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Abstract: Starting from a symmetrical multiple-choice individual, I build a sociophysics model of
decision-making. Reducing the choices to two and interactions to pairs recovers the Ising model from
physics at zero temperature. The associated equilibrium state results from a spontaneous symmetry
breaking, with the whole group sharing a unique choice, which is selected at random. However,
my focus departs from physics, which aims at identifying the true equilibrium state, discarding
any possible impact of the initial conditions, the size of the sample, and the update algorithm used.
Memory of past history is erased. In contrast, I claim that dealing with a social system, the history of
the system must be taken into account in identifying the relevant social equilibrium state, which is
always biased by its history. Accordingly, using Monte Carlo simulations, I explore the spectrum of
non-universal equilibrium states of the Ising model at zero temperature. In particular, I show that
different initial conditions with the same value of the order parameter lead to different equilibrium
states. The same applies for different sizes and different update algorithms. The results indicate
that in the presence of a social network composed of agents sharing different initial opinions, it
is their interactions that lead them to share a unique choice and not their mere membership in
the network. This finding sheds a new light on the emergence of echo chambers, which appear
to be the end of a dynamical process of opinion update and not its beginning with a preferential
attachment. Furthermore, polarization is obtained as a side effect of the random selection of the
respective unanimous choices of the various echo chambers within a social community. The study
points to social media exchange algorithms, which are purely technical levers independent of the
issue and opinions at stake, to tackle polarization by either hindering or accelerating the completion
of symmetry breaking between agents.

Keywords: symmetry breaking; opinion dynamics; echo chambers; sociophysics

1. Introduction

The phenomenon of spontaneous symmetry breaking is key in physics to address the
origin of ordered states of inert matter in bulk [1,2]. In particular, it explains the puzzling
observation that large collections of atoms with short-range interactions succeed to produce
long-range order. Well studied in condensed matter and magnetic systems, the issue was
solved exactly for the benchmark Ising model at two dimensions as a function of a coupling
constant and temperature with zero field [3,4].

In presence of a field and for other dimensions, no exact treatment has been performed
so far. To fill this gap, the mean-field treatment has been and is applied to a large series of
related models [5,6]. While mean-field theory provides a good qualitative description of the
equilibrium state, the associated quantitative values are wrong. Otherwise, renormalization
group techniques yield quite good quantitative results [7]. To obtain precise results requires
the use of numerical simulations, and Monte Carlo algorithms are mostly used [8,9].

The generic character of the Ising model has fostered its wide application to numerous
issues both in physics and outside physics. With respect to social sciences, we published a
paper with Gefen and Shapir in the beginning of the 1980s modeling the phenomenon of
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strike by using an Ising-like model in an external field [10]. In this paper, we called for the
creation of a new field for which we coined the word sociophysics.

In the earlier 1990s, I coauthored with Moscovici a paper using for the first time a
random field Ising model to explain several unsolved observations in group decision mak-
ing [11]. A few years later, I focused on the group decision outcomes of the zero-temperature
case [12]. A large number of papers have since been published in sociophysics using Ising-
like models [13–19]. These works subscribe to the active [20–67] and growing [68–73] field
of sociophysics [74–79].

Here, I build a sociophysics model of decision-making starting from a symmetrical
multiple-choice individual. Reducing the choices to two and adding pair interactions
recovers the Ising model from physics at zero temperature and the above earlier model of
decision-making [11,12].

However, standard studies of Ising-like models ignore the actual dynamics to reach the
equilibrium state, which is aimed to be the absolute one. Even in Monte Carlo simulations
for which the implementation of a dynamics of repeated updates is a prerequisite, the
dynamics is considered as a purely technical means, which must be of no effect on the
associated equilibrium state [80].

In the present work, contrary to the above usual practice, I notice that each social
system sets up a specific framework to monitor the individual updates produced by
interactions. This very fact turns the associated update algorithm and initial conditions to
relevant ingredients to identify the equilibrium state, which in turn is expected to depend
on its history. Therefore, it is of importance to investigate the non-universal aspects of
update dynamics in reaching an equilibrium state.

However, it is worth stressing that, here, equilibrium state refers to the collective state
of a given sample for which no individual shift occurs when applying update rules. That
is different from physics, where usually the equilibrium state refers to the infinite system
associated with the actual sample.

When keeping finite-size samples and using Monte Carlo simulations, I show that
different initial conditions and update schemes produce different equilibrium states. These
equilibrium states display either a full spontaneous symmetry breaking or a fragmented
spontaneous symmetry breaking with the stable coexistence of two opposed domains of
different sizes.

In addition, I compare four types of update schemes, namely the random, sequential,
simultaneous, and checkerboard updates. The results show that different algorithms
produce different equilibrium states yet starting from the same initial sample of agents.

The results shed a new light on the emergence of echo chambers. The well-accepted
definition of an echo chamber being the outcome of a preferential attachment of people
sharing the same opinion is refuted. At odds, echo chambers appear to be the ending of
a dynamics of local updates within an existing social network where agents share initial
different opinions.

It is the existence of a social network bounding a collection of interacting agents which
leads to their alignment on the same choice. Furthermore, polarization is found to be a
direct side effect of the random selection of the respective unanimous choices made in the
various echo chambers present in a given social community.

The findings point to a new purely technical lever to tackle polarization in social media
by implementing algorithms designed at hindering or accelerating the completion of the
symmetry breaking among agents independently of the issue and opinions at stake.

At this point, it is worth stressing that not all social debates fit to symmetrical multiple-
choice individuals. Often, agents are individually committed to a peculiar choice, which
breaks the initial symmetry of some of the agents. External realty may also break the
symmetry of initial choices. In a forthcoming paper, I will study the effect of external and
internal pressures on agent choices.

