept of fuzzy set membership (FDTID3). Each prediction model of FDTID3 represents one
combination of fuzzy membership functions in discretizing continuous predictor variables, and one
combination consists of three membership functions. The performance of the proposed FDTID3
model depends on the fuzzy membership functions used. The hypothesis that the performance of the
seven proposed models differs at least in one metric and that the performance of the FDTID3 models
is higher than the DTID3 model discretized using the concept of crisp sets has been proven.

Keywords: DTID3; degenerative disease status; discretization; fuzzy membership function;
model performance

1. Introduction

Continuous-type variables can be found in many real-life cases, especially datasets
in the medical field [1,2]. This dataset is useful for predicting disease status, including
degenerative [3,4]. Degenerative diseases occur due to a slow decline in the function of
the body’s organs and tissues and can attack the nerves, spine, joints, and brain [5]. These
diseases tend to worsen over time and have an impact on the sufferer’s quality of life [6–8].
Degenerative diseases are chronic because they are not contagious, develop slowly, and are
long lasting [9]. Additionally, these illnesses rank as the leading cause of chronic disability
on a global scale. Degenerative diseases impact over 30% of the worldwide populace, with
the allocation of 70% of public health resources towards their treatment. Furthermore,
degenerative diseases impose a substantial financial strain on health care systems and
individuals alike [10].

Numerous fatalities are attributed to coronary heart disease, a degenerative condi-
tion caused by the blockage or narrowing of the coronary arteries due to fat deposition.
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Moreover, it has emerged as the leading cause of mortality on a global scale [11]. With a
substantial increase from the 12.1 million heart disease-related fatalities documented in
1990 to the 20.5 million coronary heart disease-related deaths recorded in 2021, this number
represents an approximate 33.33 percent of all global deaths [12]. Untimely mortality is
predominantly attributed to cardiovascular disease. One hundred and forty-six countries
reported male fatalities, and ninety-eight countries reported female fatalities [12].

According to the Global Health Estimates published by the World Health Organization
(WHO) in 2019, diabetes was responsible for approximately 1.5 million deaths [13]. Diabetes
mellitus is a degenerative disorder that has the potential to give rise to numerous severe
ailments [14]. The number of individuals with diabetes is projected to reach 313 million by
2040, according to the WHO [15]. It is anticipated that this trend will continue to worsen
over time. Regarding economic strain, diabetes treatment will double in price from $13,700
annually by 2030 [16]. Prevention strategies can be implemented at an earlier stage if
accurate status prediction of diabetes mellitus and coronary heart diseases are feasible and
substantial cost reductions can be achieved in the treatment of both diseases at [17–19].

Several studies have made predictions using various methods regarding the pres-
ence of both degenerative diseases and proposed several approaches to improve their
performance, such as ensemble techniques [20,21], class balancing on the dataset [19,22],
feature scaling [23], selecting significant variables [24–26], handling missing value [27,28],
or perform preprocessing before the data are predicted, such as transforming the data to
a particular type because the prediction method requires the predictor variable to be of a
specific type [29].

The Decision Tree Iterative Dichotomiser3 (DTID3) is a nonparametric prediction
method that often provides satisfactory prediction performance in many cases, but the
predictor variables in this method must be categorical. In the case of numeric predictor
variables, they need to be transformed first into a categorical type, and one of the transfor-
mation techniques is crisp discretization, known as discretization (only) [30]. Discretization
can also broaden knowledge regarding continuous data types [31] and enhance model
performance [32,33]. Nevertheless, ambiguity may result from discretization [34]. The
fuzzy set membership concept can be employed to rectify ambiguity in the context of
discretization and is known as fuzzy discretization [35–37].

Using fuzzy discretization in several prediction methods has been shown to enhance
prediction performance, such as the naïve Bayes (NB) method [35,36,38], neural network-
radial basis function (NNRBF) [39], multilayer perceptron (MLP) [31], and the DTID3 [34,40].
Several different combinations of membership functions have been applied in these studies,
as well as final membership selection rules. Unfortunately, so far there are no guidelines for
selecting a combination of fuzzy membership functions in discretizing a predictor variable
as well as the final membership selection rules, so trial and error [40,41] is still the best
solution in determining the performance of a prediction model [35]. Regarding the amount
of discretization of predictor variables, referring refers to expert justification [33,38] or prior
knowledge [35].

Differences in fuzzy membership function combinations can affect the prediction
model’s performance. Research [35] classifies corn plant diseases and pests into seven
classes using the naïve Bayes method. It proposes six combinations of fuzzy member-
ship functions consisting of four combinations of fellow linear functions (all triangular,
all trapezoidal, decreasing–increasing linear and triangular, decreasing–increasing lin-
ear and trapezoidal) and two combinations of nonlinear functions and linear functions
(decreasing–increasing sigmoid and triangular, decreasing–increasing sigmoid and trape-
zoidal). The study obtained the best model performance using fellow linear functions:
decreasing–increasing linear and triangular. However, each of the other five combina-
tions had significantly different performance and experienced increased performance from
the model using crisp discretization. Research [34] which classifies corn plant diseases
and pests into six classes using the DTID3 method and discretizes predictor variables
by combining nonlinear and linear fuzzy membership functions (decreasing–increasing
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sigmoid and triangular) also shows an increase in the performance of the model using crisp
discretization. Likewise, research [42] also shows an increase in the performance of the
original method (without fuzzy discretization). The study classifies can types using the
naïve Bayes method and discretizes predictor variables with a combination of fellow linear
fuzzy membership functions, namely decreasing–increasing linear and triangular. All three
studies use the final membership selection rules of maximum value. The performance
improvement of each study had accuracy at 0.7, recall at 3.95 [35], accuracy at 3.23, recall at
11.8 [34], and accuracy at 34.93, recall at 35.08 [42].

Another selection rule is the arithmetic mean, as in the research of [36,43], which
predicts CHD status. Both use the naïve Bayes prediction method and uniform fuzzy
membership functions for discretization, namely, all triangular and all trapezoidal, with
performance improvements of accuracy at 4.03, recall at 4.05 in [36], and accuracy at
7.5 in [38].

In addition to the two final membership selection rules, several studies use defuzzi-
fication with a specific method such as centroid of area (COA) [39], mean of maximum
(MoM), [37], or centroid of area (COA) [43]. Defuzzification is part of the fuzzy rule in fuzzy
logic. In prediction tasks, the fuzzy logic method can stand alone, as in the research [43],
or be integrated with other prediction methods, such as neural networks [37,39]. The
study [39], which uses a uniform fuzzy membership function (all trapezoidal) to predict
breast cancer, increased accuracy to 3.72 and recall to 10.96. However, the research of [37],
which also used a uniform fuzzy membership function (all triangular), obtained unexpected
performance in predicting DM status, where the performance of the initial model did not
increase, and even decreased (accuracy at 18.35 and recall at 23.97). This fact is suspected
due to the numbers of discretization in each predictor variable that does not refer to expert
justification even though the data used is medical data, namely the DM dataset. In addition,
the neural network prediction method does not require a transformation of the predictor
variable into categorical because it can directly process data of the fuzzy discretization
numeric type. In the CHD dataset, the research of [36] also subjectively discretized the
predictor variables into two categories, not based on expert justification, which can vary for
each variable. From all these studies, a combination of nonlinear fuzzy membership func-
tions has not been found in discretizing the predictor variables. Specifically, for research
discussing disease status prediction for CHD and DM, no research has been found that
uses maximum value as the final membership selection rule or different combinations of
fuzzy membership functions.

For these reasons, the main contribution of this study is to build prediction models
of the status of the two degenerative diseases, CHD and DM, using the DTID3 method
by discretizing continuous-type predictor variables using the concept of set membership.
One DTID3 model was built using the concept of crisp set membership, and six DTID3
models whose variables were discretized using the concept of fuzzy set membership
(FDTID3). The six combinations consist of two combinations of fellow linear functions
(decreasing–increasing linear and triangular, decreasing–increasing linear and trapezoidal),
two combinations of linear and nonlinear functions (decreasing–increasing sigmoid and
triangular, decreasing–increasing sigmoid and trapezoidal), and two combinations of
fellow nonlinear functions (decreasing–increasing sigmoid and beta, decreasing–increasing
sigmoid and pi). The final membership selection rules used are maximum value. This
study also hypothesizes that the performance of the seven models built differs in at least
one metric. The performance of the six FDTID3 models is higher than that of the DTID3
model built using the crisp set membership concept.

2. Materials and Methods
2.1. Research Dataset

The dataset used in this research is the degenerative diseases dataset, CHD, and DM.
Both are chosen for this primary reason: both data have a majority of predictor variables
of continuous type (CHD). Even in DM, all predictor variables are the continuous type.
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The second reason is to show that missing data of less than 2% do not affect the prediction
model’s performance using the proposed DTID3 method. In addition, the proposed DTID3
method can still perform well without giving treatment, such as discarding or imputing it
with a particular value.

2.1.1. Coronary Heart Disease (CHD) Dataset

The CHD dataset was obtained free of charge via https://www.kaggle.com/datasets/
aavigan/cleveland-clinic-heart-disease-dataset, accessed on 5 November 2020 [44]. This
dataset was created by Robert Detrano, M.D., Ph.D., in July 1988 based on the Cleveland
Databases. The predictor variable of the Cleveland Databases CHD is presented in Table 1.

Table 1. The predictor variable of the CHD dataset.

Variable Description Type Information

Age age in years Continuous 29–77 years

Sex sex Categoric 0: male
1: female

CP chest pain type Categoric

1: typical angina
2: atypical angina
3: non-anginal pain
4: asymptomatic

Trestbps resting blood pressure Continuous 94–200 mmHg

Chol serum cholesterol Continuous 126–564 mg/dL

FBS fasting blood sugar > 120 mg/dL Categoric 0: false
1: true

Restecg resting electrocardiographic results Categoric

0: normal
1: having ST-T wave abnormal (>0.05 mV)
2: showing probable or definite left
ventricular hypertrophy by Estes’ criteria

Thalach maximum heart rate achieved Continuous 71–202 bpm

Exang exercise-induced angina Categoric 0: no
1: yes

Oldpeak ST depression induced by exercise relative to rest Continuous 0–6.2 mV

Slope the slope of the peak exercise ST segment Categoric
1: upsloping
2: flat
3: down sloping

Ca number of significant vessels colored by
fluoroscopy Discrete 0–3

Thal thalassemia (types of blood disorder) Categoric
3: normal
6: fixed defect
7: reversible defect

The CHD dataset has a size of 303 observations distributed into the Yes class (patients
with the status of having CHD) at 45.87% and the No class (patients with the status of not
having CHD) at 54.13%. Five of the thirteen predictor variables are continuous and can
be transformed into categorical variables using crisp or fuzzy discretization. The number
of categories in each discretized variable refers to the expert justification related to CHD
as in [33]. Further exploration is needed, considering that almost all predictor variables
except the Age variable have zero observation values.

2.1.2. Diabetes Mellitus Dataset (DMD)

The DMD was obtained at no cost through https://www.kaggle.com/datasets/uciml/
pima-indians-diabetes-database, accessed on 9 October 2020 [45]. The participants were

https://www.kaggle.com/datasets/aavigan/cleveland-clinic-heart-disease-dataset
https://www.kaggle.com/datasets/aavigan/cleveland-clinic-heart-disease-dataset
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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768 women aged 21 to 81 years who had undergone individual diagnostic measurements
and were classified into class Yes (participants who had DM) at 65.1% and class No
(participants who did not have DM). The predictor variables of the DMD are presented
in Table 2.

