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Abstract: Special functions have been widely used in fractional calculus, particularly for addressing
the symmetric behavior of the function. This paper provides improved delta Mittag–Leffler and
exponential functions to establish new types of fractional difference operators in the setting of
Riemann–Liouville and Liouville–Caputo. We give some properties of these discrete functions and
use them as the kernel of the new fractional operators. In detail, we propose the construction of
the new fractional sums and differences. We also find the Laplace transform of them. Finally, the
relationship between the Riemann–Liouville and Liouville–Caputo operators are examined to verify
the feasibility and effectiveness of the new fractional operators.
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1. Introduction

The discrete fractional operator theory in fractional calculus settings plays an impor-
tant role in solving difference equations. Fractional difference models are a core issue in
mathematical and numerical analysis. It is also widely applied in many fields, including
dynamical systems, artificial intelligence, computer communication, compressed sensing
and so on, e.g., see [1–3].

In particular, mathematical and physical models of continuous and discrete frac-
tional calculus have become important tools for analyzing differential and difference
equations [4–7]. However, many researchers have proposed and studied the existence and
uniqueness of discrete fractional models in different systems [8–12].

Various fractional operators have been used worldwide to study mathematical mod-
els in the presence of continuous fractional differential equations, for example [13–16],
and discrete fractional difference equations [17–20] for nabla and delta types in the sense
of Riemann–Liouville (RL), Liouville–Caputo (LC), Caputo–Fabrizio (CF) and Attangana–
Baleanu (AB) operators.

Discrete fractional calculus has several correlations with special functions. An impor-
tant application of discrete fractional calculus in applied mathematics is proving new iden-
tities and relationships between special functions. Specifically, enormous efforts have been
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made to accurately calculate special functions, which can be challenging for researchers
who model real-world problems in discrete times. A function with particularly strong ties
to discrete fractional calculus is the discrete Mittag–Leffler (ML) function—see, e.g., [21–25].
Furthermore, different authors have developed the problem of discrete fractional calculus
in the time scale Z to the time scale hZ, see [26–28].

This study proposes discrete ∆h-CF and ∆h-AB fractional operators, including delta
exponential and ML functions, in their kernels. The key contributions of the proposed
research article are summarized as follows:

• A new delta exponential and ML function with some special cases are proposed in the
context of h-discrete fractional calculus.

• Some properties of the proposed delta ML functions have been addressed by utilizing
Laplace transformations and sum/difference rules.

• The concept of the ∆h-CF and ∆h-AB fractional sums and differences are introduced
based on the new delta exponential and Mittag–Leffler functions.

• In conclusion, some properties of the ∆h-CF and ∆h-AB fractional difference operators
are provided based on the Laplace transformation on the left and right sides.

In addition, the article has the following sections: in Section 2, essential definitions
in discrete fractional calculus and Laplace transformation with some of its properties are
recalled. In Section 3, we formulate the new h-ML functions; we divide this section into
two subsections: ∆h-CF fractional operators in Section 3.1 and ∆h-AB fractional operators
in Section 3.2. Finally, some discussions finish this article in Section 4.

2. Preliminaries

Let α, h > 0. Then, we consider the notations Nξ0,h := ξ0 + hN and ξ,hN := ξ − hN,
for ξ0, ξ ∈ R. Furthermore, let Th := Nh

ξ0;ξ = {ξ0, ξ0 + h, . . . , ξ} such that ξ = ξ0 + kh,
for some k ∈ N. From Definition 2.25 in [1], we recall the definition of ∆h fractional sums
as follows:

(
ξ0

∆−α
h v

)
(τ) =

τ
h−α

∑
ℓ=

ξ0
h

℘α−1,h(τ, σh(ℓ))v(ℓ), τ ∈ Nξ0+α h,h, (1)

where v : Nξ0,h → R, σh(τ) := τ + h and

℘α,h(τ, ℓ) =
(τ − ℓ)

(α)
h

Γ(α + 1)
with (τ − ℓ)

(α)
h =

Γ
(

τ
h − ℓ+ 1

)
Γ
(

τ
h − ℓ+ 1 − α

) , (2)

whenever
Γ( τ

h−ℓ+1)
Γ( τ

h−ℓ+1−α)
is well-defined for τ, α ∈ R.