The rest of this paper is organized as follows: The symmetrical multiple-choice individ-
ual is discussed in Section 2, while Section 3 deals with the collective choice of an N-person
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group. Section 4 studies the N-person interacting group. The Ising model is compared in
physics and social systems in Section 5. Section 6 develops an analytical identification of the
the equilibrium state. Some comments about the dynamics of update to reach equilibrium
are contained in Section 7. Section 8 is about the requirement for a real material framework
to monitor social update dynamics. Reports of initial steps of symmetry breaking in Ising
systems are listed in Section 9. The requirement of social structures to drive collective
symmetry breaking is advocated in Section 10. The robustness of the results is checked
in Section 11 by accounting for statistical fluctuations. The social consequences of social
collective symmetry breaking are listed in Section 12. Section 13 contains some concluding
remarks about novel algorithmic protocols to either accelerate the symmetry breaking of
individual choices or to hamper their completion.

2. The Symmetrical Multiple-Choice Individual

Given a socio-political environment, I consider one single person who has to select a
choice to solve or address an issue out of n possibilities, n being a positive integer. All these
possibilities are equally feasible with no definite advantage. All n choices are appropriate
to the issue despite being different from one another. The basis for the agent choice is
subjectively specific to themselves and is not of indisputable value to other ones. Therefore,
all choices are equivalent in terms of usefulness to the individual with the same utility
value. There exists no objective proof to order those n choices in terms of increasing utility.
It is not possible to predict the choice to be made by a given person. Their selection is
subjective and varies from one person to another. Therefore, for an outside observer, the
individual choice is random.

Mathematically, it means that all n choices are equiprobable with probability 1/n.
The potential single-person choice is thus invariant under the permutation of choices with
respect to their utility value. However, as soon as the person selects one specific choice,
their symmetry gets broken. This actual individual choice is no longer invariant under a
permutation with other choices for that specific person.

In physics, magnetic spins share this symmetrical state for their ordering. But, there is
a qualitative difference between a person and a magnetic spin. For a magnetic spin having
the freedom to orient itself, the only impact of an orientation is that orientation with no
cost for changing it.

In contrast, for a person, each choice has a specific impact on their associated environ-
ment. Selecting one choice over the others modifies the environment in a way that can be
irreversible. In selecting one choice, the related person excludes all the others, creating a
social inertia. Once chosen, there is a cost in shifting their choice. The magnitude of the cost
depends on the nature of the associated choice, which can range from the color of a coffee
machine to a discipline of academic studies or changing a social norm. That is a significant
feature of a human frame, which is absent in inert matter.

2.1. From One to N Non-Interacting Persons

Under the above conditions, going from one person to a collection of N non-interacting
persons, the outcome of aggregating their parallel and independent choices obeys on
average an equal repartition among the n choices with a proportion

pi =
1
N
(

N
n
) =

1
n

, (1)

for each choice denoted by i = 1, 2, . . . , n.
However, once every person has selected a choice, the initial choice symmetry is

recovered at the collective level of the N-person group, despite being broken at each
individual level. The symmetry restoration is worth underlining since it adds a new feature
at the collective level, which is absent at the level of a single multiple-choice individual.

Indeed, while a permutation symmetry between the n choices does exist for the
individual choice, it is never fulfilled. As soon a single person makes a choice, the symmetry
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is broken. Shifting the selected choice modifies the person choice and thus the associated
impact on their environment.

In contrast, having a group of N persons where each one has selected a choice equiprob-
ably, permuting all individual choices modifies their respective choices, and overall, at the
collective aggregated level, nothing is changed with still an equipartition of choices.

The existence of a group implements a symmetrical state with respect to the available
choices. The group social impact is thus invariant under the permutation of individual
choices. Moreover, the impact of each choice is a function of the number of people who have
adopted this choice, increasing simultaneously its associated inertia. Here, the respective
impacts of choices are equivalent both in terms of amplitude and inertia.

2.2. External Homogeneous Symmetry Breaking Pressure

All choices being equivalent in terms of their utility, the above multiple-choice individ-
ual is vulnerable to any external pressure, even extremely weak, to make a given choice. An
infinitesimal pressure exerted on a person in favor of a given choice is therefore sufficient to
have the person select that choice. An external infinitesimal pressure is sufficient to break
the symmetry of the n choices along a specific choice.

The same symmetry breaking effect applies identically to each person of a group of
non-interacting N persons. An infinitesimal uniform pressure is thus sufficient to align all
the N persons along the choice favored by the external pressure. In such a case, the favored
choice is selected by all N persons with zero persons for all the other n − 1 choices. The
associated proportions are

p1 = 1 and pi = 0, (2)

where index 1 denotes the choice favored by the external pressure and i = 2, 3, . . . , n.
The above symmetry of the aggregated N non-interacting persons is now broken by

the external pressure similarly to the breaking at the individual level. The associated social
impact is thus enhanced and amplified as a function of N resulting in a higher social inertia
and a larger amplitude of the impact on the related environment. All other n − 1 choices
are simultaneously excluded.

2.3. Individualized Heterogeneous Symmetry Breaking Pressure

It may also happen that for a given issue, a specific person does have an internal bias
favoring one choice over the others. Their multichoice symmetry is then broken even by an
infinitesimal internal pressure. However, the related pressure is attached to the person and
does not apply to others. Such an internal pressure can be either conscious or unconscious.
It can be noticeable or not for an outside observer. In that case, the associated person selects
their favored choice while their choice can still be perceived as randomly made.

For a collection of N non-interacting persons, when only a single person has an internal
pressure, the aggregated outcome of the collection of agent choices leads on average to one
choice being selected by 1 + (N − 1)/n persons with a number (N − 1)/n persons for all
other n − 1 choices. The associated proportions are

p1 =
1
N
(1 +

N − 1
n

), (3)

where index 1 represents the choice favored by the agent having an internal pressure. The
other n − 1 choices have an equal proportion

pi =
1
N

N − 1
n

, (4)

where i = 2, . . . , n.
It is of importance to emphasize that in contrast to the above external pressure, which

applies equally to all persons, the internal pressure applies only to one person. While the
symmetry of choices is broken for one person, it still holds at the collective level of the n − 1
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other persons. Yet, at the full collective level of the N persons, the symmetry is broken
along choice 1.

Nevertheless, in the case of n internal symmetry breaking pressures, each along one
distinct choice of the available n choices, the symmetry at the collective level is recovered,
including the collective social impact. Nevertheless, in this case, the above associated social
impact and inertia, associated with an external pressure, are now equally divided along
each choice as N/n.