Table 2. The predictor variable of the DMD.

Variable Description Information

Glucose (ratio) Plasma glucose concentration 2 h in an oral glucose tolerance test 0–199 mg/dL

Blood Pressure Diastolic blood pressure (blood pressure when the heart relaxes) 0–122 mmHg

Skin Thickness Triceps skin fold thickness 0–99 mm

Insulin 2-Hour serum insulin 0–846 µ/mL

BMI Body mass index (an approximate of total body fat) 0–67.1 kg/m2

Diabetes Pedigree Function a function that scores the probability of diabetes based on family history 0.08–2.42

Age Age in years 21–81 years

Pregnancies Number of times pregnant 0–17 times

In the DMD, all eight predictor variables are of continuous type, so all of them can
be transformed into categorical variables using either crisp or fuzzy discretization. The
number of categories in each discretized variable refers to expert justification related to DM
as in [46]. Further exploration is needed, considering that almost all predictor variables
except the Age variable have zero observation values.

2.2. Research Method

The steps of the proposed method in this study are given in a flowchart, as shown in
Figure 1.

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 43 
 

 

 

Figure 1. The flowchart of the proposed method. 

2.2.1. Data Exploration and Processing 

In the first step, this work explores the research variable, ignores the missing data, 

which is less than 2%, and leaves the zero data as zero without discarding them or imput-

ing them with the mean, median, or mode. The missing data of less than 2% do not signif-

icantly affect the prediction of disease status. Zero data differ from missing data, and the 

DTID3 method can handle zero data so that they do not need to be imputed. 

2.2.2. Building the DTID3 Prediction Model Based on Discretization 

The DTID3 is a nonparametric classification method. This method does not use sta-

tistical assumptions such as variable independence, multicollinearity, or the presence of 

interaction effects between variables. The method uses the concept of entropy in making 

decisions presented in the form of nodes that form a tree-like flow diagram. Decisions at 

each node are taken based on the information gained from each categorical variable, in 

each iteration. Information gain is defined in Equation (9) [33]. 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑆, 𝑋) =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) −∑
|𝑆𝑐|

|𝑆|

𝑘𝑋

𝑐=1

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑐) (1) 

The 𝑆 and 𝑆𝑐  represent the total number of patients and the total number of pa-

tients in the c-category of the predictor variable 𝑋, the 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) is defined as 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  ∑−𝑃𝑖 𝑙𝑜𝑔2𝑃𝑖 

𝑘𝑠

𝑖=1

 (2) 

For  𝑃𝑖 being the prior probability of the 𝑖-th class [33,46]. 

Material 

Method 

Figure 1. The flowchart of the proposed method.



Symmetry 2024, 16, 1560 6 of 38

2.2.1. Data Exploration and Processing

In the first step, this work explores the research variable, ignores the missing data,
which is less than 2%, and leaves the zero data as zero without discarding them or imputing
them with the mean, median, or mode. The missing data of less than 2% do not significantly
affect the prediction of disease status. Zero data differ from missing data, and the DTID3
method can handle zero data so that they do not need to be imputed.

2.2.2. Building the DTID3 Prediction Model Based on Discretization

The DTID3 is a nonparametric classification method. This method does not use
statistical assumptions such as variable independence, multicollinearity, or the presence of
interaction effects between variables. The method uses the concept of entropy in making
decisions presented in the form of nodes that form a tree-like flow diagram. Decisions at
each node are taken based on the information gained from each categorical variable, in
each iteration. Information gain is defined in Equation (9) [33].

In f ormation Gain(S, X) = Entropy (S)−
kX

∑
c=1

|Sc|
|S| Entropy (Sc) (1)

The S and Sc represent the total number of patients and the total number of patients
in the c-category of the predictor variable X, the Entropy (S) is defined as

Entropy (S) =
ks

∑
i=1

−Pi log2Pi (2)

For Pi being the prior probability of the i-th class [33,46].
This method cannot directly process continuous predictor variables, it must first be

transformed into a categorical type. This proposed the discretization to handle this problem.
The Entropy (Sc) for each crisp and fuzzy discretization is given by

Entropy (Sc) =
kX

∑
c=1

−Pc log2Pc (3)

Entropy (Sc) =
kX

∑
c=1

−Pc f log2Pc f (4)

Pc and Pc f being the prior probabilities of the c-th category of the predictor variable X,
which are discretized using the crisp and the fuzzy sets, respectively. Pc f is obtained using

Pc f =
F

∑
f=1

Pc µc f (5)

The µc f represent the fuzzy membership function for the c-th category of the predictor
variable X [33,34].

Under the research objectives, seven prediction models using the DTID3 method are
built to predict the status of each degenerative disease. One DTID3 model was built using
the crisp set membership concept, and six DTID3 models were built using the fuzzy set
membership concept (FDTID3). Each prediction model of FDTID3 represents a combination
of fuzzy membership functions in discretizing continuous predictor variables, and one
combination consists of three membership functions with the same pattern displays sym-
metry. The first category applies a decreasing pattern to each variable in each combination,
including linear and nonlinear functions. The second group uses fuzzy memberships with
symmetrical curve forms, such as triangular, trapezoidal, pi, and beta memberships. The
third category of discretization employs fuzzy membership with increasing patterns, both
linear and nonlinear functions. The six FDTID3 combinations consist of two combina-
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tions that are linear functions, FDTID3-1 (linear decreasing–increasing and triangular) and
FDTID3-2 (linear decreasing–increasing and trapezoidal), then two combinations of linear
and nonlinear functions, FDTID3-3 (sigmoid decreasing–increasing and triangular) and
FDTID3-4 (sigmoid decreasing–increasing and trapezoidal), and finally two combinations
that are nonlinear functions, FDTID3-5 (sigmoid decreasing–increasing and beta) and
FDTID3-6 (sigmoid decreasing–increasing and pi). The final membership selection rules
used are maximum value. This study also hypothesizes that the performance of the six
models and the DTID3 model with crisp discretization differs at least in one metric.

Specifically, discretization is a preprocessing method that converts continuous data
into categorical data [30]. This method is indispensable in specific statistical machine-
learning techniques that necessitate categorical predictor variables, including the DTID3
method [33,34,40], multinomial naive Bayes method [36,46–48] and others. Crisp sets or
fuzzy sets may be implemented for discretization. A crisp set is a collection of elements
with a membership degree of 1. If it is not an element of a set, then its membership is
zero. In contrast to the crisp set, the fuzzy set is a collection of elements with a degree of
membership in interval [0, 1]. The degree of membership is given by a function called the
fuzzy membership function [49].

Crisp discretization, which employs crisp sets, is characterized by mutually exclusive
category intervals. Crisp discretization can be formed based on expert justification [33,46]
prior information in specific fields of science [46], or using a formula as in (6) [34,35].
Conversely, fuzzy discretization, which employs fuzzy sets, allows for overlapping intervals
for categories. These overlapping intervals are appropriate when a variable’s categorization
is defined flexibly by antecedent information. The fuzzy discretization can be formed based
on crisp discretization [34]. Xd

o and Xd are the d-th initial predictor variable and d-th,
discretized predictor variables, respectively.

Xd = Xd
o + Range(Xd

o) (6)

Furthermore, the interval class boundaries for fuzzy discretization are obtained using
fuzzy membership function parameters. Fuzzy membership functions can be either linear
or nonlinear functions.

A linear function is a function with either one or two variables without exponents. This
function represents a straight line on the coordinate plane. The linear fuzzy membership
functions in this research are represented by Equations (7)–(10), where each represents
membership functions called linear ascending, linear descending, triangular, and trape-
zoidal.

For the decreasing linear fuzzy membership function in (7), a is the smallest domain
element with a membership degree of 1, and b is the most prominent domain element with
a membership degree of 0 [50].

µ(x; a, b) =


1 ; x ≤ a
b−x
b−a ; a ≤ x ≤ b
0 ; x ≥ b

(7)

In contrast to the decreasing linear, in the increasing linear fuzzy membership function
in (8), a is the smallest domain element with a membership degree of 0, and b is the most
prominent domain element with a membership degree of 1 [50].

µ(x; a, b) =


0 ; x ≤ a
x−a
b−a ; a ≤ x ≤ b
1 ; x ≥ b

(8)

Equation (9) shows the triangular fuzzy membership function with a being the smallest
domain element that has a membership degree of 0, b being a domain element that has
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a membership degree of 1, and c being the most prominent domain element that has a
membership degree of 0 [51].

µ(x; a, b, c) =


0 ; x ≤ a
x−a
b−a ; a ≤ x ≤ b
c−x
c−b ; b ≤ x ≤ c
0 ; x ≥ c

(9)

For the trapezoidal fuzzy membership function in (10), which has four parameters, a is the
smallest domain element that has a membership degree of 0, b is a domain element that
has a membership degree of 1, c is a domain element that has a membership degree of 1,
and d is the most prominent domain element that has a membership degree of 0 [51].

µ(x; a, b, c, d) =


0 x ≤ a
x−a
b−a a ≤ x ≤ b
1 b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d
0 x ≥ d

(10)

In some cases, the fuzzy membership is also related to the nonlinear function. A linear
equation is used to represent a straight line in a graph, whereas nonlinear equations are
used to represent curves. Equations (11)–(14) show each nonlinear fuzzy membership
function used in this research, namely decreasing sigmoid, increasing sigmoid, pi, and beta
for random variable X.

µ(x; α, β, γ) =



1 ; x ≤ α

1 − 2
(

x−α
β−α

)2
; α ≤ x ≤ β

2
(

γ−x
γ−β

)2
; β ≤ x ≤ γ

0 ; x ≥ γ

(11)

In the decreasing sigmoid fuzzy membership function in (6), α is the smallest domain
element, which has a membership degree of 1, β is the domain element as an inflection
point, which has a membership degree of 0.5, and γ is the most prominent domain element
which has a membership degree of 0 [52].

µ(x; α, β, γ) =



0 ; x ≤ α

2
(

x−α
β−α

)2
; α ≤ x ≤ β

1 − 2
(

γ−x
γ−β

)2
; β ≤ x ≤ γ

1 ; x ≥ γ

(12)

For the increasing sigmoid fuzzy membership function in (7), α is the smallest domain
element, which has a membership degree of 0, β is the domain element as an inflection
point, which has a membership degree of 0.5, and γ is the most prominent domain element
which has a membership degree of 1 [52].
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µ(x; γ, β) =



0 ; x ≤ γ − β

2
(

x−γ+β
β

)2
; γ − β ≤ x ≤ γ − β

2

1 − 2
(

γ−x
β

)2
; γ − β

2 ≤ x ≤ γ

1 ; x = γ

1 − 2
(

x−γ
β

)2
; γ ≤ x ≤ γ + β

2

2
(

γ+β−x
β

)2
; γ + β

2 ≤ x ≤ γ + β

0 ; x ≥ γ + β

(13)

Equation (8) shows the pi fuzzy membership function with γ being the center of the
curve, a domain element with a membership value of 1, and β being the curve’s width,
from the curve’s center to the curve’s end [52].

µ(x; γ, β) = µA(x) =
1

1 +
(

x−γ
β

)2 ; γ − β ≤ x ≤ γ + β (14)

The beta fuzzy membership function presented in Equation (9) has a parameter γ, a domain
element with a membership value of 1, and is also the center of the curve. In contrast, the
parameter β is the midpoint of half the width of the pi curve [52].

