
Citation: Yang, Y.; Fu, Y.; Lu, D.;

Xiang, H.; Xu, K. Three-Dimensional

Unmanned Aerial Vehicle Trajectory

Planning Based on the Improved

Whale Optimization Algorithm.

Symmetry 2024, 16, 1561. https://

doi.org/10.3390/sym16121561

Academic Editor: Hongkun Xu

Received: 18 September 2024

Revised: 8 November 2024

Accepted: 14 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Three-Dimensional Unmanned Aerial Vehicle Trajectory
Planning Based on the Improved Whale Optimization Algorithm
Yong Yang *, Yujie Fu, Dongyang Lu, Honghui Xiang and Kaijun Xu

School of Flight Technology, Civil Aviation Flight University of China, Guanghan 618307, China;
fuyujie@cafuc.edu.cn (Y.F.); ludongyang24@cafuc.edu.cn (D.L.); xianghonghui@cafuc.edu.cn (H.X.);
xukaijun@cafuc.edu.cn (K.X.)
* Correspondence: yangyong@cafuc.edu.cn

Abstract: The effective planning of UAV trajectories in a 3D environment presents a complex global
optimization challenge that must account for numerous constraints, including urban settings, moun-
tainous terrain, obstacles, no-fly zones, flight boundaries, travel distances, and trajectory change
rates. This paper addresses the limitations of the whale optimization algorithm in 3D trajectory
planning—specifically its slow convergence, low accuracy, and susceptibility to local optimum—by
proposing an improved whale optimization algorithm. This enhancement incorporates an inverse
learning mechanism to increase the diversity of the initial population and integrates a nonlinear
convergence factor with a random number generation mechanism to optimize the balance between
global and local search capabilities. Our findings indicate that for both the standard and improved
whale optimization algorithms, each individual in the population represents a feasible solution,
corresponding one-to-one with distributed trajectories in the search space. Given that route plan-
ning typically occurs in three dimensions, there is spatial symmetry among the multiple potential
trajectories from the starting point to the endpoint. The optimization algorithm identifies the optimal
solution by exploring these symmetric trajectory paths, ultimately selecting the most favorable one
based on additional constraints (e.g., no-fly zones and fuel consumption). Moreover, the convergence
of the whale optimization algorithm depends on the diversity of individuals in the population and
the thorough exploration of the search space. This symmetry facilitates a more uniform exploration of
various trajectories by the population. In some instances, the optimization algorithm has achieved a
7.00% improvement in fitness value, a 10.05% reduction in optimal distance, and a 28.73% decrease in
standard deviation. The increase in optimal values and the decrease in worst-case values underscore
the effectiveness of the optimization algorithm, while the reduction in standard deviation reflects
the stability of the algorithm’s output data. These results further confirm the advantages of the
optimized algorithm.

Keywords: unmanned aerial vehicle; three-dimensional path planning; whale optimization algorithm;
inverse learning; nonlinear convergence; random number generation

1. Introduction

With the rapid development of the low-altitude economy, the application of Unmanned
Aerial Vehicles [1] (UAVs)—a core technology in this sector—has garnered significant atten-
tion in low-altitude airway planning. UAVs possess autonomous control, high flexibility,
and safety, demonstrating immense potential across various fields. Their applications
in low-altitude economic scenarios include urban mapping, logistics and transportation,
urban monitoring, crop monitoring, environmental protection, and emergency rescue. As
smart cities and intelligent transportation systems evolve, the role of UAVs has expanded
beyond traditional surveying and monitoring tasks to include scenarios that demand high
timeliness and accuracy, such as urban logistics, distribution, emergency medical supply
transport, and disaster monitoring and response.
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The booming low-altitude economy has catalyzed rapid advancements in UAV tech-
nology, particularly in innovations related to intelligence, autonomy, and collaboration.
Trajectory planning, a critical aspect of Unmanned Aircraft Systems (UASs), significantly
influences the efficiency and safety of mission execution. To navigate the complexities of
low-altitude environments and diverse mission requirements, trajectory planning must
rapidly calculate collision-free and threat-free paths, while considering multiple factors,
including flight path smoothness, mission execution costs, fuel consumption, and flight
duration. These demands impose rigorous technical requirements on UAV applications,
particularly in complex environments like logistics and distribution within densely popu-
lated urban areas and emergency medical rescues. AV path planning must not only avoid
static terrain obstacles, but also adapt to dynamic conditions such as weather changes and
moving obstacles encountered during flight.