2.4. Reducing the Number n of Choices Down to Two

To simplify the modeling without losing generality, I restrict the number n of equiv-
alent choices to two. In that case, Equations (1), (2), (3), (4) are written, respectively,
p1 = p2 = 1

2 , p1 = 1 and p2 = 0, p1 = 1
N (1 + N−1

2 ) and p2 = 1
N (N−1

2 ).
Indeed, a large number of issues have two competing choices. In addition, many

cases with a larger number of answers can be reduced to two choices at a certain level of
approximation [81]. The two-choice case corresponds to a choice between two items A and
B in, for instance, a referendum, a two-candidate election, or many other situations.

However, it is worth stressing that the two choices could also apply to choosing
an activity to organize a community at structural levels, for instance, to decide between
hunting and gathering in primitive societies. In such a case, the respective related social and
cultural impacts were significantly different for the evolution of the related communities
with significant associated long-term inertia. The impact of an individual breaking the
symmetry of their available choices may vary significantly depending on the issue at
stake. However, the underlying symmetry-breaking mechanism is identical and universal
regardless of the content of the issue.

In addition to the reduction in the number of choices down to two, from now on,
I consider individual choices without including either external or internal symmetrical
breaking pressures. I will study their effect in a future, following paper.

3. The Collective Choice of an N-Person Group

Binary choices allow recovering the so-called Ising variables from statistical physics [3],
which are usually represented by +1 and −1. The multiple-choice case could have also
been cast in statistical physics using the so-called Potts model [82].

Along the Ising connection, I denote the individual’s discrete bimodal choices by ±1,
which in turn allows us to evaluate the level of diversity within a collection of individual
choices of an N-person group as seen with the quantities

C =
N

∑
i=1

ci, (5)

and

c =
1
N

N

∑
i=1

ci, (6)

where ci = ±1 denotes the choice of individual i with i = 1, 2, . . . , N. C accounts for the
amplitude of the actual social impact with −N ≤ C ≤ N, while c measures the degree of
the symmetry breaking with −1 ≤ c ≤ +1.

In statistical physics, c, denoted m, stands for the order parameter of the system.
Dealing with phase transitions c ̸= 0 marks an ordered phase in opposition to a disordered
phase marked by c = 0.

Here, I introduce the additional quantities N+ and N− to count the respective numbers
of agents having chosen choice +1 and −1. Associated social and cultural impacts are
proportional to N+ and N−. Associated proportions are denoted p = N+/N and (1 − p).
The quantity 0 ≤ p ≤ 1 measures the degree of diversity of the N-person group.
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The equiprobability of the two choices ±1 yields

pci =
1
2
{δ(ci − 1) + δ(ci + 1)}, (7)

for the probability distribution of the choice of individual i where δ is the Kronecker
function and i = 1, 2. The associated probability distribution for the collection of N persons
is thus

pc =
N

∏
i=1

pci . (8)

Equation (5) shows that adding all individual choices from a collection of N persons
extends drastically the number of possible outcomes with 2N different possible choices
instead of two for one single person. In physics, this number is divided by two to account
for the reversal symmetry between +1 and −1, referred to as time reversal. However, here
this reduction does not hold due to the different social impacts associated with the choices
−1 and +1.

In any case, while the choices ±1 each have a well-defined meaning, it is not the case
for C, which can vary from −N to +N by increments of +2. Yet, a simple majority rule like
C > 0 → +1 and C < 0 → −1 restores the individual ±1 choices besides a stronger impact,
which increases with N.

But, majority rule does not apply to the outcome C = 0. One easy way to tackle the
case without changing the symmetry is to assign the case C = 0 to either −1 or +1 with
equal probability 1/2. But such a treatment would erase a major feature of the dynamics
of choices since the outcome C = 0 is the expected average outcome for the collection of
symmetrical N-person groups. More precisely, C = ±O(

√
N) and c = ±O( 1√

N
) to account

for statistical fluctuations.
On this basis, the case C = 0 must be preserved and requires additional ingredi-

ents to be grounded with both social meaning and impact. C = 0 is obtained when
N+ = N− = N/2. Both activities at stake are then implemented with equal amplitudes on
the related environment. At the same time, individuals can trade their initial choices with
no visible effect at the collective level. It means that neither activity can feature the group
identity, which can be labeled “neutral”.

The state determined by C = 0 allows us to implement the initial symmetry available
to each person prior to their choice. In that state, the symmetry is broken at the individual
level but not at the collective level. Nevertheless, although the distribution of independent
choices tends on average towards C = 0, it is rarely reached due to random fluctuations of
order ±N.

4. The N-Person Interacting Group

The above N-person non-interacting group has allowed the setting of the basic ingre-
dients of the model. Given a pair of agents i, j, their respective possible choices yield four
different configurations:

1. ci = cj = +1 ,
2. ci = cj = −1 ,
3. ci = −cj = +1 ,
4. ci = −cj = −1 ,

where both agents cooperate in the first two configurations and oppose each other in the
other two. The product cicj = ±1 allows labeling each case with cicj = 1 for cooperation
and cicj = −1 for opposition. At this stage, all configurations are equiprobable.

But, in most situations where people face a choice within a group, either small or large,
individuals interact between themselves before reaching their respective final decisions
since that decision will impact them through the social impact of the choice on their
environment.
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To account for these interactions within the group, I introduce pair interactions among
people, adding a utility J associated with the implementation of the issue at stake with
a benefit +J for cooperation between the agents of the interacting pair and a cost −J for
opposite choices, i.e., a conflict. This setting implies that J > 0 favors cooperation, while
J < 0 favors conflict. In the following part of the paper, I restrict the study to J > 0.

The product Jcicj = ±J incorporates the utility of a given pair configuration and thus
breaks the symmetry between the four configurations. The cooperating ones are favored
over the conflicting ones. For an N-person group with agents interacting by pairs within a
configuration {c1, c2, . . . , cN}, the total magnitude of the group utility is written

U ≡ J ∑
<i,j>

cicj, (9)

where I have assumed a constant amplitude J for all pairs of connected agents and < i, j >
represents all interacting pairs in the group. Equation (9) recovers an earlier model of group
decision-making [11,12].