Five-Fold Cross Validation

This work uses the k-fold cross-validation technique in measuring model performance
for unseen data where k = 5. The dataset is randomly divided into five-folds of equivalent
size, with one-fold designated as testing data and the remaining four designated as learning
data. There are five iterations with different training and testing data compositions. Each
iteration contains training and test data with a ratio of 80:20. An overview of 5-fold
cross-validation can be seen in Figure 2.
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The final model performance is the average of the five data compositions [53]. The
5-fold is one of the k-fold techniques that is less biased [54]. This method does not reduce
the amount of data used for the learning model, can assess the quality of the fitted model
and the stability of its parameters, and can also avoid overfitting.

2.2.3. Prediction Evaluation Metric

The best model among all proposed models is evaluated using performance measures.
The higher the value of the performance measures metrics indicates the better model. The
evaluation of the degenerative prediction models’ performance in this study is conducted
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by calculating metrics of binary class: Accuracy, Recall, Precision, F1-scores, and AUC from
(15) to (19) [55].

Accuracy =
TP + TN

TP + FP + TN + FN
(15)

Recall =
TP

TP + FN
(16)

Precision =
TP

TP + FP
(17)

F1 − Score =
2 × Precision × Recall

Precision + Recall
(18)

AUC =
TP

2(TP + FN)
+

TN
2(TN + FP)

(19)

TP is a True Positive prediction, FP is a False Positive prediction, TN is a True Negative
prediction, and FN is a False Negative prediction. The accuracy metric is employed to
determine the precision of a classification model. The Recall metric is employed to quantify
the genuine positive ratio. Precision is calculated as the proportion of accurately anticipated
positive status classes concerning the overall number of positively predicted classes. The
F-1 Score is calculated by averaging the harmonic products of Precision and Recall. The
area under the curve (AUC) is the probability of accurately predicting an observation. This
metric indicates the extent to which the model can distinguish between the two classes,
irrespective of the threshold selected. The model’s quality is elevated as it increases. Its
value falls from 1 to 0 [55].

3. Results and Discussion
3.1. Coronary Heart Disease Dataset
3.1.1. Dataset Exploration and Preprocessing

Two of the thirteen predictor variables in the dataset have missing values, namely
the Ca variable (0.66%) and the Thal variable (1.32%). Missing values in both variables
involve six patients. This work ignores the missing data that is less than 2% since it does
not significantly affect the prediction of CHD status, so the total observations become
297 patients with a composition of 46.13% in the Yes class and 53.87% in the No class. Five
of the 13 predictor variables in the dataset are of the continuous type, one is of the discrete
type, and the rest are of the categorical type. The histogram of each continuous predictor
variable and the bar plot of the discrete variable are given in Figure 3.

None of the five continuous predictor variables showed a normal distribution. This
fact is supported by several statistical test results, such as those of Kolmogorov–Smirnov,
Anderson Darling, and Cramer von Mises, indicated by a p-value less than the 5% signif-
icance level. The majority of the distributions of these variables are skewed to the right,
but the Age and Thalach variables tend to be skewed to the left. The bar plot of Ca shows
that one has the highest frequency, and the number continues to decrease as the frequency
increases.

Table 3 displays a summary of continuous variables in each patient’s status. All of the
variables in both classes have value intervals that overlap. Not all variables in class Yes
have a higher value interval than class No, as does the mean value. The maximum values
of the variables of Cholesterol and Thalach in the Yes class are lower than the No class, and
the minimum value of the Thalach in the No class is higher than the Yes class, as is the
mean value.
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Table 3. The summary of the continuous variables in the CHD dataset.

Status of Coronary Heart Disease Statistics Age Trestbps Cholesterol Thalach Oldpeak

No

Min 29 94 126 96 0
Q1 45 120 209 148.5 0
Mean 52.67 129.20 243.06 158.29 0.59
Mode 54 130 204 162 0
Q3 59 140 267.5 172 1.05
Max 76 180 564 202 4.2

Yes

Min 35 100 131 71 0
Q1 52 120 217.5 125 0.55
Mean 56.63 134.57 251.47 139.26 1.57
Mode 58 140 254 132 0
Q3 62 145 283.5 156.5 2.5
Max 77 200 409 195 6.2

The seven categorical variables of the CHD dataset are depicted in Figure 4. For the
class Yes, the distribution of data that is more common in each variable is male (sex), asymp-
tomatic/fourth type (CP), fasting blood sugar less than 120 mg/dL (FBS), left ventricular
hypertrophy (Restecg), angina due to exercise (Exang), a flat top of the ST segment (slope),
and a reversible defect (Thal).
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3.1.2. Discretization

Crisp discretization for six numeric predictor variables in the CHD dataset is formed
based on expert justification/prior information from the sources, as presented in Table 4 [33].

Table 4. Crisp Discretization based on Prior Information of CHD.

Variable Crisp Discretization Source of Prior Information

Age
<40 years
40–64 years
≥65 years

Woodward et al., 2012 in [33]

Trestbts
90–119 mmHg (Normal)
120–139 mmHg (Prehypertension)
≥140 mmHg (Hypertension)

Borghi et al., 2003 in [33]

Chol
<200 (Normal)
200–239 (High Limit);
≥240 (High)

Third Report of the National
Cholesterol Education
Program (NCEP), 2001 in [33]

Thalach ≤100 (Normal)
>100 (Takikardi) Palatini, 1999 in [33]

Oldpeak <3.2 (No/Normal)
≥3.2 (Yes/Risk) Riani et al., 2019 in [33]

The fuzzy discretization can be formed based crisp discretization as shown in Table 4.
The use of a combination of fuzzy membership functions with the same pattern demon-
strates symmetry. The discretization process divides each variable into three categories,
except for the Thalach and Oldpeak variables, which are divided into two categories. For
each variable in each combination, the first category employs a decreasing pattern, includ-
ing linear and nonlinear functions, such as the sigmoid function. The second category
employs fuzzy memberships with symmetrical curve shapes, such as triangular, trape-
zoidal, pi, and beta memberships. We assume the width of the domain interval from the
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curve’s center point to its end to be the same size. Then, in the third category, discretization
uses fuzzy membership with increasing patterns, both linear and nonlinear functions (sig-
moid functions). Discretization results using the six combinations of fuzzy membership
functions for coronary heart data can be seen in Table 5.

Table 5. Fuzzy Discretization Interval for the CHD Dataset.

Continuous
Variable

Discretization
Term

Discretization Interval

FDTID3-1 FDTID3-2 FDT D3-3 FDTID3-4 FDTID3-5 FDTID3-6

Age
Young [29, 41] [29, 42] [29, 45] [29, 55] [29, 41] [29, 41]
Middle [39, 65] [38, 66] [38, 66] [45, 69] [40, 64] [41, 63]
Old [63, 77] [62, 77] [63, 77] [61, 77] [63, 77] [63, 77]

Trestbps
Normal [90, 121] [90, 122] [90, 124] [90, 130] [90, 120] [90, 120]
Pre-Hypertension [119, 141] [119, 142] [120, 144] [110, 150] [119, 149] [120, 138]
Hypertension [139, 200] [139, 200] [140, 200] [130, 200] [138, 200] [138, 200]

Cholesterol
Normal [126, 202] [126, 202] [126, 210] [126, 220] [126, 201] [126, 200]
High limit [198, 242] [200, 242] [200, 252] [200, 260] [200, 240] [200, 240]
High [238, 564] [240, 54] [240, 54] [240, 54] [239, 564] [240, 564]

Thalach
Normal [71, 102] [71, 105] [71, 121] [71, 203] [71, 101] [71, 101]
Taki Karbi [98, 202] [100, 202] [100, 202] [71, 203] [99, 202] [100, 202]

Oldpeak No [0, 4] [0, 4] [0, 6] [0, 6] [0, 4] [0, 4]
Yes [2, 6] [2, 6] [0, 6] [0, 6] [2, 6] [2, 6]

The six fuzzy membership function combination models FDTID3-1–FDTID3-6 in
Table 5 provide different discretization parameters for each membership function. In
the Age variable, the three models, FDTID3-1, FDTID3-5, and FDTID3-6, have the same
parameters for the Young category. The FDTID3-2 and FDTID3-3 models have the same
parameters for the middle category. For the old category, only the FDTID3-2 and FDTID3-4
models have parameters different from those of the other models. In the Trestbps variable,
Models FDTID3-1 and FDTID3-2 have the same parameters for all categories except for
the upper limit of the pre-hypertension interval. The FDTID3-5 and FDTID3-6 models
have the same parameters, only in the hypertension category. In the Cholesterol variable,
the three models (FDTID3-2, FDTID3-3, and FDTID3-4) have the same parameters for the
high category. The two models, FDTID3-5 and FDTID3-6, have the same parameters for
high limit and Normal categories. The four models in the Oldpeak variable, FDTID3-1,
FDTID3-2, FDTID3-5, and FDTID3-6, have the same parameters for each category. The
other two models have parameters in both categories.

3.1.3. Five-Fold Cross Validation

The data division into five folds resulted in the calculation into five iterations. The
data composition in each iteration for 5-fold cross-validation is presented in Table 6.

Table 6. Data Composition in Each Fold of CHD.

Data Status Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Learning No 128 128 125 127 131
Yes 110 109 113 110 107

Sum 238 237 238 237 238

Testing No 32 32 35 33 29
Yes 27 28 24 27 30

Sum 59 60 59 60 59

Total 297 297 297 297 297
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The training data at each iteration cover about 80% of the data and the rest as test data.
Sampling using the principle of no replacement causes the test data to be unseen.

3.1.4. FDTID3 Modeling

Figure 5 presents the FDTID3-4 model for the first iteration in predicting CHD status.
In this CHD data modeling, the decision is 0, meaning that the observation does not
have CHD status, and the result is 1, meaning that the observation has CHD status. The
figure shows that in the FDTID3-4 model, CP (type of chest pain) is the variable that most
influences CHD status. Its position as the Root Node indicates this. The two variables in
the first node are Thals and Ca. In the next node are Cholesterol, Resteg, Slope, Ca, Thal,
Sex, and Trestbps. The earlier the node position, the greater the influence of variables at
that node on the prediction of CHD status. In this first iteration of FDTID3-4, 81 rules for
predicting CHD status exist. Each rule begins with the notation of [Rw], w = 1, 2, · · · , 81
and is presented below:

[R1] If CP is Typical Angina and Thal is Normal, then the decision is 0.
[R2] If CP is Typical Angina and Thal is Permanent disability, then the decision is 0.

[R3]
If CP is Typical Angina, Thal is Temporary disability, and Cholesterol is a High Limit,
then the decision is 1.

[R4]
If CP is Typical Angina, Thal is Temporary disability, and Cholesterol is a High Limit,
then the decision is 1.

[R5]
If CP is Typical Angina, Thal is Temporary disability, Cholesterol is a High Limit, and
the Trestbps is Normal, then the decision is 1.

[R6]
If CP is Typical Angina, Thal is Temporary disability, Cholesterol is a High Limit,
Trestbps is Hypertension, FBS is False, and Oldpeak is No, then the decision is 1.

[R7]
If CP is Typical Angina, Thal is Temporary disability, Cholesterol is a High Limit,
Trestbps is Hypertension, FBS is False, and Oldpeak is Yes, then the decision is 1.