In the field of UAV low-altitude path planning, numerous heuristic search algorithms
have been widely applied. For example, the Ant Colony Algorithm [2] enhances UAV ob-
stacle avoidance and path optimization in complex environments by introducing a dynamic
pheromone-updating mechanism. The Particle Swarm Optimization (PSO) Algorithm [3],
when combined with the Simulated Annealing algorithm, forms a hybrid method that
significantly improves path planning accuracy and convergence speed in dynamic environ-
ments. Similarly, adaptations of the Grey Wolf Optimization (GWO) Algorithm [4] have
optimized its predation and tracking strategies to better suit UAV path planning in 3D
environments. Classical algorithms such as A* [5,6], the whale optimization algorithm
(WOA) [7], and Dijkstra’s Algorithm [8] are also widely used in UAV trajectory planning.
Recent studies have focused on addressing path planning challenges under specialized
conditions. For instance, Zhang et al. [9] proposed an improved Slap Swarm Algorithm
to model UAV trajectory planning for rotary-wing UAVs. Their model considers patrol
efficiency, trajectory penalties, and power consumption to overcome issues like low search
efficiency and unsmooth paths in open-air warehouse environments. Cherif et al. [10]
formulated the cargo–UAV mission as a multi-objective problem aimed at minimizing
energy consumption, reducing handoff events, and ensuring cellular connectivity and
reliability along the flight path. Yuan et al. [11] applied an enhanced PSO algorithm to
optimize UAV path planning under terrain constraints, generating new constraint–altitude
waypoints based on altitude and terrain resolution data. While these algorithms aim to find
optimal or near-optimal paths by simulating natural group behaviors and other heuristic
mechanisms, they often encounter practical challenges. Specifically, in complex 3D envi-
ronments with dynamic obstacles, traditional algorithms are sensitive to initial conditions,
parameter settings, and local optimum, which can limit their efficiency and accuracy in
real-world applications.

To address this issue, this paper presents an improved whale optimization algorithm
that incorporates a reverse learning mechanism and a nonlinear convergence factor to
enhance the algorithm’s global search capability and prevent it from falling into local
optimum. Experimental validation demonstrates that the improved whale optimization
algorithm significantly enhances convergence accuracy and computational efficiency. It
is better suited for navigating complex three-dimensional environments, effectively im-
proving the overall performance of UAVs in low-altitude route planning and providing
reliable and efficient technical support for low-altitude economic applications. As tech-
nology continues to innovate, UAVs are poised to play an increasingly critical role in
various low-altitude economic scenarios, including smart cities, precision agriculture, and
emergency response. Furthermore, efficient and intelligent route planning algorithms will
be key drivers of breakthroughs in UAV technology.

2. Modeling
2.1. Environmental Modeling

To visualize the results and the realistic aspect of the simulation environment, this
paper compares and verifies the algorithm in a 3D environment. The 3D space is gridded
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and numerically coded to simulate a mountainous terrain environment, while the simu-
lation object also includes the no-fly zone. In this paper, the 3D coordinates are planned
as nx × ny × nz parts, and all the height information is represented by matrix H, with zij
representing the coordinates (i, j) of the three-dimensional height; in this study, n = 100.
The simulated topography is shown in Figure 1.
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Figure 1. The simulation generates mountainous terrain maps, and each simulation generates new
maps to verify that the algorithm works for different environments.

The specific expression for matrix H is as follows:

H =


z11 z12 . . . z1 n
z21 z22 . . . z2 n

...
...