Lemma 1 (Theorem 2.50 in [1]). If v is defined on Nξ0,h, then for α > 0, it can be expressed that

(
ξ0

∆−α
h ∆h v

)
(τ) =

(
∆h ξ0 ∆−α

h v
)
(τ)−

(τ − ξ0)
(α−1)
h

Γ(α)
v(ξ0),

for τ ∈ Nξ0+αh,h.

Remark 1. For each α ∈ R and h > 0, we have

(i) ∆h

(
τ
(α)
h

)
= α τ

(α−1)
h .

(ii) ξ0+µh∆−α
h (τ − ξ0)

(µ)
h = Γ(µ+1)

Γ(µ+1+α)
(τ − ξ0)

(α+µ)
h , for α > 0, µ ≥ 0 and τ ∈ Nξ0+(α+µ)h,h.

Lemma 2 ([26,27]). Let α > 0. Then, for τ ∈ Th, we have
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lim
α→0

(
ξ0 ∆−α

h v
)
(τ + αh) = v(τ), lim

α→0

(
h∆−α

ξ v
)
(τ − αh) = v(τ).

The following definitions are given in [26].

Definition 1. For the function v defined on Nξ0,h and ξ,hN, the h-RL fractional difference on the
left side is defined by(

ξ0 ∆α
hv

)
(τ) =

(
∆ı
h ξ0 ∆−(ı−α)

h v
)
(τ), τ ∈ Nξ0+(ı−α)h,h,

and on the right side by(
h∆α

ξ v
)
(τ) = (−1)ı

(
∆ı
h h∆−(ı−α)

ξ v
)
(τ), τ ∈ ξ−(ı−α)h,hN,

where ı = [α] + 1.

Definition 2. For a function v defined on Nξ0,h, the h-LC fractional difference on the left side is
defined by (

LC
ξ0

∆α
hv

)
(τ) =

(
ξ0 ∆−(ı−α)

h ∆ı
hv

)
(τ), τ ∈ Nξ0+(ı−α)h,h,

and on the right side by(
LC
h ∆α

ξ v
)
(τ) =

(
h∆−(ı−α)

ξ (−1)ı∆ı
hv

)
(τ), τ ∈ ξ−(ı−α)h,hN,

where ı = [α] + 1.

The operator of Q is defined by(
Qv

)
(τ) = v(ξ0 + ξ − τ),

and was used in [29,30] to obtain the right sides of fractional sum and difference operators
by knowing the left sides of these operators without conducting their proofs.

Lemma 3 ([26]). Let α, h > 0 and v be defined on Th. Then,

(i)
(

ξ0 ∆−α
h Qv

)
(τ) = Q

(
h∆−α

ξ v
)
(τ) =

(
h∆−α

ξ v
)

v(ξ0 + ξ − τ).

(ii)
(

ξ0 ∆α
hQv

)
(τ) = Q

(
h∆α

ξ v
)
(τ) =

(
h∆α

ξ v
)

v(ξ0 + ξ − τ).

(iii)
(

LC
ξ0

∆α
hQv

)
(τ) = Q

(
LC
h ∆α

ξ v
)
(τ) =

(
LC
h ∆α

ξ v
)

v(ξ0 + ξ − τ).

According to Theorem 2.2 in the monograph [1] and Definition 14 in [26], we can
introduce the following definition of the ∆h-Laplace transformation.

Definition 3. For the function v defined on Nξ0,h, the ∆h-Laplace transformation of v is defined by

Lξ0,h{v(τ)}(s) =
∫ ∞

ξ0

h ẽ⊖s(τ, ξ0)

h s + 1
v(τ)∆hτ = h

∞

∑
k=0

v(ξ0 + kh)
(h s + 1)k+1 ,

where h ẽ⊖s is defined later in Section 3.1.

Definition 4. The ∆h-convolution of two functions v and g defined on Nξ0,h is given by
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(
v ∗ g

)
(τ) =

∫ τ

ξ0

g(τ − σ(s) + ξ0))v(s)∆hs = h
∞

∑
k=0

v(kh)g(τ − σ(kh) + ξ0)). (3)

Furthermore, the Laplace convolution of these functions can be expressed by

Lξ0,h
{
(v ∗ g)(τ)

}
(s) = L{v(τ)}(s)L{g(τ)}(s), (4)

for s ∈ R and τ ∈ Nξ0,h.