[R8]
If CP is typical angina, Thal is Temporary disability, Cholesterol is a High Limit,
Trestbps is Hypertension, and FBS is True, then the decision is 0.

[R9] If CP is Atypical Angina, Thal is Normal, and Restecg is Normal, then the decision is 0.

[R10]
If CP is Atypical Angina, Thal is Normal, Restecg is Ventricular hypertrophy, and Ca
is 0, then the decision is 0.

[R11]
If CP is Atypical Angina, Thal is Normal, Restecg is Ventricular hypertrophy, Ca is 1,
and Age is Middle, then the decision is 1.

[R12]
If CP is Atypical Angina, Thal is Normal, Restecg is Ventricular hypertrophy, Ca is 1,
and Age is Old, then the decision is 0.

[R13]
If CP is Atypical Angina, Thal is Normal, Restecg is Ventricular hypertrophy, and Ca
is 1, then the decision is 1.

[R14] If CP is Atypical Angina and Thal is Permanent disability, then the decision is 1.

[R15]
If CP is Atypical Angina, Thal is Temporary disability, Slope is Learning Up, and
Trestbps is Hypertension, then the decision is 1.

[R16]
If CP is Atypical Angina, Thal is Temporary disability, Slope is Learning Up, and
Trestbps is Normal, then the decision is 0.

[R17]
If CP has Atypical Angina, Thal has a Temporary disability, Slope is Learning Up,
Trestbps is prehypertension, and Cholesterol is High, then the decision is 1.

[R18]
If CP has Atypical Angina, Thal has a Temporary disability, Slope is Learning Up,
Trestbps is prehypertension, and Cholesterol is High limit, then the decision is 0.

[R19]
If CP is Atypical Angina, Thal is Temporary disability, and Slope is Flat, then the
decision is 1.

[R20]
If CP has Atypical Angina, Thal has Temporary disability, and the Slope is Slightly
Sloping, then the decision is 1.

[R21]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Hypertension, Oldpeak
is No, and Age is Middle, then the decision is 0.

[R22]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Hypertension, Oldpeak
is No, Age is Old, and Sex is Male, then the decision is 0

[R23]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Hypertension, Oldpeak
is No, Age is Middle, and Sex is Female, then the decision is 1.
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[R24]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Hypertension, Oldpeak
is No, and Age is Young, then the decision is 0.

[R25]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Hypertension, and
Oldpeak is Yes, then the decision is 1.

[R26]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Normal, and Sex is Male,
then the decision is 0.

[R27]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Normal, Sex is Female,
Cholesterol is High, Age is Middle, and Restecg is Normal, then the decision is 1.

[R28]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Normal, Sex is Female,
Cholesterol is High, Age is Middle, and Restecg is Ventricular hypertrophy, then the
decision is 0.

[R29]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Normal, Sex is Female,
Cholesterol is High, and Age is Young, then the decision is 0.

[R30]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Normal, Sex is Female,
and Cholesterol is High Limit, then the decision is 0.

[R31]
If CP is Nonanginal pain, Thal is Normal, Ca is 0, Trestbps is Normal, Sex is Female,
and Cholesterol is Normal, then the decision is 0.

[R32] If CP is Nonanginal pain, Thal is Normal, and Ca is 1, then the decision is 0.
[R33] If CP is Nonanginal pain, Thal is Normal, and Ca is 2, then the decision is 0.
[R34] If CP is Nonanginal pain, Thal is Normal, and Ca is 3, then the decision is 1.

[R35]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Leaning up, and
Trestbps is Hypertension, then the decision is 1.

[R36]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Leaning up, and
Trestbps is Hypertension, then the decision is 0.

[R37] If CP is Nonanginal pain and Thal is Temporary disability, then the decision is 1.

[R38]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Leaning up, and
Trestbps is Prehypertension, then the decision is 0.

[R39]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Flat, and Trestbps is
Hypertension, then the decision is 1.

[R40]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Flat, Trestbps is
Normal, and Ca is 0, then the decision is 0.

[R41]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Flat, Trestbps is
Normal, and Ca is 1, then the decision is 1.

[R42]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Flat, Trestbps is
Normal, and Ca is 3, then the decision is 1.

[R43]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Flat, Trestbps is
Prehypertension, and Ca is 1, then the decision is 1.

[R44]
If CP is Nonanginal pain, Thal is Temporary disability, Slope is Flat, Trestbps is
Prehypertension, and Ca is 3, then the decision is 0.

[R45]
If CP is Nonanginal pain, Thal is Temporary disability, and the Slope is Slightly
Sloping, then the decision is 0.

[R46]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Hypertension, Sex is Male,
Age is Middle, and Restecg is Normal, then the decision is 1.

[R47]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Hypertension, Sex is Male,
Age is Middle, and Restecg is ST-T wave abnormalities, then the decision is 1.

[R48]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Hypertension, Sex is Male,
Age is Middle, Restecg is Ventricular hypertrophy, and Slope is Leaning up, then the
decision is 1.

[R49]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Hypertension, Sex is Male,
Age is Middle, Restecg is Ventricular hypertrophy, and Slope is Flat, then the decision
is 0.

[R50]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Hypertension, Sex is Male,
and Age is Old, then the decision is 0.

[R51]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Hypertension, and Sex is
Female, then the decision is 0.

[R52]
If CP is Asymptomatic, Ca is 0, Thal is Normal, and Trestbps is Normal, then the
decision is 0.

[R53]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Prehypertension, Age is
Middle, and Restecg is Normal, then the decision is 0.
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[R54]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Prehypertension, Age is
Middle, Restecg is Ventricular Hypertrophy, and Slope is Learning Up, then the
decision is 1.

[R55]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Prehypertension, Age is
Middle, Restecg is Ventricular Hypertrophy, and Slope is Flat, then the decision is 1.

[R56]
If CP is Asymptomatic, Ca is 0, Thal is Normal, Trestbps is Prehypertension, and Age
is Young, then the decision is 1.

[R57]
If CP is Asymptomatic, Ca is 0, Thal is Permanent Disability, and Trestbps is
Hypertension, then the decision is 0.

[R58]
If CP is Asymptomatic, Ca is 0, Thal is Permanent Disability, Trestbps is Normal, and
Cholesterol is High Limit, then the decision is 0.

[R59]
If CP is Asymptomatic, Ca is 0, Thal is Permanent Disability, Trestbps is Normal, and
Cholesterol is Normal, then the decision is 1.

[R60]
If CP is Asymptomatic, Ca is 0, Thal is Permanent Disability, and Trestbps is
Prehypertension, then the decision is 1.

[R61]
If CP is Asymptomatic, Ca is 0, Thal is Temporary Disability, and Cholesterol is High,
then the decision is 1.

[R62]
If CP is Asymptomatic, Ca is 0, Thal is Temporary Disability, Cholesterol is High Limit,
Age is Middle, and Fbs is False, then the decision is 0.

[R63]
If CP is Asymptomatic, Ca is 0, Thal is Temporary Disability, Cholesterol is High Limit,
Age is Middle, and Fbs is True, then the decision is 1.

[R64]
If CP is Asymptomatic, Ca is 0, Thal is Temporary Disability, Cholesterol is High Limit,
and Age is Young, then the decision is 1.

[R65]
If CP is Asymptomatic, Ca is 0, Thal is Temporary Disability, Cholesterol is Normal,
and Age is Middle, then the decision is 1.

[R66]
If CP is Asymptomatic, Ca is 0, Thal is Temporary Disability, Cholesterol is High Limit,
Age is Old, and Trestbps is Hypertension, then the decision is 1.

[R67]
If CP is Asymptomatic, Ca is 0, Thal is Temporary Disability, Cholesterol is High Limit,
Age is Old, and Trestbps is Normal, then the decision is 0.

[R68]
If CP is Asymptomatic, Ca is 0, Thal is a Temporary Disability, Cholesterol is Normal,
and Age is Young, then the decision is 1.

[R69] If CP is Asymptomatic, Ca is 1, and Sex is Male, then the decision is 0.
[R70] If CP is Asymptomatic, Ca is 1, Sex is Female, and Age is Middle, then the decision is 1.
[R71] If CP is Asymptomatic, Ca is 1, Sex is Female, and Age is Old, then the decision is 0.

[R72]
If CP is Asymptomatic, Ca is 1, Sex is Male, Age is Old, and Restecg is Ventricular
Hypertrophy, then the decision is 1.

[R73]
If CP is Asymptomatic and Ca is 1, and Sex is Male, and Age is Young, then the
decision is 1.

[R74]
If CP is Asymptomatic, Ca is 2, Thal is Normal, and Cholesterol is High, then the
decision is 1.

[R75]
If CP is Asymptomatic, Ca is 2, Thal is Normal, and Cholesterol is High Limit, then
the decision is 0.

[R76] If CP is Asymptomatic, Ca is 2, and Thal is Permanent disability, then the decision is 1.
[R77] If CP is Asymptomatic, Ca is 2, and Thal is Temporary disability, then the decision is 1.
[R78] If CP is Asymptomatic, Ca is 3, and Trestbps is Hypertension, then the decision is 1.

[R79]
If CP is Asymptomatic, Ca is 3, Trestbps is Normal, and Cholesterol is High, then the
decision is 1.

[R80]
If CP is Asymptomatic, Ca is 3, Trestbps is Normal, and Cholesterol is High Limit,
then the decision is 0.

[R81] If CP is Asymptomatic, Ca is 3, and Trestbps is Prehypertension, then the decision is 1.
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Table 7. Confusion matrix of CHD status prediction of the first iterations of FDTID3-4 with 13
predictor variables.

Prediction of CHD Status Sum

The fact of CHD
Status

Yes 27 0 27
No 0 32 32

Sum 27 32 59

The first and third rules are examples of decisions that make predictions of 0 and 1,
respectively. In the first rule, if someone is in a condition of Typical Angina chest pain
and has no blood disorders (Thal), their status is predicted not to have CHD. In the third
rule, if someone is in a condition of Typical Angina chest pain, has thalassemia type
temporary disability, and cholesterol in the High Limit category, then it is predicted that
their status is CHD.

The confusion matrix in Table 7 shows that True Positive prediction (TP) is 27, True
Negative prediction (TN) is 32, and False Positive (FP) and False Negative (FN) predictions
are each 0. Because FP and FN are all 0, or the predictions are all correct for both class 0
and class 1, then all metrics are worth 100.

In the other four iterations, the significant variables at the root node to the second
node consist of eight variables: CP, Thal, Ca, Cholesterol, Resteg, Slope, Sex, and Trestbps.
However, the last five variables are not found at the root and first nodes. This pattern is
also found in the FDTID3 model with five other fuzzy membership function combinations.
For this reason, in this research, the FDTID3-1 to FDTID3-6 models for predicting CHD
status were built using complete predictor variables (13 variables) and 8 variables and
5 variables as the result of variable selection based on Node position. The evaluation of the
prediction models FDTID3-1 to FDTID3-6, each based on the number of predictor variables,
is presented in Figures 6–11.