. . .
...

zn 1 zn 2 . . . zn n

 (1)

In real-world environments, UAV flights are subject to many restrictions, such as
crowded areas, military control zones, and radar zones. In this paper, these restricted areas
are collectively referred to as no-fly zones, which need to be avoided during UAV trajectory
planning. They were modeled as red cylinders in contact with the terrain surface model;
the simulation of the no-fly zone is shown in Figure 2.
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A simulation of all cylinder model information is represented by the matrix shown in
Equation (2).

O =


x1 y1 r1
x2 y2 r2
...

...
...

xk yk rk

 (2)

In the formula, (x k, yk) represents the coordinate of the center and r1 represents the
radius of the threat zone. From a security point of view, the altitude of the threat zone is set
to be infinite, i.e., no flight is allowed over the threat zone.

2.2. Penalty Function Consideration

To identify the optimal trajectory, it is crucial to consider the impact of various factors.
This paper utilizes a penalty function to evaluate these influences. The total penalty of the
proposed research design model encompasses terrain constraints, boundary constraints,
no-fly zone constraints, flight path considerations, altitude, altitude changes, and path
smoothing penalties. The objective is to minimize the overall solution penalty.

2.2.1. Terrain Constraints

To avoid collisions with the terrain during UAV flight, the height at each point along
the trajectory must exceed the terrain height. In the experiment, if a point is lower than the
terrain height, a positive value is generated to indicate the degree of violation of the terrain
constraint; otherwise, the value is 0.

R1 =
N

∑
1

max(H − N + P, 0) (3)

where R1 represents the degree of violation of terrain constraints, H represents terrain
altitude information, N represents trajectory altitude information, and P represents a safety
threshold to ensure that the altitude of the path point will not be lower than the altitude of
the terrain; the actual value is adjusted according to the implementation of the task and
the flight environment, and is usually set as a few meters to several tens of meters. In this
paper, it has a value of 1.

2.2.2. Boundary Constraints

In order to avoid the planned UAV trajectory from going beyond the flight region,
the path algorithm is investigated with the requirement that each point on the trajectory
does not exceed the bounds of the specified spatial coordinates. In the experiments, if the
boundaries are exceeded, a positive value is generated, indicating the degree of violation
of the boundary constraints; otherwise, it is 0.

R2 =
M

∑
i=1

2

∑
j=1

max(2 − C(i, j), 0) (4)

R3 =
M

∑
i=1

2

∑
j=1

max(C(i, j)− T(j) + 2, 0) (5)

where R2 denotes the total extent to which the path point exceeds the left and lower
boundaries of the map; R3 denotes the total extent to which the path points exceed the
right and upper boundaries of the map; C denotes the matrix of the 3D coordinates of
the total path points after interpolation; M denotes the total number of path points after
interpolation; i shows the first i path point, where i has two coordinate values of x and y.
j = 1 when the i x coordinate value is taken; j = 2 when i takes the y coordinate value. T is
a vector containing the extent of the map.
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2.2.3. No-Fly Zone Constraint Penalty

In order to avoid UAVs from colliding with buildings and staying away from restricted
areas during flight, in this paper, all no-fly zones are set as an infinite-height impenetrable
cylinder model during the research process. The distance from each point on the trajectory
to the center of the no-fly zone circle is calculated and then this distance is subtracted from
the radius. If this difference is less than zero, it is replaced by zero to ensure that there are
no negative values.

R4 =

N f

∑
i=1

Np

∑
j=1

max
(

Ri − Lij, 0
)

(6)

where R4 denotes the degree to which the indicated path point has entered the no-fly zone,
N f denotes the number of no-fly zones, Np denotes the track point, Ri denotes the radius
of the no-fly zone, and Lij denotes the distance from the point on the track to the center of
the no-fly zone circle.

2.2.4. Flight Trajectory Penalty

In order to reduce the distance traveled, the shortest paths are sought during trajectory
planning in order to save energy. This is carried out by calculating the square root of the
sum of the squares of the differences in the coordinates of two neighboring trajectory points.

R5 =
N−1

∑
i=1

Di (7)

Di =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 (8)

where R5 denotes the degree of flight distance, and Di is the first i and i + 1 distance
between the path points.