I emphasize that not all pairs of agents have their agents interacting with each other.
In physics, this feature is illustrated, for instance, with so-called short-range interactions in
contrast to long-range interactions on a lattice.

Here, the situation is similar, although agents are not located on a geometrical lattice
and do not need to be neighbors in the real world. They need to be socially connected
independently of their geometrical distance. But, later, to keep simulations simpler to
handle and visualize, socially connected agents are placed as the nearest neighbors on a
two-dimensional grid. Then, the geometrical neighboring means a social connection and
not a geographical connection. The actual universality of the chosen interaction rules is
linked to the artificial world built to model the social issue [83,84].

5. The Ising Model in Physics Versus Social Systems

In statistical physics, Equation (9) is formally identical to the Hamiltonian of the
nearest neighbor ferromagnetic Ising model in the zero field (H = 0) with the orientation
Si = ±1 for the individual spin instead of the individual choice ci = ±1. The associated
criterion to reach equilibrium is the minimization of energy instead of maximization of
the utility. Yet, this criterion applies only at zero temperature (T = 0); otherwise, it is
the so-called free-energy which has to be minimized. In the present study, I maximize U
implying a T = 0-like situation.

Having stressed that not all pairs of agents interact, I must also emphasize that a given
agent may be interacting simultaneously in pairs with several other agents, who themselves
are interacting in pairs with other agents. I then define a social network as the collection of
all agents who are connected to at least one other agent in the group.

A society facing a collective choice is thus fragmented into many social networks,
which are disconnected one from the other, in terms of interacting pairs. Members of each
social network exchange between themselves about the issue at stake but none discusses
with agents from the other networks.

On the above basis, given ci = ±1 and the maximization of the pair utilities, it is
straightforward to figure out that all N persons of a social network will end up sharing
the same choice to maximize their utility. But, from what was seen earlier, this collective
uniform choice can be either +1 or −1 with equal probability. Those two results hold true
for both the social and physical cases.

However, at this point, major qualitative differences arise between the two cases:

In physics, what matters is finding the absolute equilibrium state, which must be indepen-
dent of the initial conditions. Here, it depends solely on J. The actual dynamics to reach
the equilibrium state is a technical issue with no physical meaning. The outcome must be
independent of the algorithm used to reach it. For systems with quenched disorder like in
spin glasses, the issue of equilibrium is much more complicated [85].
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In social systems, I claim that the algorithm used to reach the equilibrium state is instru-
mental and characterizes the related social system. Here, the equilibrium state is a function
of both the initial conditions and the concrete procedure implementing the dynamics of
choices among the agents in the social network.
Moreover, while in inert matter the number of spins is astronomical, of the order of the
Avogadro number 1023, social systems may involve small and large numbers of agents.
This fact has solid consequence on the actual solving of the problem. In physics, the
thermodynamic limit N → +∞ is used to perform calculations. And in simulations, large
samples are used with periodic boundary conditions to get rid of finite-size effects and
mimic an “infinite system”.

6. Analytical Identification of the the Equilibrium State

In physics, being concerned with the equilibrium state of a system, a powerful tech-
nique has been developed to solve analytically the problem. The technique is called a
mean-field treatment of the Hamiltonian. It basically ignores the fluctuations of individual
spins by considering identical spins with the same average value of the magnetization.

Indeed, I can justify a mean-field treatment of Equation (9) by suggesting that in a
social environment agents involve anticipation of the outcome in the making of their own
choice. To implement this anticipation feature I rewrite Equation (9) as

U =
J
2

N

∑
i=1

{
k

∑
j=1

cj(i)

}
ci, (10)

where k is the number of individual persons i interacts with. The choices of these k
persons are denoted by cj(i). To keep the presentation simple, this number is assumed
equal for everyone. When everyone interacts with everyone, k = N. This case applies to
small groups.

More generally, I assume that every person is aware of the ongoing symmetry breaking
process and thus anticipates the outcome as a collective choice of the network. Then,
individual i extrapolates the k choices cj to be all equal to the expected collective choice of
the individual without its own choice, which leads to

cj =
1

N − 1
(C − ci), (11)

where C is the collective choice defined as before. In turn, Equation (10) is written

Ua =
J
2

N

∑
i=1

{
k

∑
j=1

1
N − 1

(C − ci)

}
ci, (12)

and

Ua =
kJ

2(N − 1)

{
C

N

∑
i=1

ci −
N

∑
i=1

c2
i

}
, (13)

where superscript a signals the anticipating process. Using C = ∑N
i=1 ci and c2

i = 1 leads to

Ua = δ
C
N

N

∑
i=1

ci − δ, (14)

where δ ≡ nJN
2(N−1) is a constant independent of the group choice and thus does not affect

the expected collective choice C.
Defining a group pressure

Pg ≡ δ
C
N

, (15)
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I obtain

Ug
a = Pg

N

∑
i=1

ci − δ, (16)

where the product Pgci measures the conflict between the choice of the person i and the
group collective expected choice. A positive pressure Pg favors a positive choice +1, while
−1 is associated with a negative pressure. The conflict amplitude is given by Pg. Rewriting
∑N

i=1 ci = C leads to

Ug
a = γ

C2

N
− δ, (17)

which is the maximum for C2 = N2 → C = ±N. The anticipation process leads to a
symmetry breaking along either +1 or −1 with equal probability.

The result of spontaneous random symmetry breaking obtained from the simulations
is thus recovered. Applying the anticipating effect separately to a series of networks yields
a polarization among the different networks.

However, the technique gives no light about the dynamics reaching the equilibrium
state. The related path and time are absent from the calculation. No information is provided
on the protocol implementing individual updates, which drives the dynamics.

Moreover, the exact solving of the Ising model at two dimensions and in zero field [4]
has shown that mean-field treatment [2] provides a good qualitative description of the equi-
librium state but the associated quantitative values are wrong. The same discrepancy holds
true in higher dimensions and with a field as seen when applying renormalization group
techniques [7], which yield quite good quantitative results. But yet, all these analytical
handlings of the Hamiltonian ignore the dynamics of repeated updates, which are required
and taking place to reach the equilibrium.