Lemma 4. For v on Nξ0,h, we have

Lξ0,h{∆hv(τ)}(s) = sL{v(τ)}(s)− v(ξ0).

Lemma 5 ([1]). Let ξ0, h ≥ 0 v and α ∈ R− {−1,−2, . . .}. Then, for
∣∣h s + 1

∣∣ < 1, it can be
expressed that

Lξ0+hα,h{ hH̃α(τ, ξ0)}(s) =
(h s + 1)α

sα+1 ,

where hH̃α(τ, ξ0) =
(τ−ξ0)

(α)
h

Γ(α+1) .

Lemma 6 ([1]). Let M ∈ N0 and v : Nξ0−Mh,h → R and g : Nξ0,h → R be two functions of
exponential order ℓ > 0. Then, for

∣∣h s + 1
∣∣ > ℓ, it can be expressed that

Lξ0−Mhα,h{v(τ)}(s) = 1
(h s + 1)M Lξ0,h{v(τ)}(s) + h

M−1

∑
j=0

v(ξ0 + (j − M)h)

(h s + 1)j+1 , (5)

and

Lξ0+Mhα,h{g(τ)}(s) = (h s + 1)MLξ0,h{g(τ)}(s)− h
M−1

∑
j=0

(h s + 1)M−j−1g(ξ0 + jh). (6)

3. Delta ML Functions and Related Operators

In this part of our article, we state the delta h-ML function and derive the CF and AB
fractional differences and sums including delta h-ML function in their kernel.

Definition 5. For any complex numbers α, µ γ, λ with () > 0 and
∣∣λhα

∣∣ < 1, we express the delta
h-ML function as follows:

hEγ
(α,µ)(λ, τ) =

∞

∑
ı=0

λı (τ + ı(α − 1) + (µ − 1)h)(ıα+µ−1)
h (γ)ı

Γ(α ı + µ)
. (7)

From (7), the following special cases can be observed:

• If γ = 1, then (7) becomes

hE(α,µ)(λ, τ) =
∞

∑
ı=0

λı (τ + ı(α − 1)h+ (µ − 1)h)(ıα+µ−1)
h

Γ(α τ + µ)
. (8)

• If γ = µ = 1, then (7) becomes

hE(α)(λ, τ) =
∞

∑
ı=0

λı (τ + ı(α − 1)h)(ıα)h

Γ(α ı + 1)
. (9)
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For the main concepts about the discrete Mittag–Liffler functions and their properties,
we refer the reader to [21–27].

Remark 2. One of the motivations make us to work on hZ is that a smaller h ∈ (0, 1) allows us to
use a larger interval of λ. For example, if h = 1, we need 0 < α < 1

2 to guarantee convergence as
λ = − 1

1−α . However, as h → 0, we can attain that the series will be convergent for 0 < α < 1.

3.1. Delta Fractional Differences with Exponential Kernels

Let us denote the ∆h exponential kernel by

h ẽλ(τ, σ(ℓ)) = (1 + λh)
τ−σ(ℓ)

h =

(
1 − α − αh

1 − α

) τ−σ(r)
h

,

where λ = − α
1−α with |λhα| < 1. In addition, for ⊖s = 1+h s

s , it follows that

h ẽ⊖s(τ, ξ0) =

(
1

1 + h s

) τ−ξ0
h

, τ ∈ Nξ0,h. (10)

Definition 6. For 0 < α < 1 and with v defined on Nξ0,h in the left case and ξ,hN in the right case.
Let D(α) be the normalization, as defined in [26]. Then, we define the following:

(a) The ∆h-CF of Liouville–Caputo type on the left side by

(
CFLC
ξ0

∆α
hv

)
(τ) =

D(α)

1 − α

τ
h−1

∑
ℓ=

ξ0
h

h(∆hv)(ℓh)(1 + λh)
τ−σ(r)

h

=
D(α)

1 − α

τ
h−1

∑
ℓ=

ξ0
h

h(∆hv)(ℓh)
(

1 − α − αh

1 − α

) τ−σ(r)
h

, (11)

for τ ∈ Nξ0+h,h.
(b) The ∆h-CF of Liouville–Caputo type on the right side by

(
CFLC
h ∆α

ξ v
)
(τ) =

D(α)

1 − α

ξ
h

∑
ℓ= τ

h+1
h(−∇hv)(ℓh)(1 + λh)