2.2.5. Flight Altitude Change Penalty

In order to ensure the safety, stability, and energy efficiency of the UAV, the trajectory
should be planned with as little altitude fluctuation as possible. This is achieved by
calculating the variance of the altitude of the trajectory points during design.

R6 =
1
N

N

∑
i=1

(zi − z)2 (9)

where R6 denotes the degree of UAV altitude fluctuation.

2.2.6. Flight Altitude Penalty

In order to maintain the advantages of UAVs flying at low altitudes, such as good
maneuverability, stealth, clarity of shots, and low energy consumption, trajectory planning
should aim to ensure a low altitude. This is achieved by calculating the average altitude of
the trajectory points during the design process.

R7 =
1
n

n

∑
i=1

zi (10)

where R7 denotes the degree of UAV flight altitude, and i is the number of path points.
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2.2.7. Flight Path Smoothing Penalty

In order to ensure the safety of the UAV and its surroundings during flight, as well as
the feasibility of the operation and its own structure, it is required that the path should be
kept smooth during trajectory planning.

v1i = Pi+1 − Pi (11)

v2i = Pi+2 − Pi+1 (12)

δi = cos−1
(

v1i·v2i
∥v1i∥∥v2i∥

)
(13)

R8 =
n

∑
i=2

δi (14)

where R7 denotes the degree of the angle of change in all directions, which is used to
measure the smoothness of the path. v1i is the same as v2i, and represents the vector
difference between two neighboring points in the same direction as the UAV flight direction.
δi represents the difference between the inverse cosine of the cosine of the angle between
v1i and the inverse cosine of the cosine of the angle between v2i. When smoothing the
path against the best searching agent, B-spline is utilized to curve and interpolate the best
candidate points to form the final trajectory planning result. Currently, as can be seen
from the results, it looks very curved since only three interior points (constituting nine
parameters) were selected as the target search dimension. We can adjust this by increasing
the dimensions to 15 or 18, which will reduce the curvature of the trajectory to some extent;
however, the rest of the logic will not be affected.

2.2.8. Fitness Calculation

The fitness calculation based on the swarm algorithm is a critical part of determining
the strengths and weaknesses of a search agent. We designed the fitness calculation with
a constraint penalty weighting method to ensure that the fitness reflects the impact of
constraints. This is shown in Equations (15) and (16), as follows:

f =
[

flength, f height, fsmooth, height
]

(15)

f it = f ·[0.5, 0.1, 0.3, 0.1]T + restion·100 (16)

where flength stands for flight trajectory penalty; fheight stands for flight altitude change
penalty; fsmooth stands for flight path smoothing penalty; height stands for flight altitude
penalty; restion stands for the sum of terrain constraints, boundary constraints, and no-fly
zone constraints; and f it stands for fitness. These penalty values are separately implying
the importance of length cost, vertical smoothness, terrain-related height, and horizontal
smoothness characteristics in the corresponding planning result, in which the specified
values can be setup accordingly and adjusted dynamically in more optimized methods in
further investigations.

Meanwhile, the distance of each search agent is obtained by calculating the Euclidean
distance between consecutive track points on the trajectory, and then the lengths of all the
line segments are summed to obtain the flight distance of the complete planned trajectory,
as shown in Equations (17) and (18):

Li =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (17)

distance =
n−1

∑
i=1

Li (18)
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3. Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a meta-heuristic intelligent optimization
algorithm inspired by the foraging behavior of whales, proposed by Seyedali Mirjalili and
Andrew Lewis in 2016 [12]. The mathematical model is grounded in three primary foraging
behaviors of humpback whales—encircling prey, bubble net feeding, and searching for
food. The flowchart of the algorithm computation is shown in Figure 3.
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3.1. Surrounding the Prey

The locally optimal solution for encircling the prey is the one closest to the food, and
the other individuals gradually approach the locally optimal individual to encircle the food.
The mathematical model for this stage is as follows:

D =
∣∣∣C·x∗ − xt−1

i

∣∣∣ (19)

xt
i = x∗ − A·D (20)

x∗ is the current optimal solution and xt
i denotes the position of the ith whale in

generation t. A and C are coefficient vectors, which have the following expressions:

A = 2a·r − a (21)

C = 2·r (22)
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where r is a random number uniformly distributed on [0, 1] and α is the convergence factor,
whose expression is as follows:

a = 2 − 2t
Tmax

(23)

where t is the current number of iterations, and Tmax is the maximum number of iterations.