7. The Dynamics of Update to Reach Equilibrium

To obtain precise results about the equilibrium state of the Ising model at any dimen-
sion for any temperature and possibly with a field requires the use of numerical simulations.
And to reach that goal, an actual update dynamics must be defined and implemented.
Monte Carlo algorithms are the most used and efficient.

However, it is worth emphasizing that the dynamics part is viewed as a mere necessary
technical protocol, which must have no effect on the final outcome expected to be the
equilibrium state of the model. To comply with this constraint, a series of technical “tricks”
is incorporated to the algorithm to avoid artifacts.

For instance, when simulating a two-dimensional Ising model at zero-temperature,
reaching the expected full symmetry breaking is found to be hindered by the formation
of walls separating domains with opposite spin orientations. These domain walls appear
randomly and stabilize at some size of the domains when the cost in energy to reverse a
full domain to have it coalesce with a neighboring domain becomes higher than the cost in
energy of the domain walls.

To overcome this obstacle, an efficient tool is applying a very small external field
during the first steps of the simulation before canceling it when the equilibrium gets near.
Annealed cooling is also used with turning the temperature to a non-zero value, allowing
the sample to pass by the domain wall barriers and then putting back the temperature
slowly to zero. However, the associated process requires a long time to be implemented to
avoid trapping in metastable states.

In addition, in physics, the equilibrium state must be independent of the initial con-
ditions, i.e., the actual value of the magnetization, as well as the distribution of the initial
random distribution of spins. The update scheme used in the Monte Carlo simulations
must also be of no effect on the final equilibrium state. To reach that goal, some simulations
discard a large number of Monte Carlo steps before taking the following ones into account.
Other simulations average thousands of different runs to wipe out the impact of initial
conditions. At zero-temperature, the true equilibrium state is found to have all spins
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aligned in the same direction, irrespective of that direction. Some simulations end up with
all spins at +1 and others at −1. The associated outcome is called a spontaneous symmetry
breaking of the system.

8. The Requirement for a Real Material Framework to Monitor Social Update Dynamics

In a social network, two interacting agents need to coordinate their choice to select
the same choice and benefit a utility J instead of a −J cost utility. However, that goal does
not identify the common choice since both choices yield the same utility. The individual
symmetry is thus recovered for the pair of agents and likewise, the choice of the pair is
perceived as being selected randomly by an observer. As for the one-person choice, once a
choice is selected by the pair, its symmetry is broken.

It is reasonable to assume that self alignment of the pair is not too demanding to be
achieved in terms of the associated frame to monitor the selection of the choice to be made
by both agents. However, monitoring the update dynamics of an N-person group with
many interacting pairs becomes more complicated in terms of associated infrastructure. To
elaborate further on how precisely individuals coordinate to reach the maximum utility of
the full group is an open issue, which is out of the scope of the present paper.

Pointing to the fact that an external frame is required to drive the dynamics is both
instrumental and sufficient to proceed. Indeed, dealing with humans instead of atoms
creates differences in the respective mechanisms driving the symmetry breaking although
some overlaps hold.

I thus claim that unlike the situation in physics, the update scheme used to implement
the local dynamics driven by the interactions between connected agents is not a purely
technical issue whose effects must be discarded. On the contrary, I claim that the update
procedure implementing the coordination of local individual choices is a major component
of each specific human community unlike physics, where the goal of a simulation is
designing the appropriate and most efficient protocol to reach the equilibrium state.

In human systems, reaching the true equilibrium state of a given community is rarely
feasible since the implementation of the update dynamics has to be achieved via an es-
tablished social structures. That is a complex and challenging task, which requires the
building of a framework to support the update protocol between connected agents.

In this respect, the update procedure is not neutral for a social system. Indeed, the
actual procedure is instrumental to achieve a dynamics of choices. Moreover, it is a signature
of a specific social structure and often varies from one social network to another. These
operating structures determine the time lapse needed to achieved a symmetry breaking
among all agents of a social community. It also impacts the extent of the size at which a
given symmetry breaking is achieved in a social community.

9. Initial Steps of Symmetry Breaking in Ising Systems

To illustrate my assumption of centrality of the update procedure in social systems, I re-
visit the main update schemes used in the Monte Carlo simulations of the two-dimensional
Ising model. These schemes amount to four, respectively, random, sequential, simultaneous
and checkerboard updates, which operate respectively as follow:

Random update picks up one site randomly selected from the N sites available to perform
an update. Afterwords, another site selected randomly from the remaining (N − 1) sites
is updates. The process is iterated till all the sites have been updated. The full process
corresponds to one cycle of update.
Sequential update picks up one site randomly selected from the N sites available to
perform an update. Afterwords, another neighboring site is selected to be updated. The
process is iterated linearly until all the sites have been updated from one neighbor to the
other is a sequential manner. The full process corresponds to one cycle of update. Another
cycle follows the same first sequence of updates.
Simultaneous update considers all sites simultaneously. Every site evaluates its neighbors
and then at the same time all sites updates their respective states.
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Checkerboard update assigns each site to one of the two sublattices that form the checker-
board pattern of a square lattice. All sites belonging to one sublattice evaluate their
neighbors and update simultaneously their respective states. Then, all sites of the other
sublattice evaluate their neighbors and update simultaneously their respective states. The
two consecutive updates constitute one cycle. The two-steps process is iterated for each
additional cycle.

Contrary to usual studies in statistical physics, here I explore finite-size samples and
the related impact of the details of the initial conditions. More precisely, I show that
given the same collective aggregated choice Nd = 0 (N+ = N−), the actual distribution of
initial individual choices impacts the final equilibrium state of the collective choice. I thus
highlight the effect of the randomness of the choice distribution at individual level, which
is absent at the macroscopic level, on the associated final equilibrium state.

I also focus on the initial steps of the Monte Carlo simulations, which are the relevant
ones for a social application. That is the opposite of statistical physics where the initial
steps Monte Carlo simulations are always discarded being deemed irrelevant.