ℓh−σ(τ)
h

=
D(α)

1 − α

ξ
h

∑
ℓ= τ

h+1
h(−∇hv)(ℓh)

(
1 − α − αh

1 − α

) ℓh−σ(τ)
h

, (12)

for τ ∈ ξ−h,hN.
(c) The ∆h-CF of Riemann–Liouville type on the left side by

(
CFRL
ξ0

∆α
hv

)
(τ) =

D(α)

1 − α
∆h

τ
h−1

∑
ℓ=

ξ0
h

hv(ℓh)(1 + λh)
ℓh−σ(τ)

h

=
D(α)

1 − α
∆h

τ
h−1

∑
ℓ=

ξ0
h

hv(ℓh)
(

1 − α − αh

1 − α

) ℓh−σ(τ)
h

, (13)

for τ ∈ Nξ0+h,h.
(d) The ∆h-CF of Riemann–Liouville type on the right side as follows:
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(
CFRL
h ∆α

ξ v
)
(τ) =

D(α)

1 − α
(−∇h)

ξ
h

∑
ℓ= τ

h+1
hv(ℓh)(1 + λh)

ℓh−σ(τ)
h

=
D(α)

1 − α
(−∇h)

ξ
h

∑
ℓ= τ

h+1
hv(ℓh)

(
1 − α − αh

1 − α

) ℓh−σ(τ)
h

, (14)

for τ ∈ ξ−h,hN.

Remark 3. Considering the above definition, we can note the following:

(i) As α → 0, we have

lim
α→0

(
CFLC
ξ0

∆α
hv

)
(τ) → v(τ)− v(ξ0), and lim

α→0

(
CFLC
h ∆α

ξ v
)
(τ) → v(τ)− v(ξ),

lim
α→0

(
CFRL
ξ0

∆α
hv

)
(τ) → v(τ), and lim

α→0

(
CFRL
h ∆α

ξ v
)
(τ) → v(τ).

(ii) As α → 1, we have

lim
α→1

(
CFLC
ξ0

∆α
hv

)
(τ) → ∆v(τ), and lim

α→1

(
CFLC
h ∆α

ξ v
)
(τ) → −∇v(τ),

lim
α→1

(
CFRL
ξ0

∆α
hv

)
(τ) → ∆v(τ), and lim

α→1

(
CFRL
h ∆α

ξ v
)
(τ) → −∇v(τ).

Remark 4. The expression of Q can be applied to the above operators to have

(i)
(

Q CFLC
ξ0

∆α
hv

)
(τ) =

(
CFLC
h ∆α

ξ Qv
)
(τ),

(ii)
(

Q CFRL
ξ0

∆α
hv

)
(τ) =

(
CFRL
h ∆α

ξ Qv
)
(τ).

Consider the difference equation(
CFRL
ξ0

∆α
hv

)
(τ) = g(τ),

or, equivalently,
D(α)

1 − α
∆h

(
v ∗ h ẽλ(τ, ξ0)

)
= g(τ). (15)

By applying Lξ0,h on both sides of (15) and considering (4), Lemma 4 and

Lξ0,h{h ẽλ(τ, ξ0)}(s) =
1

s − λ
=

(1 − α)

(1 − α)s + α
,

we obtain
s D(α)

(1 − α)s + α
V(s) = G(s), (16)

where G(s) = Lξ0,h{g(τ)}(s) and V(s) = Lξ0,h{v(τ)}. This leads to

V(s) =
1 − α

D(α)
G(s) +

α

D(α)

1
s

G(s).

Apply L−1
ξ0,h on both sides to reach

v(τ) =
1 − α

D(α)
g(τ) +

α

D(α)

τ
h−1

∑
k= ξ0

h

hg(kh).

This helps us introduce the following CF fractional definitions as follows:



Symmetry 2024, 16, 1562 7 of 12

Definition 7. For α ∈ (0, 1) and v defined on Th, we express the ∆h-CF fractional sum in the left
side case by

(
CF
ξ0

∆−α
h v

)
(τ) =

1 − α

D(α)
v(τ) +

α

D(α)

τ
h−1

∑
k= ξ0

h

hv(kh),

and in the right side case by

(
CF
h ∆−α

ξ v
)
(τ) =

1 − α

D(α)
v(τ) +

α

D(α)

ξ
h

∑
k= τ

h+1
hv(kh).