3.2. Subsection Bubble Attacks

There are two attack mechanisms that occur during bubble net predation—the constric-
tive encirclement mechanism and the spiral updating position. The constriction enclosure
mechanism is encircling predation, which is achieved by lowering the α value. Now, we
can assume that the probability of both is 0.5. The mathematical model for this stage is
as follows:

xt
i = x∗ − A·

∣∣∣C·x∗ − xt−1
i

∣∣∣(p < 0.5) (24)

xt
i = x∗ − A·

∣∣∣C·x∗ − xt−1
i

∣∣∣·ebl ·cos (2πl)(p ≥ 0.5) (25)

p is a random number on [0, 1], obeying a uniform distribution; b is a constant
coefficient; and l is a random number between [0, 1].

3.3. Random Search

Referring to the whale at this point, A has a value greater than 1 or less than −1, and
the search agent’s position in the exploration phase will be updated here based on the
randomly selected search agent, not on the optimal search agent so far [13].

Xt+1 = xrand − A·Drand (26)

Drand = |C·xrand − xt| (27)

where xrand denotes the coordinates of any whale.

3.4. WOA Pseudo-Code

In summary, the pseudo-code of the IWOA part of the algorithm flow is shown in
Algorithm 1.

Algorithm 1 WOA pseudo-code

Input: initialized parameters
Output: optimal solution

01: Set the population size N and the maximum number of iterations T
02: Initialize the population and calculate the fitness value for each individual to determine the
best individual x∗
03: While (t < T),
04: For each search agent,
05: Update, a, A, C, l, p
06: If p < 0.5,
07: If |A < 1|,
08: Use Equation (19) to update the position of the current search agent
09: Else,
10: Use Equation (25) to update the position of the current search agent
11: End If
12: Else,
13: Use Equation (24) to update the position of the current search agent
14: End If
15: End For
16: Check if any search agent goes beyond the search and amend it
17: Calculate the fitness of each search agent
18: update x∗
19: t = t + 1
20: End While
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4. Improving the Whale Optimization Algorithm

This section is organized with subheadings and provides a concise description of the
experimental results, their interpretation, and the conclusions drawn from the experiments.

The WOA [14] features a straightforward structure with minimal parameters to adjust,
making it suitable for both continuous and discrete optimization problems. However, in
some complex high-dimensional scenarios—particularly those involving spatially intricate
and multi-peaked landscapes—the WOA’s convergence can be slow. Even after numerous
iterations, it may still succumb to a local optimum. In this paper, we propose an IWOA.
The IWOA enhances the original algorithm by incorporating reverse learning to increase
the diversity of the initial population, transitioning the convergence factor from a linear to
a nonlinear decrease, and integrating a random number generation mechanism into the
iterative process to balance the algorithm’s global search and local development capabilities.
The coordination of global search and local development is a key feature of the IWOA [15].
The IWOA flowchart is shown in Figure 4.
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4.1. Reverse Learning Initialization

Inverse learning is a commonly used global optimization strategy that is currently
proven and applied in many swarm intelligence algorithms [16]. The idea of reverse
learning is to use the current solution and its inverse solution to improve the search
efficiency. In the study, it is assumed that the dimension of the search space is D; the
population size is N; and the upper and lower bounds of the search space are, respectively,
a and b. The initial population is X, where each individual is xij, and the inverse solution
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of the population is X′, where each individual of the initial population is x′ij. The formula
is as follows:

x′ij = l
(
aj + bj − xij

)
(28)

l = (a2 − 1)·rrand + 1(−2 < rrand < −1) (29)

where l is the reverse learning factor, where [0, 2] is the random number.

X = SelectBest
(
X, X′) (30)

At this point, X is the population after calculating the fitness update.