The same holds for the size of the sample which is an actual parameter of a social
system but dismissed in physics. In other words, all the features which are qualified as
artifacts in statistical physics, are the relevant ones with respect to a social system.

I ran a series of simulations of samples with a fixed number of 900 spins localized
at the node of a two-dimensional grid of size 30 × 30. All initial conditions have an
equal number N+ = N− of spins sharing respectively choices +1 and −1. The difference
between the various samples lies in the actual random distribution of initial spin values. A
peculiar distribution of spins is labelled with a seed value whose actual value is arbitrary
and irrelevant. It only guarantee to recover exactly the same initial conditions in case of
re-running the simulation.

All simulations include spins with nearest neighbor interactions at T = 0, J = 1, H = 0.
Almost all simulations include Periodic Boundary Conditions (PBC) unless otherwise
specified with no PBC. In addition to the path used for the update of spins, the actual
scheme to perform each spin update has to be chosen. Metropolis and the Glauber are the
two major algorithms used in Monte Carlo simulations.

The Metropolis algorithm always flips the value of a spin when the move decreases
the energy. That makes the Metropolis algorithm more efficient in reaching the equilibrium
state most of the time. In contrast, the Glauber algorithm uses probabilities to shift a spin
value when the shift increase the energy. However, here I am restricting the simulation to
T = 0, which makes the two algorithms identical and deterministic.

9.1. Figure 1

Figure 1 shows the results of three simulations using a random update. Sub-cases (a, b,
c) represent three different distributions (Seed = 10, 50, 70) of spins ±1 (450 +1 in red, 450
−1 in blue), with the same initial value zero for their respective order parameters. Sub-case
(a) shows a full symmetry breaking along −1, which is achieved after about 150 Monte
Carlo steps (Seed = 10). Sub-case (b) shows a full symmetry breaking along +1 after less
than 100 Monte Carlo steps (Seed = 70). Sub-case (c) shows a full symmetry breaking
along −1 after about 750 Monte Carlo steps (Seed = 50). However, in this case, the order
parameter has been positive during almost 500 Monte Carlo first steps before starting to
turn negative to eventually reach a full negative symmetry breaking. Sub-cases (d, e, f)
show the respective initial distribution of the three samples with zero order parameter
associated to (a, b, c). Sub-cases (g, j), (h, k), (i, l) show related intermediate snapshots
toward full symmetry breaking for the three samples (d, e, f).
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(c)

Seed = 10, Size = 30, Random update, J = 1, T = 0, H = 0

At step 1: count of 1's = 450 and magnetization = 0.

(d)

Seed = 70, Size = 30, Random update, J = 1, T = 0, H = 0

At step 1: count of 1's = 450 and magnetization = 0.

(e)

Seed = 50, Size = 30, Random update, J = 1, T = 0, H = 0

At step 1: count of 1's = 450 and magnetization = 0.

(f)

Seed = 10, Size = 30, Random update, J = 1, T = 0, H = 0

At step 49: count of 1's = 315 and magnetization = -0.3

(g)

Seed = 70, Size = 30, Random update, J = 1, T = 0, H = 0

At step 7: count of 1's = 580 and magnetization = 0.289

(h)

Seed = 50, Size = 30, Random update, J = 1, T = 0, H = 0

At step 360: count of 1's = 591 and magnetization = 0.313

(i)

Seed = 10, Size = 30, Random update, J = 1, T = 0, H = 0

At step 125: count of 1's = 87 and magnetization = -0.807

(j)

Seed = 70, Size = 30, Random update, J = 1, T = 0, H = 0

At step 66: count of 1's = 809 and magnetization = 0.798

(k)

Seed = 50, Size = 30, Random update, J = 1, T = 0, H = 0

At step 710: count of 1's = 94 and magnetization = -0.791

(l)

Figure 1. Results of three simulations using a random update. Sub-cases (a–c) represent three different
distributions (Seed = 10, 70, 50) of spins ±1 (450 +1 in red, 450 −1 in blue) with the same initial value
zero for their respective order parameters. Sub-case (a) shows a full symmetry breaking along −1,
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which is achieved after about 150 Monte Carlo steps (Seed = 10). Sub-case (b) shows a full symmetry
breaking along +1 after less than 100 Monte Carlo steps (Seed = 70). Sub-case (c) shows a full
symmetry breaking along −1 after about 750 Monte Carlo steps (Seed = 50). However, in this case, the
order parameter has been positive during almost 500 Monte Carlo first steps before starting to turn
negative to eventually reach a full negative symmetry breaking. Sub-cases (d–f) show the respective
initial distribution of the three samples with zero order parameter associated with (a–c). Sub-cases
(g,j), (h,k), (i,l) show related intermediate snapshots toward full symmetry breaking for the three
samples (d–f).

9.2. Figure 2

Figure 2 shows the results of two simulations using a random update with initial
distributions of spins (Seed = 40, 90) different than in Figure 1 (Seed = 10, 50, 70). However,
contrary to Figure 1, these two distributions lead to final states with no full symmetry
breaking as exhibited in sub-cases (a, c). Indeed, two domains of opposite distributions
are found in the final equilibrium state as seen in sub-cases (b, d). In both sub-cases, the
domains are of different sizes (magnetization −0.0667 versus 0.267).
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Seed = 40, Size = 30, Random update, J = 1, T = 0, H = 0

At step 148: count of 1's = 420 and magnetization = -0.0667
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Magnetization at final step 250: 0.267

(c)

Seed = 90, Size = 30, Random update, J = 1, T = 0, H = 0

At step 241: count of 1's = 570 and magnetization = 0.267

(d)

Figure 2. Results of two simulations using a random update with initial distributions of spins
(Seed = 40, 90) different than in Figure 1 (Seed = 10, 50, 70). However, contrary to Figure 1, these two
distributions lead to final states with no full symmetry breaking as exhibited in sub-cases (a,c). Indeed
two domains of opposite distributions are found in the final equilibrium state as seen in the sub-cases
(b,d). In both sub-cases, the domains are of different sizes (magnetization −0.0667 versus 0.267).