It can be easily shown that
(

CF
ξ0

∆−α
h Qv

)
(τ) = Q

(
CF
h ∆−α

ξ v
)
(τ). Furthermore, we have(

CF
h ∆−α

ξ
CFRL
h ∆α

ξ v
)
(τ) = v(τ).

Conversely, consider the difference equation

(
CF
ξ0

∆−α
h v

)
(τ) =

1 − α

D(α)
v(τ) +

α

D(α)

τ
h−1

∑
k= ξ0

h

hv(kh) = g(τ).

Applying Lξ0,h on both sides to obtain

1 − α

D(α)
V(s) +

α

s D(α)
V(s) = G(s).

leads to

V(s) =
s D(α)

(1 − α)s + α
G(s)

by
=

(16)
Lξ0,h

{(
CFRL
ξ0

∆α
hg

)
(τ)

}
(s)

= Lξ0,h

{(
CFRL
ξ0

∆α
h

CF
ξ0

∆−α
h v

)
(τ)

}
(s).

It follows that (
CFRL
ξ0

∆α
h

CF
ξ0

∆−α
h v

)
(τ) = v(τ). (17)

By the same method, or by applying the operator of Q, we can show that(
CF
h ∆−α

ξ
CFRL
h ∆α

ξ v
)
(τ) = v(τ). (18)

It is always of interest to make a connection between ∆h-CF fractional differences of
RL and LC types. For this reason, the following theorem will be raised.

Theorem 1. For the function v on Nξ0,h, we have the following relationships:

(i)
(

CFLC
ξ0

∆α
hv

)
(τ) =

(
CFRL
ξ0

∆α
hv

)
(τ)− D(α)

1−α v(ξ0)
(

1−α−αh
1−α

) τ−ξ0
h ,

(ii)
(

CFLC
h ∆α

ξ v
)
(τ) =

(
CFRL
h ∆α

ξ v
)
(τ)− D(α)

1−α v(ξ)
(

1−α−αh
1−α

) ξ−τ
h .

Proof. Having (16), we see that

Lξ0,h

{
CFRL
ξ0

∆α
hv(τ)

}
(s) =

s D(α)

(1 − α)s + α
V(s). (19)
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By applying Lξ0,h on (11) with the use of (19), we obtain

Lξ0,h

{
CFLC
ξ0

∆α
hv(τ)

}
(s) =

D(α)

1 − α
Lξ0,h

{
(∆v(τ)) ∗ h ẽλ(τ, ξ0)

}
(s)

=
D(α)

1 − α
Lξ0,h{∆v(τ)}(s) · Lξ0,h{ h ẽλ(τ, ξ0)}(s)

=
D(α)

1 − α

sV(s)
s − α

− D(α)

1 − α

(1 − α)

(1 − α)s + α
v(ξ0)

= Lξ0,h

{(
CFRL
ξ0

∆α
hv

)
(τ)

}
(s)− D(α)

1 − α

(1 − α)

(1 − α)s + α
v(ξ0). (20)

Applying L−1
ξ0,h on both sides of (20), we obtain (i) as desired. The proof of (ii) will be

obtained by applying the operator of Q on the first item (i).

3.2. Delta Fractional Differences with ML Kernels

This subsection is dedicated to introduce the ∆h-AB fractional differences and sums,
and some of their properties. We start by introducing the ∆h-AB fractional difference operators.

Definition 8. For the function v on Th and 0 < α ≤ 1 with |λhα| < 1, we express the ∆h-AB
fractional difference of Liouville–Caputo type on the left side by

(
ABLC
ξ0

∆α
hv

)
(τ) =

D(α)

1 − α

τ
h−1

∑
ℓ=

ξ0
h

h(∆hv)(ℓh) hE(α)(λ, τ − σ(ℓh))

=
D(α)

1 − α

[
∆hv(τ) ∗ hE(α)(λ, τ − ξ0)

]
, (21)

and of Riemann–Liouville type on the left side by

(
ABRL
ξ0

∆α
hv

)
(τ) =

D(α)

1 − α
∆h

τ
h−1

∑
ℓ=

ξ0
h

hv(ℓh) hE(α)(λ, τ − σ(ℓh))

=
D(α)

1 − α
∆h

[
v(τ) ∗ hE(α)(λ, τ − ξ0)