4.2. Nonlinear Convergence Factors

In the WOA, a is the convergence factor [17], which decreases linearly from 2 to 0, as
formulated in Equation (19). At a approaching 2, due to the complexity of the space, the
step size of its searching agent decreases rapidly as a result, which makes the exploration
range of the global searching phase shrink rapidly, resulting in missing some potential
globally optimal regions. The convergence of a in the algorithm from global search to local
search can also lead to a premature shift from global search to local search, resulting in local
optimums. The convergence of the algorithm from global search to local search can also
involve a premature shift, resulting in local optimum. The algorithm converges to a local
optimum as a approaches 0. The linearly decreasing convergence property slows down the
change in its value, making the step size of the local search less significant and weakening
the ability to search around the local optimal solution. To address the above issues, this
paper proposes a nonlinear convergence factor with the following specific formula:

anonlinear = α +
1 − β·(t/Tmax)

1 − γ·(t/Tmax)
(31)

In order to ensure that the t = 0 time anonlinear is close to 2, at t = Tmax time, anonlinear
is close to 0, and α = 1, The β = 0.5, and γ = 50. As a result, there is a smaller value of t
in the early stages when the need to decline is slow, with little change in the numerator
denominator, which results in anonlinear having less variation in the early stage and the
global search capability is improved. In the middle stage, the algorithm’s ability to balance
between global and local search is improved because the convergence factor varies nonlin-
early. In the late stage, when fast descent is required, a larger value of t makes the anonlinear
rapid descent in the later stages and enhances the local exploitation capability.

4.3. Random Number Generation Mechanism

In population intelligence algorithms, it is common to generate random numbers
to improve the algorithm’s global and local search capabilities [18]. In this paper, the
random number generation mechanism is used to optimize the algorithm during individual
initialization and position updates. During individual initialization, the random number
p is used to determine the prey action to be selected when the individual is updated. For
position updates, the random number r1 is used to determine the predator action to be
selected during the individual update. The random number r2 and parameters A and C
are shown in Equations (21) and (22); the index of the individual is selected by the random
number. For the calculation of the nonlinear convergence factor, the random number rrand
ensures that l has randomness, as shown in Equation (28), so that different spiral trajectories
can be produced and the algorithm can avoid falling into a local optimum.

4.4. Pseudo-Code

In summary, the pseudo-code of the IWOA part of the algorithm flow is shown in
Algorithm 2.
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Algorithm 2 WOA pseudo-code

Input: initialized parameters
Output: optimal solution

01: Set the population size N and the maximum number of iterations T
02: Initialize the population by using Equations (28)–(30) and calculate fitness for each individual
to determine the best individual x∗
03: While t (t < T),
04: For each search agent,
05: Update a, l, A, C, P
06: Modify the position of the current search agent to ensure it is within bounds
07: Update a using Equation (31)
08: Generate p for current agent
09: For each dimension j = 1 to dim
10: Generate random values r1 = rand(), r2 = rand()
11: If p < 0.5,
12: If |A < 1|,
13: Use Equation (19) to update the position of the current search agent
14: Else,
15: Use Equation (25) to update the position of the current search agent
16: End If
17: Else,
18: Use Equation (24) to update the position of the current search agent
19: End If
20: End For
21: Check if any search agent goes beyond the bounds and amend it using constrains
22: Calculate the fitness of each search agent
23: Update x∗
24: t = t + 1
25: End While

As shown in pseudo-code table line 02, the reverse learning mechanism is incorporated
during the initialization phase. By generating new candidate solutions across the solution
space via reverse learning, this mechanism effectively broadens the initial population’s cov-
erage, enhancing diversity and reducing the risk of early convergence to local optimum. In
code table line 07, the second enhancement focuses on adjusting the convergence behavior
of vector a. By optimizing the nonlinear convergence factor, the search strategy transitions
from exploration to exploitation, enabling the algorithm to converge more rapidly towards
known optimal solutions. Code table lines 08–10 illustrate the third improvement, namely
the inclusion of a random number generation mechanism. This mechanism independently
generates a random value p in each iteration and applies independent random variables to
each dimension within the inner loop, increasing the probability of discovering globally
optimal solutions and reducing early convergence risks. Finally, as shown in code table
line 21, rather than confining search agents to the boundary when they exceed it, this study
introduces a constraint-handling strategy. For individuals that surpass the boundary, a
random position near the boundary is assigned, allowing search agents to explore the
boundary region, which increases the likelihood of finding improved solutions.