9.3. Figure 3

Figure 3 shows the results of two simulations using a random update with initial
distributions of spins (Seed = 10, 40) as in sub-case a in Figure 1 (Seed = 10) and sub-case a
in Figure 2 (Seed = 40). However, contrary to Figures 1 and 2), these two simulations do
not include Periodic Boundary Conditions (PBCs). The related results are very different,
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with a full symmetry breaking along +1 instead of −1 after about 400 Monte Carlo steps
instead of 180 and two coexisting domains of different sizes (magnetization −0.533) instead
of (magnetization −0.0667) after about 300 Monte Carlo steps instead of 150.
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Figure 3. Results of simulations using a random update with initial distributions of spins (Seed = 10)
in sub-cases (a,b) and (Seed = 40) in sub-cases (c,d). While sub-cases (a,c) are identical to sub-cases a
in Figure 1 (Seed = 10) and Figure 2 (Seed = 40), sub-cases (b,d) do not include Periodic Boundary
Conditions (PBCs). The related results are very different, with respectiively a full symmetry breaking
along +1 instead of −1 after about 400 Monte Carlo steps instead of 180 and two coexisting domains
of different sizes (magnetization −0.533) instead of (magnetization −0.0667) after about 300 Monte
Carlo steps instead of 150.

9.4. Figure 4

Figure 4 shows the results of three simulations in sub-cases a, b, c with identical
initial conditions (Seed = 10, 50, 70) as in Figure 1 but using sequential update instead of
random update. The sequential update leads to very different results from Figure 1, with,
respectively, a full symmetry breaking along +1 instead of −1 after about only 15 Monte
Carlo steps instead of 180, a full symmetry breaking along −1 instead of +1 after about
only 10 Monte Carlo steps instead of 90, and two coexisting domains of different sizes
(magnetization 0.0933) instead of a full symmetry breaking along −1 (magnetization −1)
after about 20 Monte Carlo steps instead of about 700.
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Magnetization at final step 100: -0.0867

(c)

Seed = 10, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 1: count of 1's = 450 and magnetization = 0.

(d)

Seed = 70, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 1: count of 1's = 450 and magnetization = 0.

(e)

Seed = 50, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 1: count of 1's = 450 and magnetization = 0.

(f)

Seed = 10, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 3: count of 1's = 610 and magnetization = 0.356

(g)

Seed = 70, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 5: count of 1's = 273 and magnetization = -0.393

(h)

Seed = 50, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 9: count of 1's = 377 and magnetization = -0.162

(i)

Seed = 10, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 9: count of 1's = 811 and magnetization = 0.802

(j)

Seed = 70, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 10: count of 1's = 97 and magnetization = -0.784

(k)

Seed = 50, Size = 30, Sequential update, J = 1, T = 0, H = 0

At step 18: count of 1's = 408 and magnetization = -0.0933

(l)

Figure 4. Results of three simulations in sub-cases (a–c) with identical size but different initial
conditions (Seed = 10, 70, 50) as in Figure 1 but using sequential update instead of random update.
The sequential update leads to very different results from Figure 1, with, respectively, a full symmetry
breaking along +1 instead of −1 after about only 15 Monte Carlo steps instead of 180, a full symmetry
breaking along −1 instead of +1 after about only 10 Monte Carlo steps instead of 90, and two
coexisting domains of different sizes (magnetization 0.0933) instead of a full symmetry breaking
along −1 (magnetization −1) after about 20 Monte Carlo steps instead of about 700. Sub-cases (d,g,j)



Symmetry 2024, 16, 1566 16 of 25

show respectively the initial distribution of spins for Seed = 10 with zero order parameter and two
intermediate snapshots after 3 and 9 Monte Carlo steps respectively. Sub-cases (e,h,k) show respec-
tively the initial distribution of spins for Seed = 70 with zero order parameter and two intermediate
snapshots after 5 and 10 Monte Carlo steps respectively. Sub-cases (f,i,l) show respectively the initial
distribution of spins for Seed = 50 with zero order parameter and two intermediate snapshots after 9
and 18 Monte Carlo steps respectively.

9.5. Figure 5

Figure 5 shows the results of two simulations in sub-cases a, b with identical initial
conditions (Seed = 10, 70) using simultaneous update. The system gets trapped very quickly
after only a few Monte Carlo steps, as seen in the Figure. Both cases lead to periodic shift
between two fixed configurations.
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Seed = 10, Size = 30, Simultaneous update, J = 1, T = 0, H = 0
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(d)

Seed = 70, Size = 30, Simultaneous update, J = 1, T = 0, H = 0

At step 9: count of 1's = 449 and magnetization = -0.00222

(e)

Seed = 70, Size = 30, Simultaneous update, J = 1, T = 0, H = 0

At step 10: count of 1's = 439 and magnetization = -0.0244

(f)

Figure 5. Results of two simulations in sub-cases (a,d) with different initial distributions of spins
(Seed = 10, 70) using simultaneous update. The system gets trapped very quickly after only a few
Monte Carlo steps, as seen in both cases with periodic shift between two fixed configurations. Sub-
cases (b,c) show two snapshots after 7 and 8 Monte Carlo steps for Seed = 10. Sub-cases (e,f) show
two snapshots after 9 and 10 Monte Carlo steps for Seed = 70.

9.6. Figure 6

Figure 6 shows the results of a two-step simultaneous update, denoted checkerboard
update. All sites of each sublattice are updated simultaneously one after the other sequen-
tially. Three simulations (sub-cases a, b, c) are performed with identical initial conditions
(Seed = 10, 50, 70) as in Figure 1 but using checkerboard update instead of random update.
The checkerboard update leads to very different results from Figure 1, with, respectively,
a full symmetry breaking unchanged along −1 but now after about only 15 Monte Carlo
steps instead of 180, two coexisting domains of different sizes (magnetization 0.253) instead
of a full symmetry breaking along +1 after about only 15 Monte Carlo steps instead of
90, and two coexisting domains of different sizes (magnetization 0.142) instead of a full
symmetry breaking along −1 (magnetization −1) after about 20 Monte Carlo steps instead
of about 700.