]
. (22)

Definition 9. For the function v on Th and 0 < α ≤ 1 with |λhα| < 1, we express the ∆h-AB
fractional difference of Liouville–Caputo type on the right side by

(
ABLC
h ∆α

ξ v
)
(τ) =

D(α)

1 − α

ξ
h

∑
ℓ= τ

h+1
h(−∇hv)(ℓh) hE(α)(λ, σ(ℓh)− τ), (23)

and of Riemann–Liouville type on the right side by

(
ABRL
h ∆α

ξ v
)
(τ) =

D(α)

1 − α
(−∇h)

ξ
h

∑
ℓ= τ

h+1
hv(ℓh) hE(α)(λ, σ(ℓh)− τ). (24)

To find the Laplace of
(

ξ0 ∆−α
h v

)
(τ + (α − 1)h), we need the following lemma on

h-ML functions.

Lemma 7. For 0 < α ≤ 1, we have

Lξ0,h

{
hE(α)(λ, τ − ξ0)

}
(s) =

sα−1(h s + 1)1−α

sα(h s + 1)1−α − λ
,
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provided that
∣∣λ(h s + 1)α−1

∣∣ < sα.

Proof. From Definitions 3 and 5, and making use of Lemmas 6 and 7, we see that

Lξ0,h

{
hE(α)(λ, τ − ξ0)

}
(s) =

∞

∑
ı=0

λıLξ0,h

{
(τ − ξ0 + ı(α − 1)h)(αı)

h

Γ(αı + 1)

}
(s)

=
∞

∑
ı=0

λı

[
1

(h s + 1)ı Lξ0+ıh,h

{
(τ − ξ0 + ı(α − 1)h)(αı)

h

Γ(αı + 1)

}
(s)

+
h

(h s + 1)ıΓ(αı + 1)

ı−1

∑
j=0

(h s + 1)ı−j−1((j + ı(α − 1))h)(αı)
h

]

=
∞

∑
ı=0

λı

[
1

(h s + 1)ı
(h s + 1)αı

sαı+1

+ hαı+1
ı−1

∑
j=0

(h s + 1)−j−1 Γ(j + ı(α − 1) + 1)
Γ(j − ı + 1)

]

=
∞

∑
ı=0

λı

[
1

(h s + 1)ı
(h s + 1)αı

sαı+1 + 0

]
=

1
s

∞

∑
ı=0

(
λ(h s + 1)α−1

sα

)ı

.

This will be convergent if
∣∣λ(h s + 1)α−1

∣∣ < sα. Therefore, by the test of geometric series,
we obtain

Lξ0,h

{
hE(α)(λ, τ − ξ0)

}
(s) =

1
s

1

1 − λ(h s+1)α−1

sα

=
sα−1(h s + 1)1−α

sα(h s + 1)1−α − λ
,

which completes the proof.

Lemma 8. For each α > 0, it can be

Lξ0,h

{(
ξ0 ∆−α

h v
)
(τ + (α − 1)h)

}
(s) =

(h s + 1)α−1

sα
V(s),

where V(s) = Lξ0,h
{

v
}
(s).

Proof. In view of (1) and (3), we have

(
ξ0 ∆−α

h v
)
(τ + (α − 1)h) =

1
Γ(α)

τ
h−1

∑
k= ξ0

h

(τ − σ(kh))(α−1)
h v(kh)h

=

τ
h−1

∑
k= ξ0

h

hH̃α−1(τ + (α − 1)h, σ(kh))v(kh)h

= h

τ
h−1

∑
k= ξ0

h

v(kh) hH̃α−1(τ + (α − 1)h− σ(kh) + ξ0, ξ0)

=
(
v ∗ hH̃α−1(τ, ξ0)

)
(τ + (α − 1)h),

where hH̃α−1(τ, ξ0) is as defined in Lemma 5. Therefore, by considering Lemma 5, we obtain
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Lξ0,h
{(

ξ0 ∆−α
h v

)
(τ + (α − 1)h)

}
(s) = Lξ0,h{v(τ)}(s) · Lξ0,h

{
hH̃α−1(τ + (α − 1)h, ξ0)

}
(s)

= V(s)
(h s + 1)α−1

sα
,

which ends the proof.