In the FDTID3-1 model, each iteration shows the value of all metrics above 85%. Sev-
eral metrics in several iterations have a value of 100. Even in the first and third iterations,
all metrics have a value of 100. Accuracy, recall, and AUC have the same value range
of 96.67–100%, while precision and F1-score each have a value range of 96.55–100% and
99.16–100%. The average value of each metric from the five iterations in the FDTID3-1
model with 13 predictor variables is the highest compared to the other two FDTID3-1 mod-
els, which involve 8 and f5 variables, respectively. Next, the other five fuzzy combination
models, namely FDTID3-2–FDTID3-6, were each given the same treatment as the FDTID3-1
model, where the model metric measures were explored based on complete variables and
variable selection involving only 8 and 5 variables, respectively.
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The performance of the FDTID3-2 model, as presented in Figure 7, shows that most
metrics involving all variables in the prediction process have the highest values compared
to the other two FDTID3-2 models. In this model, all metrics give a value of 100 from the
first to third iterations. The average of the five iterations shows that the FDTID3-2 model
with 13 variables has the highest accuracy, precision, and F1 score.

As with the FDTID3-1 model, the performance of the FDTID3-3 model, as shown in
Figure 8, shows that the model involving all variables in the prediction process has the
highest value on all metrics, even having a value of 100 from the first to third iterations as
in the FDTID3-2 model. The fact is followed successively by models involving eight and
five variables as the results of predictor variable selection.

Similar events occur in the FDTID3-4 model, as shown in Figure 9, where the FDTID3-4
model involving 13 predictor variables has the highest average performance compared to
the other two FDTID3-4 models. Although the recall in the FDTID3-4 model with eight
variables also has a value of 100, the other four metrics are not higher than the FDTID3-4
model with thirteen variables.

In the FDTID3-5 model, the five-evaluation metrics (Figure 10) show similar events to
the FDTID3-1–FDTID3-4 models, where all average metric values indicate that the FDTID3-
5 model with 13 predictor variables is the best compared to the other two FDTID3 models.
In this model, all metrics also give a value of 100 from the first to third iterations.

Like the FDTID3-1–FDTID3-5 model, in the FDTID3-6 model, the performance of
the model with complete predictor variables is the model that predicts CHD status with
the best performance. All metrics in the model have metrics with perfect values from
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iteration 1 to iteration 3 (Figure 11). The information indicates that the FDTID3 model
with 13 variables is the best model for predicting CHD status. This study also compares
the performance of the DTID3 model with 13 variables using the concept of crisp sets in
discretizing predictor variables.

The comparison of the performance of the DTID3 and FDTID3-1–FDTID3-6 models
involving all predictor variables in predicting CHD status is summarized in Table 8. The
value of the metrics of each model is the average of the 5-fold performance.

Table 8. The prediction performance of CHD status.

Fuzzy Membership
Functions Combination

Prediction Performance Metric (%)

Accuracy Recall Precision F1-Score AUC

DTID3 98.99 99.33 98.62 98.97 99.02
FDTID3-1 99.00 99.00 99.31 99.15 99.17
FDTID3-2 99.33 98.64 100 99.31 99.02
FDTID3-3 98.99 99.33 98.62 98.97 99.02
FDTID3-4 99.67 100 99.29 99.64 99.70
FDTID3-5 99.33 99.29 99.29 99.27 99.34
FDTID3-6 99.67 99.26 100 99.62 99.63

In predicting disease states, including CHD, a high recall value is often considered
better than a high precision value. This is because it is assumed that a model is better
when predicting a patient’s status as positively sick. However, if the patient’s status is
healthy (negative), then a model that predicts a patient’s status as healthy. However, the
patient’s status is positive. However, higher false positives are not always better than
higher false negatives when predicting disease status. A person who is predicted to be
positive when they are not may be detrimental to the patient because it can cause stress or
other excessive responses. A higher F1 score is better because this metric balances False
Positives and False Negatives. All the proposed FDTID3 models performed better than
the DTID3 model except the FDTID3-3 model, which performed the same as the DTID3
model. The FDTID3-4 model had the highest three metric values: recall, F1-score, and
AUC. The number recorded the FDTID3-4 model as the FDTID3 model with the highest
metric value compared to other FDTID3 models. Therefore, the FDTID3-4 model with
13 predictor variables is the best model for predicting CHD status. This fact informs us that
most of the first and third categories in each variable tend to have decreasing sigmoid and
increasing sigmoid functions rather than decreasing linear and increasing linear. Thus, the
second category tends to have a triangular function rather than a pi function if the other
two categories are sigmoid functions.

Table 9 presents the analysis of variance (ANOVA) for the seven models (six models
of FDTID3 and one model of DTID3). Whether the performance of the seven proposed
models is distinct from that of the others, it is worthwhile to compare them using Monte
Carlo resampling [35]. The ANOVA demonstrates that the seven proposed models differ in
at least one average performance metric for accuracy, precision, recall, F1-score, and AUC
at 5% significance levels.

Moreover, it examines which model pairs perform significantly differently and whether
the DTID3 classification performance metrics have improved when using the proposed
FDTID3. Post hoc tests with a significance level of 5% using Tukey–Kramer are given in
Table 10.

Most model pairs have an absolute mean difference (AMD) that exceeds each metric’s
Q-critical value, namely 0.16, 0.26, 0.22, 0.19, and 0.2. Only the performance of the FDTID3-1
and DTID3 model pairs is not significantly different on all five metrics. In comparison, the
other five FDTID3 models are significantly different from each other on at least two metrics.
This fact also indicates that the five FDTID3 models have significantly different (increased)
performance from DTID3. In addition, considering that the other five FDTID3 models have
different fuzzy membership functions, it can be concluded that the performance of the
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proposed FDTID3 model depends on the fuzzy membership function used. Our hypothesis
that the seven proposed models are different has been proven.

Table 9. ANOVA of the proposed model for the CHD dataset.

Metrics Source
of Var.

Sum of
Squares Mean Squares F p-Value F-Criteria

Accuracy between 256.06 42.68
645.90 6.0 × 10−186

2.12

within 23.13 0.07

Recall
between 181.26 30.21

165.11 7.3 × 10−99
within 64.04 0.18

Precision
between 356.08 59.35

455.94 4.6 × 10−162
within 45.56 0.13

F1-score
between 208.24 34.71

351.64 7.3 × 10−145
within 34.55 0.10

AUC
between 248.89 41.48

387.31 3.4 × 10−151
within 37.49 0.11

Table 10. Tukey–Kramer test of the proposed model for the CHD dataset.

Comparison Model
Absolute Mean Difference

Accuracy Recall Precision F1-Score AUC

FDTID3-1 vs. FDTID3-2 1.47 1.12 1.60 1.36 1.50
FDTID3-1 vs. FDTID3-3 1.91 1.12 2.41 1.77 1.97
FDTID3-1 vs. FDTID3-4 1.47 1.93 0.82 1.37 1.43
FDTID3-1 vs. FDTID3-5 0.52 1.12 0.13 0.49 0.56
FDTID3-1 vs. FDTID3-6 2.25 1.83 2.15 1.99 2.17
FDTID3-1 vs. DTID3 0.00 0.02 0.00 0.01 0.01
FDTID3-2 vs. FDTID3-3 0.43 0.00 0.81 0.40 0.47
FDTID3-2 vs. FDTID3-4 0.00 0.81 0.78 0.01 0.07
FDTID3-2 vs. FDTID3-5 0.96 0.00 1.73 0.87 0.94
FDTID3-2 vs. FDTID3-6 0.78 0.71 0.55 0.63 0.67
FDTID3-2 vs. DTID3 1.47 1.10 1.60 1.36 1.49
FDTID3-3 vs. FDTID3-4 0.43 0.80 1.59 0.40 0.54
FDTID3-3 vs. FDTID3-5 1.39 0.00 2.54 1.28 1.41
FDTID3-3 vs. FDTID3-6 0.35 0.71 0.25 0.23 0.20
FDTID3-3 vs. DTID3 1.91 1.11 2.41 1.76 1.97
FDTID3-4 vs. FDTID3-5 0.96 0.81 0.95 0.88 0.87
FDTID3-4 vs. FDTID3-6 0.78 0.10 1.33 0.62 0.74
FDTID3-4 vs. DTID3 1.47 1.91 0.82 1.36 1.43
FDTID3-5 vs. FDTID3-6 1.74 0.71 2.28 1.50 1.61
FDTID3-5 vs. DTID3 0.52 1.10 0.13 0.48 0.56
FDTID3-6 vs. DTID3 1.74 0.71 2.28 1.50 1.61

3.2. Diabetes Mellitus Disease Dataset
3.2.1. Dataset Exploration and Preprocessing

In the DMD, the majority of predictor variables have zero data, and some studies
assume that these zero data are missing data, so they focus on dealing with missing data
first and then perform prediction/classification tasks and improve the performance of the
previous model [27,28]. In addition, some researchers try to balance the classes distributed
into classes with DM status (65%) and classes that do not have DM status (35%).

The dataset has eight quantitative predictor variables, seven continuous, and only one
discrete. There are no missing data values in all variables, but the variables of Glucose,
Blood Pressure, Skin Thickness, Insulin, BMI, and Pregnancy have zero values. Except for
Skin Thickness, Pregnancy, and BMI, zero values in these variables can be a critical and
dangerous medical situation for the diabetic patient. Hence, some studies still leave them as
zero in the prediction process [23,46]. However, some studies consider them missing data
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and impute them with the mean value [27,28]. In this study, the values in these variables
are still left as zero because the DTID3 method can handle zero values.

The histogram of each continuous predictor variable and the bar plot of Pregnancies
are given in Figure 12. None of the seven continuous predictor variables show a normal
distribution. The majority of the distributions are skewed to the right. The bar plot
of pregnancies shows that the number of women who have never been pregnant has a
reasonably high frequency, but pregnancy of one is the highest frequency. The number
continues to decrease as the frequency increases.
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For each Yes and No class, a summary of the predictor variables of the DMD is
presented in Table 11.

Table 11. The summary of continuous variables in the diabetes dataset.

Status of
Diabetes Stat. Glucose

(mg/dL)

Blood
Pressure
(mmHg)

Skin
Thickness

(mm)

Insulin
(µ/mL)

BMI
(kg/hg)

Diabetes
Pedigree
Function

(unit)

Age
(Year) Pregnancies

No

Min 0 0 0 0 0 0.08 21 0
Q1 93 62 0 0 25.4 0.23 23 1
Mean 109.98 68.18 19.66 68.79 30.30 54.73 31.19 3.30
Mode 99 74 0 0 0 0.207 22 1
Q3 125 78 31 105 35.3 0.56 37 5
Max 197 122 60 744 57.3 2329.00 81 13

Yes

Min 0 0 0 0 0 0.09 21 0
Q1 119 66 0 0 30.8 0.26 28 1.75
Mean 141.26 70.82 22.16 100.34 35.14 131.80 37.07 4.87
Mode 125 70 0 0 32.9 0.254 25 0
Q3 167 82 36 167.25 38.775 0.73 44 8
Max 199 114 99 846 67.1 2288.00 70 17

The mean value of all predictor variables is higher in the class Yes. However, class No has the maximum values
for variables such as Blood Pressure, Diabetes Pedigree Function, and Age. The zero value for the six variables
other than Diabetes Degree Function and Age is owned by the Yes and No classes. In this work, the zero data are
left as zero because the DTID3 method has no problem with zero data.
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3.2.2. Discretization

The crisp discretization for eight numeric predictor variables in the DMD is formed
based on prior information from the sources, as presented in Table 12.

Table 12. Crisp discretization based on prior information of DMD.