5. Simulation Verification and Result Analysis

In this study, the 3D space is planned as a 100 × 100 × 100 grid, and 30 sittings of
peaks are randomly generated, as shown in Figure 5.

No-fly zones are also planned in space, which are non-flyable cylinders with base
coordinates and radii, as shown in Table 1.
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Table 1. No-fly zone information.

Threat Zone Center of the Circle Radius

Cylinder 1 (25,25) 16
Cylinder 2 (75,60) 5

5.1. Simulation Results

As mentioned earlier, the whale optimization algorithm was modified to study UAV
trajectories. Both algorithms used the same start and end points in a 3D Cartesian coordinate
system; the value of z is set as the height of the surface on which the given starting point
or ending point lies plus ten. The computation was set to three times, the population size
was set to 80, and each computation was iterated 500 times for a total of six experiments.
The performance information of the two algorithms for six test cases is shown in Table 2;
the simulation results are shown in Figure 6; and the convergence results are shown in
Figure 7.

The IWOA employs a reverse learning strategy during the initialization phase to
generate a set of solutions relative to the initial solution. This approach effectively broadens
the distribution of solutions and enhances the algorithm’s exploration capabilities, allowing
it to achieve a better balance between global and local search throughout the optimization
process. The accompanying figure illustrates that the IWOA curve declines more rapidly
and smoothly, indicating that the algorithm quickly approaches the optimal solution in
the early stages, while maintaining stable convergence in the later stages. In contrast, the
traditional WOA tends to focus more on exploration during the initial phase and shifts
to exploitation later. However, it sometimes loses the ability to adequately explore the
local optimum. This is evident from the figure, which shows that the WOA curve declines
more slowly and exhibits significant fluctuations around 150 iterations, suggesting that the
algorithm may become trapped in local optimum.
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Figure 7. (1) Fitness curves for group 1 experiments (corresponding to Figure 6(a1,b1)); (2) Fitness
curves for group 2 experiments (corresponding to Figure 6(a2,b2)); (3) Fitness curves for group 3 exper-
iments (corresponding to Figure 6(a3,b3)); (4) Fitness curves for group 4 experiments (corresponding
to Figure 6(a4,b4)); (5) Fitness curves for group 5 experiments (corresponding to Figure 6(a5,b5));
(6) Fitness curves for group 6 experiments (corresponding to Figure 6(a6,b6)).

5.2. Results Analysis

The simulation results of both algorithms in a unified environment are presented in
Figure 6. When addressing the 3D trajectory planning problem, both algorithms success-
fully plan smooth trajectories between the starting and ending points, effectively avoiding
collisions with mountains and no-fly zones. From the front view in Figure 6(a1–a6), it is
evident that the IWOA selects a shorter route to circumvent the mountain, resulting in
a more efficient trajectory. Additionally, the top view in Figure 6(b1–b6) shows that the
IWOA generates a smoother path while avoiding the mountain and no-fly zones, which
significantly enhances the UAV’s flight safety. This improvement can be attributed to the
WOA’s tendency to enter the local search too early, leading to local optimum. Moreover,



Symmetry 2024, 16, 1561 15 of 18

the data in Table 2 indicate that the IWOA improves the fitness value by approximately
7.00%, reduces the optimal distance by about 10.05%, and decreases the standard deviation
by roughly 28.73% compared to the WOA. The relevant data are shown in Table 2.

Table 2. Algorithm performance information.