In association to
(

ABRL
ξ0

∆α
hu

)
(τ) = v(τ), we can formulate the ∆h-AB fractional sum

by considering the difference equation(
ABRL
ξ0

∆α
hg

)
(τ) = v(τ). (25)

To solve (25), we can apply Lξ0,h on both sides and apply (22) and Lemma 7 to obtain

D(α)

1 − α

sα−1(h s + 1)1−α

sα(h s + 1)1−α − λ
G(s) = V(s). (26)

From this, we conclude that

G(s) =
1 − α

D(α)
V(s) +

α

D(α)

1
sα(h s + 1)1−α

V(s).

Then, we apply L−1
ξ0,h and use Lemma 8 to deduce that

g(τ) =
1 − α

D(α)
v(τ) +

α

D(α)

(
ξ0 ∆−α

h v
)
(τ + (α − 1)h). (27)

Conversely, if we solve
(

AB
ξ0

∆−α
h g

)
(τ) = v(τ), we find out that g(τ) =

(
ABRL
ξ0

∆α
hv

)
(τ).

Depending on (27), we can define the ∆h-AB fractional sums on the left and right sides
as follows.

Definition 10. Let h > 0 and 0 < α < 1. We express the ∆h-AB fractional sum on the left side by(
AB
ξ0

∆−α
h v

)
(τ) =

1 − α

D(α)
v(τ) +

(
ξ0 ∆−α

h v
)
(τ + (α − 1)h), (28)

and on the right side by(
AB
h ∆−α

ξ v
)
(τ) =

1 − α

D(α)
v(τ) +

(
h∆−α

ξ v
)
(τ − (α − 1)h). (29)

It is worth noting that
(

AB
ξ0

∆−α
h Qv

)
(τ) = Q

(
AB
h ∆−α

ξ v
)
(τ). In addition, by considering

the operator of Q, it can be proved that
(

AB
h ∆−α

ξ
ABRL
h ∆α

ξ v
)
(τ) = v(τ).

In the last stage of this section, it is worth making a connection between ∆h-AB
fractional differences of RL and LC types. For this reason, we have the following example.

Example 1. Suppose that v is defined on Nξ0,h. Then, in the conclusion of (21), Lemmas 4 and 7,
we have

Lξ0,h

{(
ABLC
ξ0

∆α
hv

)
(τ)

}
(s) =

D(α)

1 − α

[
(sV(s)− v(ξ0))

sα−1(h s + 1)1−α

sα(h s + 1)1−α − λ

]
=

D(α)

1 − α

sα(h s + 1)1−α

sα(h s + 1)1−α − λ
V(s)− D(α)

1 − α

sα−1(h s + 1)1−α

sα(h s + 1)1−α − λ
v(ξ0).

By applying L−1
ξ0,h on both sides and considering (26), we can conclude that we have the following

relationships:
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(
ABLC
ξ0

∆α
hv

)
(τ) =

(
ABRL
ξ0

∆α
hv

)
(τ)− D(α)

1 − α
v(ξ0) hE(α)(λ, τ − ξ0). (30)

By applying the operator of Q on (30), we can similarly deduce that(
ABLC
h ∆α

ξ v
)
(τ) =

(
ABRL
h ∆α

ξ v
)
(τ)− D(α)

1 − α
v(ξ) hE(α)(λ, ξ − τ).

Remark 5. The application of our theoretical results could not be prepared easily in a simple
example, which is why we have not prepared any application in this paper. For this reason, we refer
the reader to see the recently accepted paper [31], in which the application of our new findings has
been examined in the context of monotonic analysis.

4. Conclusions

This work emphasizes the development of novel special functions named as delta
h-exponential and h-ML functions to address the ∆h-CF and ∆h-AB fractional difference
operators including these functions in their kernels. We aim to reconstruct discrete fractional
operators in the delta background sense. Afterwards, Laplace transformation is performed
on the ∆h-CF and ∆h-AB fractional difference operators to obtain their corresponding
∆h-CF and ∆h-AB fractional sum operators. Relationships between the RL and LC cases
are considered for the ∆h-CF and ∆h-AB fractional difference operators.

It can be noted that there may be some limitations in our study. This study only
introduces one variate delta Mittag–Leffler function. Bivariate discrete Mittag–Leffler
functions [32], higher-order differential equations [33] and monotonicity analysis are also
needed to generalize the above new operators and address future work.
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