Variable Crisp Discretization Source of Prior Information

Glucose <140 mg/dL
≥140 mg/dL Araki et al., 2020 in [46]

Blood Pressure
60–80 mm hg
81–89 mm hg
≥90 mm hg

Tsujimoto and Kajio, 2018 in [46]

Skin Thickness ≤30 mm
>30 mm

Marrodan et al., 2015 and
Khadilkar et al., 2015 in [46]

Insulin Level
1–283 µU/mL
284–565 µU/mL
566–846 µU/mL

Equation (1)

BMI <30 kg/m2

≥30 kg/m2 Nutall, 2015 in [46]

Diabetes Pedigree Function
<0.4
0.4–0.8
>0.8

Survey, 2017 in [46]

Age ≤35 years
>35 years Lampinen et al., 2009 in [46]

Pregnancies ≤4 times
>4 times Karegowda et al., 2012 in [46]

The crisp discretization divides each variable into three categories, except for the
Thalach and Oldpeak variables, which are divided into two categories. For each variable
in each combination, the first category employs a decreasing pattern, including linear
and nonlinear functions, such as the sigmoid function. The second category employs
fuzzy memberships with symmetrical curve shapes, such as triangular, trapezoidal, pi,
and beta memberships. We assume the width of the domain interval from the curve’s
center point to its end to be the same size. Then, in the third category, discretization uses
fuzzy membership with increasing patterns, both linear and nonlinear functions (sigmoid
functions).

Table 13 displays the discretization outcomes achieved using a blend of fuzzy member-
ship functions on the DMD. This study also proposes six combinations of fuzzy membership
functions for discretization for the dataset, the same as the CHD dataset. As in the CHD
dataset, the six fuzzy membership function combination models FDTID3-1–FDTID3-6
for the diabetes disease dataset, as presented in Table 5, provide different discretization
parameters for each membership function. For example, in the Glucose variable, the two
models, FDTID3-1 and FDTID3-2, have the same parameters for all categories. Likewise,
the two models FDTID3-3 and FDTID3-4.

Meanwhile, the FDTID3-5 and FDTID3-6 models have parameters that tend to be
different. In the Blood Pressure variable, for the Normal category, every one of the three
pairs of models has the same parameters. For the Pre-Hypertension category, three models
have different parameters, namely FDTID3-1, FDTID3-3, and FDTID3-4, while in the
Hypertension category, four models have four different parameters, namely FDTID3-3,
FDTID3-4, FDTID3-5, and FDTID3-6.

The data composition in each iteration for 5-fold cross-validation is presented in
Table 14. Dividing the data into five folds results in the training data in each iteration
covering around 80% of the data and the remainder as test data.
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Table 13. Discretization Interval for DMD.

Continuous Discretization Discretization Interval

Variable Term FDTID3-1 FDTID3-2 FDTID3-3 FDTID3-4 FDTID3-5 FDTID3-6

Glucose
Low [44, 60] [44, 60] [44, 62] [44, 62] [44, 64] [44, 66]
Normal [60, 140] [60, 140] [59, 141] [59, 141] [58, 142] [57, 143]
High [140, 200] [140, 200] [138, 200] [138, 200] [136, 200] [134, 200]

Blood
Pressure

Normal [24, 80] [24, 80] [24, 82] [24, 82] [24, 84] [24, 84]
Pre-Hypertension [79, 91] [80, 90] [79, 91] [79, 91] [77, 93] [77, 93]
Hypertension [90, 122] [90, 122] [88, 122] [88, 122] [86, 122] [86, 122]

Skin
Thickness

Normal [7, 30] [7, 31] [7, 31] [7, 33] [7, 32] [7, 35]
Thick [30, 99] [29, 99] [28, 100] [28, 99] [28, 99] [24, 99]

Insulin Level
Normal [0, 166] [0, 167] [0, 166] [0, 168] [0, 168] [0, 170]
High [166, 846] [159, 846] [166, 846] [164, 846] [164, 846] [162, 846]

BMI
Normal [18, 30] [18, 31] [18, 30] [18, 32] [18, 32] [18, 36]
Obesity [30, 68] [29, 68] [30, 68] [28, 68] [28, 68] [24, 68]

Diabetes
Pedigree
Function

Low [0, 0.4] [0, 0.4] [0, 0.4] [0, 0.4] [0, 0.5]] [0, 0.6]
Normal [0.4, 0.8] [0.4, 0.8] [0.4, 0.8] [0.4, 0.8] [0.2, 1] [0.3, 0.9]
High [0.8, 2329] [0.8, 2329] [0.8, 2329] [0.8, 2329] [0.7, 2329] [0.6, 2329]

Age Young [21, 35] [21, 36] [21, 35] [21, 37] [21, 39] [21, 39]
Old [35, 81] [34, 81] [35, 81] [33, 81] [31, 81] [31, 81]

Pregnancies Normal [1, 4] [1, 5] [1, 5] [1, 5] [1, 6] [1, 7]
High [4, 17] [3, 17] [3, 17] [3, 17] [2, 17] [3, 17]

Table 14. Data composition in each fold of DMD.

Data Status Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Learning No 400 400 397 401 402
Yes 214 214 218 213 213
Sum 614 614 615 614 615

Testing No 100 100 103 99 98
Yes 54 54 50 55 55
Sum 154 154 153 154 153

Total 768 768 768 768 768

Figure 13 presents the FDTID3-5 model for the first iteration of five-fold cross-validation
predicting DM status. In this DM data modeling, the decision is 0, meaning that the
observation does not have DM status, and the result is 1, meaning that the observation has
DM status. The figure shows that in the FDTID3-5 model, BMI is the variable that most
influences DM status. The three variables in the first node are Glucose, Skin Thickness, and
Blood Pressure. The second nodes are pregnancy, age, blood pressure, and glucose. The
earlier the node position, the greater the influence of variables at that node on CHD status
prediction. In this first iteration of FDTID3-4, there are 110 rules for predicting CHD status.
Each rule begins with the notation of [Rw], w = 1, 2, · · · , 110 and is presented below:

[R1]
If BMI is Normal, Glucose is High, Pregnancy is High, and Skin Thickness is Normal,
then the decision is 0.

[R2]
If BMI is Normal, Glucose is High, Pregnancy is High, and Skin Thickness is Thick, then
the decision is 1.

[R3]
If BMI is Normal, Glucose is High, Pregnancy is Low, and Skin Thickness is Normal,
then the decision is 0.

[R4]
If BMI is Normal, Glucose is High, Pregnancy is Low, and Skin Thickness is Thin, then
the decision is 1.
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[R5]
If BMI is Normal, Glucose is High, Pregnancy is Low, and Skin Thickness is Very Thin,
then the decision is 0.

[R6] If BMI is Normal, Glucose is High, and Pregnancy is Normal, then the decision is 1.
[R7] If BMI is Normal, Glucose is Low, and Pregnancy is Low, then the decision is 0.

[R8]
If BMI is Normal, Glucose is Low, Pregnancy is Normal, and Skin Thickness is Thick,
then the decision is 1.

[R9]
If BMI is Normal, Glucose is Low, Pregnancy is Normal, and Skin Thickness is Very
Thin, then the decision is 0.

[R10] If BMI is Normal and Glucose is Low, then the decision is 0.
[R11] If BMI is Obesity, Glucose is High, and Age is Middle, then the decision is 1.

[R12]
If BMI is Obesity, Glucose is High, Age is Young, Skin Thickness is Normal, and Blood
Pressure is Low, then the decision is 1.

[R13]
If BMI is Obesity, Glucose is High, Age is Young, Skin Thickness is Normal, and Blood
Pressure is Prehypertension, then the decision is 0.

[R14]
If BMI is Obesity, Glucose is High, Age is Young, Skin Thickness is Thick, and Blood
Pressure is Hypertension, then the decision is 0.

[R15]
If BMI is Obesity, Glucose is High, Age is Young, Skin Thickness is Thick, Blood
Pressure is Prehypertension, and Pregnancy is High, then the decision is 0.

[R16]
If BMI is Obesity, Glucose is High, Age is Young, Skin Thickness is Thick, and Blood
Pressure is Prehypertension, Pregnancies are Low, then the decision is 0.

[R17]
If BMI is Obesity, Glucose is High, Age is Young, Skin Thickness is Thick, Blood
Pressure is Prehypertension, and Pregnancy is Normal, then the decision is 1.

[R18]
If BMI is Obesity, Glucose is High, Age is Young, and Skin Thickness is Very Thin, then
the decision is 1.

[R19]
If BMI is Obesity, Glucose is Low, and Blood Pressure is Hypertension, then the decision
is 1.

[R20]
If BMI is Obesity, Pregnancy Glucose is Low, and Blood Pressure is Low, then the
decision is 1.

[R21]
If BMI is Obesity, Glucose is Low, and Blood Pressure is Prehypertension, then the
decision is 1.

[R22]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, and Skin Thickness is
Normal, then the decision is 1.

[R23]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Thick,
Insulin is Low, Pregnancy is Low, and Age is Middle, then the decision is 0.

[R24]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Thick,
Insulin is Low, Pregnancy is Low, and Age is Young, then the decision is 1.

[R25]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Thick,
Insulin is Low, Pregnancy is Normal, and Age is Middle, then the decision is 1.

[R26]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Thick,
Insulin is Low, Pregnancy is Normal, and Age is Young, then the decision is 0.

[R27]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Thick,
and Insulin is Normal, then the decision is 1.

[R28]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Very Thin,
Pregnancies is Low, and Age is Middle, then the decision is 0.

[R29]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Very Thin,
Pregnancy is Low, and Age is Young, then the decision is 1.

[R30]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Very Thin,
Pregnancy is Normal, and Age is Middle, then the decision is 1.

[R31]
If BMI is Obesity, Glucose is Low, Blood Pressure is Normal, Skin Thickness is Very Thin,
Pregnancy is Normal, and Age is Young, then the decision is 0.

[R32]
If BMI is Obesity, Glucose is Normal, and Blood Pressure is Hypertension, then the
decision is 1.

[R33]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Low, and Pregnancy is High,
then the decision is 1.

[R34]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Low, and Pregnancy is Normal,
then the decision is 0.

[R35]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Low, Pregnancy is Low, and Age
is Middle, then the decision is 0.
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[R36]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Low, Pregnancy is Low, and Age
is Young, then the decision is 1.

[R37]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancy is High, and
Skin Thickness is Normal, then the decision is 1.

[R38]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancy is High, and
Skin Thickness is Thick, then the decision is 0.

[R39]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancy is Low, Age
is Middle, and Skin Thickness is Thick, then the decision is 0.

[R40]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancy is Low, Age
is Middle, and Skin Thickness is Very Thin, then the decision is 1.

[R41]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancies is Low, and
Age is Young, then the decision is 1.

[R42]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancies is Normal,
and Insulin is Normal, then the decision is 0.

[R43]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancies is Normal,
Insulin is Low, and Skin Thickness is Normal, then the decision is 1.

[R44]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancies is Normal,
Insulin is Low, and Skin Thickness is Thick, then the decision is 0.

[R45]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Normal, Pregnancies is Normal,
Insulin is Low, and Skin Thickness is Very Thin, then the decision is 0.

[R46]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Prehypertension, Pregnancies is
High, Skin Thickness is Thick, and Insulin is Low, then the decision is 0.

[R47]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Prehypertension, Pregnancies is
High, Skin Thickness is Thick, and Insulin is Normal, then the decision is 1.