Number

Location Algorithm

Start End
WOA IWOA

Optimal
Fitness

Optimal
Distance Variance Optimal

Fitness
Optimal
Distance Variance

1 (35, 2, 10.69) (75, 80, 38.48) 87.37 129.02 99.89 44.84 99.46 42.05
2 (12,10,75.54) (65, 80, 57.47) 70.28 99.74 81.24 70.02 97.63 66.67
3 (5, 5, 19.71) (90, 90, 144.64) 168.09 194.49 123.47 162.01 190.27 100.08
4 (60, 95, 11.20) (95, 10, 42.75) 92.02 149.80 64.49 88.48 135.07 41.39
5 (40, 1, 10.07) (99, 80, 33.07) 387.3 176.39 125.78 369.6 163.68 95.53
6 (1, 1, 11.20) (90, 70, 35.14) 532.29 295.43 197.11 508.75 253.71 147.39

A comprehensive analysis reveals that the incorporation of improved methods—such
as reverse learning, a nonlinear convergence factor, and a random number generation
mechanism—effectively optimizes the algorithm. The IWOA demonstrates enhanced global
and local search capabilities, allowing it to achieve lower total penalties, shorter paths,
and smoother trajectories in three-dimensional trajectory planning problems compared to
the WOA.

Four common optimization algorithms were selected—PSO: Particle Swarm Optimiza-
tion [19]; SWO: spider wasp optimization algorithm; GRO: Gold rush optimizer [20]; and
KOA: Keplerian Optimization Algorithm [21]—to verify the performance of the IWOA.
In the comparison test, the populations of the IWO algorithm and WOA proposed in this
paper, along with the remaining six algorithms, are set to 50, and the maximum number of
iterations is set to 100; the test results are shown in Figures 8 and 9.
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In this paper, the time complexity and space complexity of the algorithms are com-
puted using the tic, toc, and memory functions. The population is set to 30 and the
maximum number of iterations is 100. The data obtained under the same conditions are
shown in the table below. From Table 3, it is clear that the IWOA takes the least amount of
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time to compute, followed by the KOA, PSO, GRO, and ACO. The KOA takes up the most
storage space, particularly the ACO, GRO, PSO, and IWOA.
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Table 3. Algorithm complexity data information.

Algorithm Time Use (S) Before
Size After Size

Before
Execution

(Byte)

After
Execution

(Byte)

ACO 0.38066 1 × 16 1 × 15 38 36
PSO 0.074246 1 × 16 1 × 15 40 38
KOA 0.060862 1 × 16 1 × 15 38 36
GRO 0.098793 1 × 16 1 × 15 38 36

IWOA 0.029181 1 × 16 1 × 15 38 36

6. Conclusions

In this paper, we introduce the IWOA, an enhancement of the conventional WOA
that incorporates inverse learning, nonlinear convergence factors, and a random number
generation mechanism. Inverse learning functions as an effective initialization and search
strategy; it generates both regular solutions and their corresponding inverse solutions. This
dual-solution generation method enables the initial and inverse solutions to cover distinct
regions of the search space, as the inverse solutions are created according to specific rules
that differentiate them from regular solutions in terms of value and position. Consequently,
this approach mitigates the problem of over-concentration in solution distribution and
assists the algorithm in avoiding local optimum.

Traditional optimization algorithms typically use linear convergence factors to manage
the transition between the exploration and exploitation phases. In contrast, nonlinear con-
vergence strategies offer a smoother and more flexible exploration and exploitation process
through more sophisticated control mechanisms. For instance, a nonlinear convergence
factor may adjust its value based on a complex function related to the iteration number or
the current solution quality, allowing the algorithm to adaptively modify the search step
size compared to a simple linear decrease. Additionally, random number generation plays a
crucial role in optimization algorithms by enhancing diversity and preventing convergence
to local optima.
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With these enhancements, the inverse whale optimization algorithm (IWOA) sig-
nificantly outperforms traditional methods such as the conventional whale optimization
algorithm (WOA), Particle Swarm Optimization (PSO), and other similar algorithms. As
a result, the IWOA is particularly well suited for UAV trajectory planning under various
constraints in simulation experiments. The improvements effectively address the issue
of local optimum, enhance the algorithm’s capability to manage individual boundary
constraints, and ensure its applicability across a range of optimization problems. Future
research will focus on exploring additional influencing factors to enrich the model and will
also focus on UAV trajectory planning in dynamic environments.
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