[R48]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Prehypertension, Pregnancies is
High, and Skin Thickness is Very Thin, then the decision is 1.

[R49]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Prehypertension, Pregnancies is
Low, Skin Thickness is Normal, and Insulin is Low, then the decision is 0.

[R50]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Prehypertension, Pregnancy is
Low, and Skin Thickness is Thick, then the decision is 1.

[R51]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Prehypertension, Pregnancies is
Low, and Skin Thickness is Very Thin, then the decision is 1.

[R52]
If BMI is Obesity, Glucose is Normal, Blood Pressure is Prehypertension, and
Pregnancies is Normal, then the decision is 0.

[R53]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, and Insulin is High,
then the decision is 1.

[R54]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, and Insulin is Normal,
then the decision is 1.

[R55]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, Insulin is Low, and
Glucose is High, then the decision is 0.

[R56]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, Insulin is Low, Glucose
is Low, and Pregnancy is Low, then the decision is 1.

[R57]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, Insulin is Low, Glucose
is Low, and Pregnancy is Normal, then the decision is 0.

[R58]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, Insulin is Low, Glucose
is Normal, and Pregnancy is Low, then the decision is 1.

[R59]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, Insulin is Low, Glucose
is Normal, and Pregnancy is Normal, then the decision is 0.

[R60]
If BMI is Overweight, Skin Thickness is Normal, Age is Middle, Insulin is Low, Glucose
is Normal, Pregnancy is Normal, and Blood Pressure is Prehypertension, then the
decision is 1.

[R61] If BMI is Overweight, Skin Thickness is Normal, and Age is Old, then the decision is 1.

[R62]
If BMI is Overweight, Skin Thickness is Normal, Age is Young, and Blood Pressure is
Low, then the decision is 0.

[R63]
If BMI is Overweight, Skin Thickness is Normal, Age is Young, and Blood Pressure is
Normal, then the decision is 0.

[R64]
If BMI is Overweight, Skin Thickness is Normal, Age is Young, Blood Pressure is
Prehypertension, and Pregnancy is Low, then the decision is 0.
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[R65]
If BMI is Overweight, Skin Thickness is Normal, Age is Young, Blood Pressure is
Prehypertension, and Pregnancy is Normal, then the decision is 1.

[R66]
If BMI is Overweight, Skin Thickness is Thick, Glucose is High, Insulin is Low, and Age
is Middle, then the decision is 1.

[R67]
If BMI is Overweight, Skin Thickness is Thick, Glucose is High, Insulin is Low, and Age
is Young, then the decision is 0.

[R68]
If BMI is Overweight, Skin Thickness is Thick, Glucose is High, and Insulin is Normal,
then the decision is 0.

[R69]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Low, and Blood Pressure is
Hypertension, then the decision is 0.

[R70]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Low, and Blood Pressure is
Low, then the decision is 1.

[R71]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Low, and Blood Pressure is
Normal, then the decision is 1.

[R72]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Low, Blood Pressure is
Prehypertension, and Pregnancy is Low, then the decision is 0.

[R73]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Low, Blood Pressure is
Hypertension, and Pregnancy is Normal, then the decision is 1.

[R74]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, and Blood Pressure is
Hypertension, then the decision is 1.

[R75]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, and Blood Pressure is
Low, then the decision is 0.

[R76]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, Blood Pressure is
Normal, and Pregnancy is High, then the decision is 1.

[R77]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, Blood Pressure is
Normal, and Pregnancy is Low, then the decision is 0.

[R78]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, Blood Pressure is
Normal, and Pregnancy is Normal, then the decision is 0.

[R79]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, Blood Pressure is
Prehypertension, and Pregnancy is High, then the decision is 0.

[R80]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, Blood Pressure is
Prehypertension, and Pregnancy is Normal, then the decision is 1.

[R81]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, Blood Pressure is
Prehypertension, Pregnancy is Low, and Age is Middle, then the decision is 0.

[R82]
If BMI is Overweight, Skin Thickness is Thick, Glucose is Normal, Blood Pressure is
Prehypertension, Pregnancy is Low, and Age is Young, then the decision is 1.

[R83] If BMI is Overweight, Skin Thickness is Thin, and Glucose is High, then the decision is 0.

[R84]
If BMI is Overweight, Skin Thickness is Thin, and Glucose is Normal, then the decision
is 0.

[R85]
If BMI is Overweight, Skin Thickness is Thin, Glucose is Low, and Blood Pressure is
Low, then the decision is 0.

[R86]
If BMI is Overweight, Skin Thickness is Thin, Glucose is Low, and Blood Pressure is
Normal, then the decision is 0.

[R87]
If BMI is Overweight, Skin Thickness is Thin, Glucose is Low, and Blood Pressure is
Prehypertension, then the decision is 1.

[R88]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Hypertension, and
Glucose is High, then the decision is 1.

[R89]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is hypertension, and
Glucose is Normal, then the decision is 0.

[R90]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Low, and Age is
Middle, then the decision is 0.

[R91]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Low, and Age is
Young, then the decision is 1.

[R92]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, and
Pregnancy is High, then the decision is 0.

[R93]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is High, and Age is Young, then the decision is 1.
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[R94]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is High, and Age is Middle, then the decision is 0.

[R95]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is High, and Age is Young, then the decision is 1.

[R96]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is Low, and Age is Middle, then the decision is 1.

[R97]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is Low, Age is Young, and Glucose is High, then the decision is 1.

[R98]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is Low, Age is Young, and Glucose is Low, then the decision is 0.

[R99]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is Low, Age is Young, and Glucose is Normal, then the decision is 0.

[R100]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is Normal, Age is Middle, and Glucose is High, then the decision is 1.

[R101]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is Normal, Age is Middle, and Glucose is Low, then the decision is 1.

[R102]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Normal, Pregnancy
is Normal, Age is Middle, and Glucose is Normal, then the decision is 1.

[R103]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Prehypertension,
and Glucose is High, then the decision is 1.

[R104]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Prehypertension,
and Glucose is Low, then the decision is 0.

[R105]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Prehypertension,
Glucose is Normal, and Age is Middle, then the decision is 0.

[R106]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Prehypertension,
Glucose is Normal, and Age is Young, then the decision is 0.

[R107]
If BMI is Overweight, Skin Thickness is Very Thin, Blood Pressure is Prehypertension,
Glucose is Normal, Age is Young, and Pregnancy is Normal, then the decision is 1.

[R108] If BMI is Underweight, and Blood Pressure is Hypertension, then the decision is 1.
[R109] If BMI is Underweight, and Blood Pressure is Prehypertension, then the decision is 0.
[R110] If BMI is Underweight and Low Blood Pressure, then the decision is 0.

The first and second rules are examples of decisions that make predictions of 0 and 1,
respectively; so are the 106th and 107th rules. In the first rule, if someone has a normal BMI,
high Glucose levels, high Pregnancy, and Normal Skin Thickness, then it is predicted that
their status is not diabetic. In the 106th rule, if someone has an Overweight BMI, Very Thin
Skin Thickness, Blood Pressure type, Prehypertension, Normal Glucose levels, and Young
Age, then it is predicted that their status is not diabetic. In the second rule, if someone
has a normal BMI, high Glucose levels, high Pregnancy, and Thick Skin Thickness, then
it is predicted that their status is diabetic. Likewise, in the 107th rule, if someone has an
Overweight BMI, Very Thin Skin Thickness, Blood Pressure type, Prehypertension, Normal
Glucose levels, Young Age, and Normal Pregnancies, then it is predicted that their status
is diabetic.

The confusion matrix for the first iteration of FDTID3-5 with all (8) predictor variables
is presented in Table 15.

The confusion matrix shows that True Positive prediction (TP) is 22, True Negative
prediction (TN) is 95, false positive (FP) and false negative (FN) predictions are 32 and 5,
respectively. Because FP and FN are not zero, or there are wrong predictions, to class 0 and
class 1, none of the metrics have a value of 100.

As in CHD modeling, in the other four iterations, the significant variables at the root
node to the second node consist of the same variables. However, in the DMD model, there
are six variables. They are BMI, Glucose, Skin Thickness, Blood Pressure, Pregnancy, and
Age. The last two variables are not found at the root and first nodes. This pattern is also
found in the FDTID3 model with five other fuzzy membership function combinations.
Therefore, in this research, the FDTID3-1 to FDTID3-6 models for CMD prediction were
also built using six and two variables in addition to the complete predictor variables.
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Table 15. Confusion matrix of DM status prediction of the first iterations of FDTID3-5 with all
predictor variables.

Prediction of DM Status Sum

The fact of DM
Status

Yes 22 32 54
No 5 95 100

Sum 27 127 154

The evaluation of the FDTID3-1 to FDTID3-6 prediction models, each based on the
number of predictor variables, is presented in Figure 14. These measures are the iteration
averages of the 5-fold cross-validation.
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Figure 14. Performance of six FDTID3 prediction models of DMD based on 5-fold cross-validation.

Almost all FDTID3 models have higher metric sizes than DTID3 models that use
discretization with crisp sets. This information indicates that almost all combinations of
fuzzy membership functions proposed for discretization in the DTID3 method suit the
DMD. The model with complete variables (8 variables) is the model that has the highest
performance compared to the performance of the other two models, both models with
2 variables and 6 variables. This information also indicates that the FDTID3 model with
eight variables best predicts DM status.

Furthermore, a comparison of the performance of all FDTID3 models with DTID3
involving all predictor variables in predicting DMD status is summarized in Table 16. The
value of the metrics of each model is the average of the 5-fold performance.

Table 16. The prediction performance of CHD status.

Fuzzy Membership
Functions Combination

Prediction Performance Metric (%)

Accuracy Recall Precision F1-Score AUC

DTID3 91.54 92.91 91.19 91.95 87.68
FDTID3-1 92.19 95.76 92.46 94.06 90.61
FDTID3-2 92.58 95.97 92.90 94.38 91.10
FDTID3-3 91.59 94.58 91.81 93.13 89.29
FDTID3-4 92.19 95.78 93.37 94.54 91.46
FDTID3-5 93.23 96.99 92.95 94.89 89.64
FDTID3-6 93.11 92.30 97.60 94.86 88.54

A high recall value is frequently regarded as superior to a high precision value in
predicting disease states, such as DM. This is due to the assumption that a model is more
effective in predicting a patient’s status as positive-sick. Nevertheless, if the patient’s status
is negative (healthy), the patient’s status is predicted to be healthy despite the patient’s
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status being positive. Nevertheless, the accuracy of disease predictions is not inherently
improved by more false positives than false negatives. An individual who is predicted
to be positive when the patient is negative may cause the patient to experience tension
or other excessive responses. A higher F1 score is more advantageous for a prediction
metric because it balances False Positives and False Negatives. All the proposed FDTID3
models outperform the DTID3 model. The FDTID3-5 model has the three highest metrics:
accuracy, Recall, and F1-score. The number recorded the FDTID3-5 model as the FDTID3
model with the highest metric value compared to other FDTID3 models, mainly because
the F1-score it has is the highest. Therefore, the FDTID3-5 method with eight predictor
variables (complete) is the best model for predicting DM status. This fact informs that
most of the first and third categories in each variable tend to have decreasing sigmoid and
increasing sigmoid functions rather than decreasing linear and increasing linear. Next, the
second category tends to have a beta function rather than a triangular or pi function if the
other two categories are sigmoid functions.

The ANOVA for the seven models is depicted in Table 17 determine whether the
performance of the seven proposed models is distinct from that of the other models. The
performance of these seven proposed models can be compared by employing Monte Carlo
resampling [35]. At 5% significance levels, the ANOVA indicates that the seven proposed
models exhibit discrepancies in at least one average performance metric for accuracy,
precision, recall, F1-score, and AUC.

Table 17. ANOVA of the proposed model for the DMD.

Metrics Source
of Var.

Sum of
Squares

Mean
Squares F p-Value F-Criteria

Accuracy between 177.41 29.57 1107.70 3.23 × 10−224

2.12

within 9.34 0.03
Recall between 488.61 81.43 258.53 2.51 × 10−125

within 110.25 0.31
Precision between 212.58 35.43 385.79 6.21 × 10−151

within 32.14 0.09
F1-score between 97.40 16.23 391.47 6.74 × 10−152

within 14.51 0.04
AUC between 251.12 41.85 418.52 2.50 × 10−156

within 35.00 0.10

Moreover, which pairs of models perform significantly differently and whether the
classification performance metrics of DTID3 have increased when using the proposed
FDTID3 models. The post hoc test with a 5% significance level using the Tukey–Kramer is
given in Table 18.

Most model pairs have an absolute mean difference (AMD) that exceeds each metric’s
Q-critical value, namely 0.1, 0.35, 0.19, 0.13, and 0.19. None of the FDTID3 and DTID3
model pairs significantly differ on all five metrics. One model pair has at least three metrics
that are significantly different. This fact also informs that the six FDTID3 models also have
significantly improved performance from DTID3. Given that the six FDTID3 models have
different fuzzy membership functions, it can be concluded that the performance of the
proposed FDTID3 model depends on the fuzzy membership function used. Our hypothesis
that the seven DTID3 models built differ at least in one metric has been proven, and the
performance of the six FDTID3 models is better than the performance of the DTID3 model
built using the concept of crisp set membership.

This evidence shows that the novelty of this study is that the performance of the DTID3
model was built using the concept of crisp set membership, which has been successfully
improved by discretizing the continuous type of predictor variables using the concept of
fuzzy set membership (FDTID3). However, the performance of the FDTID3 model is also
influenced by the combination of fuzzy membership functions, including the number of
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categories in each predictor variable, which is the initial basis, where this study uses expert
justification.

Table 18. Tukey–Kramer Test of the proposed model for the DMD.

Comparison Model Absolute Mean Difference
Accuracy Recall Precision F1-Score AUC

FDTID3-1 vs. FDTID3-2 1.37 4.00 1.03 1.30 1.86
FDTID3-1 vs. FDTID3-3 1.71 1.32 1.12 1.21 1.22
FDTID3-1 vs. FDTID3-4 1.32 1.42 0.61 0.98 2.19
FDTID3-1 vs. FDTID3-5 2.09 1.73 1.32 1.51 0.40
FDTID3-1 vs. FDTID3-6 0.37 0.51 0.17 0.33 0.05
FDTID3-1 vs. DTID3 0.58 1.58 0.42 0.49 1.64
FDTID3-2 vs. FDTID3-3 0.34 2.68 2.14 0.08 1.00
FDTID3-2 vs. FDTID3-4 0.05 2.58 1.64 0.32 1.98
FDTID3-2 vs. FDTID3-5 0.72 2.27 2.35 0.22 0.19
FDTID3-2 vs. FDTID3-6 1.00 3.49 1.20 0.97 0.17
FDTID3-2 vs. DTID3 0.79 2.42 0.61 0.81 0.64
FDTID3-3 vs. FDTID3-4 0.39 0.10 0.50 0.23 0.34
FDTID3-3 vs. FDTID3-5 0.37 0.41 0.20 0.30 1.45
FDTID3-3 vs. FDTID3-6 1.34 0.82 0.94 0.89 1.81
FDTID3-3 vs. DTID3 1.14 0.26 1.53 0.72 0.98
FDTID3-4 vs. FDTID3-5 0.76 0.31 0.71 0.53 0.81
FDTID3-4 vs. FDTID3-6 0.95 0.92 0.44 0.65 1.17
FDTID3-4 vs. DTID3 0.75 0.16 1.03 0.49 1.79
FDTID3-5 vs. FDTID3-6 1.72 1.23 1.15 1.19 2.15
FDTID3-5 vs. DTID3 1.51 0.15 1.74 1.02 1.79
FDTID3-6 vs. DTID3 1.72 1.23 1.15 1.19 0.22

3.3. Model Performance Comparison with Other Research
3.3.1. Coronary Heart Disease

A comparison of model performance using our proposed method on the CHD dataset
is presented in Table 19. The comparative research generally proposes some models, but
we present only the best model from each research result in the table. The researchers tried
to improve the prediction model performance by carrying out various techniques such as
rescaling predictor variables [23], variable selection with Relief and Least Absolute Shrink-
age Selection Operator (LASSO) [24], variable selection with Logistic Chaos Honey Badger
(LCHB) algorithm [26], ensemble technique [20,21,56], balancing class distributions [19],
and discretizing the predictor variables using the concept of crisp sets [35].

Considering the importance of recall and F1-score in predicting disease cases, includ-
ing CHD, based on the performance metrics presented in Table 16, it can be concluded
that the best model performance in predicting CHD status is our proposed model that
uses the FDTID3-4. It was followed by the DTID3 method with discretization using the
crisp set concept [33] and Random Forest (RF) [21], respectively. Furthermore, although
the difference in performance metric values between our proposed method and [33] using
discretization using a crisp set is tiny, this work has shown, with statistical tests, that the
proposed models’ performance is significantly different. Further exploring the combination
of fuzzy membership functions in discretizing predictor variables could be one way to
obtain better model performance. The results of this study also show that involving only
selected variables does not always provide better prediction performance.

3.3.2. Diabetes Mellitus Disease

The challenge in any research that predicts the disease status of patients is to obtain
satisfactory performance so that the disease can be anticipated early to reduce health
costs and improve the sufferer’s quality of life. Similarly to the attempts to predict CHD
status, numerous attempts have been made to improve the performance of DM prediction
models. These include implementing ensemble techniques [22,57], using QDA by violating
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the assumption that the distribution of predictor variables is Gaussian [58], discarding
data with zero value [27], imputing zero-value data with the mean [28], and prediction
results using SVM [27], balanced class distribution [28] reducing false classification using
DTID3 [27], transforming or discretizing data utilizing crisp sets and the fuzzy sets (our
proposed method). Table 17 compares the model performance achieved using the proposed
method for the DMD. The comparative studies generally propose several models, but we
present in Table 20 only the best model from each research result. Based on the performance
metrics in the table, it can be inferred that our proposed model, which employs the FDTID3-
5, has the highest accuracy in predicting DM status, given the significance of recall and
F1-score in predicting disease cases, including DM. It was followed by the NB method with
discretization using the crisp set concept [46] and Gaussian Process (GP) [59], respectively.

Furthermore, although the difference in performance metric values between our
proposed method and [46], which uses discretization using a crisp set, is tiny, this work
has shown with statistical tests that the performance of the proposed models, including
those using discretization using crisp set is significantly different. Further exploring the
combination of fuzzy membership functions in discretizing predictor variables could be one
way to obtain better model performance, especially on the DMD. These results also show
that zero-value data does not always have to be treated, either discarded or imputed with
specific values, to improve the prediction model’s performance, as long as the prediction
method can process the value. Likewise, related to the distribution of classes whose
comparison ratio is not too unequal, it does not always have to be balanced.
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Table 19. The comparison of model performance (%) of CHD status.

No. Research The Best Prediction Method Validation Method Accuracy Recall Precision F1-Score AUC

1 Chowdary et al. [46] Ensemble of LR, RF, GNB, NNR, KNN Hold out 67:33 87.00 94.00 91.60 88.00 -
2 Kresnawati et al. [33] DTID3 10-fold CV 99.63 100.00 99.23 99.61 99.67
3 Hassan et al. [21] RF Hold out 70:30 96.28 95.37 96.28 96.28 -
4 Hossen [19] LR Hold out 80:20 95.00 95.00 - - -
5 Kanwal et al. [24] SVM with LASSO Hold out 80:20 85.19 80.77 - - -

6 Chandrasekhar and
Peddakrishna, 2023 [56] Ensemble of RF, KNN, LR, NB, GB, AB, SVE 5-fold CV 90.00 89.00 - - -

7 Patil and Bhosale, 2023 [23] FCM-based NN with feature scaling Hold out 70:30 98.78 - - - -
8 Karthikeyini et al., 2023 [26] DGRU with LCHB - 95.15 91.48 92.26 92.21 -
9 Femina and Sudheep, 2020 [36] Linguistic Fuzzy NB Classifier (LFNBC) Hold out 90:10 91.30 92.68 - - 91.44
10 Proposed Method FDTID3-4 5-fold CV 99.67 100.00 99.29 99.64 99.70

Table 20. The comparison of model performance (%) of DM status.

No. Research Zero-Value Data Balance Class
The Best

Prediction
Method

Validation
Method Recall F1-Score AUC Accuracy Precision

1 Maniruzzaman et al., 2017 [59] impute by median no special
treatment GP 10-fold CV 91.79 88.22 - 81.97 84.91

2 Shanmugapriya et al., 2017 [37] no special treatment no special
treatment SVM Hold out 75:25 58.90 - - 73.82 -

3 Tigga and Garg, 2020 [57] no special treatment no special
treatment SVM 10-fold CV 77.50 81.30 77.10 74.40 85.60

4 Resti et al., 2021 [46] no special treatment no special
treatment NB 5-fold CV 94.48 94.15 - 95.83 93.82

5 Tasin et al., 2022 [22]
impute by mean (for skin
thickness and BMI) and impute
by XGB (for others)

balanced using
ADASYN XGBoost Hold out 80:20 80.00 81.00 - 88.50 82.00

6 Kresnawati et al., 2023 [58] no special treatment no special
treatment QDA Hold out 70:30 69.23 81.82 84.62 98.27 100.00

7 Binerbia, 2022 [28] impute by mean no special
treatment SVM Hold out 80:20 86.00 - - 80.00 75.00

8 Palanivinayagam and
Damasevicius, 2023 [27] impute by SVM no special

treatment SVM 10-fold CV 88.23 85.71 - 94.89 83.33

9 Proposed Method no special treatment no special
treatment FDTID3-5 5-fold CV 96.99 94.89 89.64 93.23 92.95
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4. Conclusions

This study has predicted the status of degenerative diseases, coronary heart disease,
and diabetes mellitus by building seven models of DTID3, respectively. One DTID3 model
uses the concept of crisp set membership, and six DTID3 models use the concept of fuzzy
set membership with final membership selection rules used as maximum value (FDTID3).
The hypothesis that the performance of the seven proposed models differs at least in
one metric and that the performance of the FDTID3 models is higher than the DTID3
model discretized using the concept of crisp sets has been proven. The evidence shows
that the novelty of this study is that the performance of the DTID3 model built using
the concept of crisp set membership has been successfully improved by discretizing the
continuous type of predictor variables using the concept of fuzzy set membership (FDTID3).
However, the performance of the FDTID3 model is also influenced by the combination
of fuzzy membership functions, including the number of categories in each predictor
variable, which is the initial basis, where this study uses expert justification. We also
note that involving significant variable selection, treating zero-value data, and balancing
class distributions does not always perform better than original model which discretizing
continuous predictor variables.
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