Sub-cases (d, e, f) exhibit the same simulations as in sub-cases (a, b, c) but without
Periodic Boundary Conditions (PBCs). The associated results are slightly different, with,
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respectively, still a full symmetry breaking along −1 but with about 20 Monte Carlo steps
instead of 15, a full symmetry breaking along +1 instead of two coexisting domains with
similar numbers of Monte Carlo steps, and still two coexisting domains of different sizes
with magnetization 0.133 instead of magnetization 0.142.
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(f)

Seed = 10, Size = 30, Checkerboard update, J = 1, T = 0, H = 0

At step (No PBC) 10: count of 1's = 169 and magnetization = -0.624

(g)

Seed = 70, Size = 30, Checkerboard update, J = 1, T = 0, H = 0

At step (No PBC) 10: count of 1's = 688 and magnetization = 0.529

(h)

Seed = 50, Size = 30, Checkerboard update, J = 1, T = 0, H = 0

At step (No PBC) 5: count of 1's = 542 and magnetization = 0.204

(i)

Seed = 10, Size = 30, Checkerboard update, J = 1, T = 0, H = 0

At step (No PBC) 15: count of 1's = 86 and magnetization = -0.809

(j)

Seed = 70, Size = 30, Checkerboard update, J = 1, T = 0, H = 0

At step (No PBC) 15: count of 1's = 801 and magnetization = 0.78

(k)

Seed = 50, Size = 30, Checkerboard update, J = 1, T = 0, H = 0

At step (No PBC) 10: count of 1's = 567 and magnetization = 0.26

(l)

Figure 6. Results of a two-step simultaneous update, denoted checkerboard update. All sites of
each sub-lattice are updated simultaneously one after the other sequentially. Three simulations
(sub-cases a–c) are performed with identical initial conditions (Seed = 10, 50, 70) as in Figure 1 but
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using checkerboard update instead of random update. The checkerboard update leads to very
different results from Figure 1, with, respectively, a full symmetry breaking unchanged along −1 but
now after about only 15 Monte Carlo steps instead of 180, two coexisting domains of different sizes
(magnetization 0.253) instead of a full symmetry breaking along +1 after about only 15 Monte Carlo
steps instead of 90, and two coexisting domains of different sizes (magnetization 0.142) instead of a
full symmetry breaking along −1 (magnetization −1) after about 20 Monte Carlo steps instead of
about 700. Sub-cases (d–f) exhibit the same simulations as in sub-cases (a–c) but without Periodic
Boundary Conditions (PBCs). The associated results are slightly different, with, respectively, still a
full symmetry breaking along −1 but with about 20 Monte Carlo steps instead of 15, a full symmetry
breaking along +1 instead of two coexisting domains with similar numbers of Monte Carlo steps, and
still two coexisting domains of different sizes with magnetization 0.133 instead of magnetization 0.142.
Sub-cases (g,j) show intermediate snapshots of sub-case d after 10 and 15 Monte Carlo steps. Sub-
cases (h,k) show intermediate snapshots of sub-case e after 10 and 15 Monte Carlo steps. Sub-cases
(i,l) show intermediate snapshots of sub-case f after 5 and 10 Monte Carlo steps.

10. The Requirement of Social Structures to Drive Collective Symmetry Breaking

The main conclusion which arises from the series of Figures 1–6 is that the initial
microscopic distribution of spins within the same overall numbers N+ and N− matters to
determine the final macroscopic equilibrium state of the sample. Furthermore, the actual
algorithm used to monitor the microscopic update is also instrumental in the making of
the final macroscopic state. Moreover, the size of the sample, via the inclusion or not of
boundary conditions, also affects the final state.

In this respect, it is essential to stress that all these features are deemed artifacts in
statistical physics. Any solid simulation must make sure to avoid those effects in order
to reach the absolute equilibrium state of an infinite system. This true state must be
independent of both the algorithm and the initial state being used. In statistical physics
all of the above features are deemed technical limitations. Their related effects must be
discarded and avoided.

In contrast, these features are bounded to the nature of a social system. That is my
major statement in connection to the phenomenon of spontaneous symmetry breaking in
social systems in contrast to physical systems. I claim that contrary to physics, where all
these features must be made irrelevant, in social systems, these features are relevant and
the most meaningful ones in the making of actual symmetry breaking of social groups
and communities.

Although they are also technical, they must be build in the reality of each social
community to activate the process of the dynamical update of choices and opinions. Once
installed, they operate to drive the actual emergence of a collective opinion or direction of
each social community. In addition, they are likely to be different from one community to
another and in turn trigger different final collective states.

In case agents are left by themselves to coordinate locally their respective choices,
that coordination will be likely performed via trial and error, a process which requires
time and gets exponentially large with the number N of agents. Furthermore, without
any coordinating framework, agents try to optimize their respective utility along a similar
path to simultaneously update without any order. The above related simulations have
shown that simultaneous update traps the system very quickly in a disorder state with
most agents unsatisfied with repeated shifts between the two individual states. This fact
explains why every social community needs an effective framework for monitoring the
update of individual choices in order to exist to reach a coherent aggregation beyond small
numbers of people.

11. Statistical Fluctuations Preserve the Random Symmetry Breaking

All the above simulations were performed starting from a symmetrical initial state with a
perfect balance between the two competing choices among the 900 agents (N+ = N− = 450).
However, for most situations, the initial values of N+ and N− deviate a bit from N/2
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due to statistical fluctuations. The amplitude of the deviation is a function of the size of
the sample.

But, situations with a perfect equality between the numbers of agents sharing the two
available choices are very rare. Therefore, it is of importance to check the robustness of the
results against statistical fluctuations. To this end, I run additional simulations with small
differences between N+ and N− of order

√
N. The associated results are shown in Figure 7

for a sample of size 30 × 30 = 900 yielding a range ±0.03 for the amplitude of statistical
fluctuations. Random update is used.

Sub-cases (a, b, c) show the results of Monte Carlo simulations for initial respective
conditions p = 0.47, 0.52, 0.53 with Periodic Boundary Conditions (PBCs). Sub-cases (d, e,
f) show the results of the same Monte Carlo simulations but with no Periodic Boundary
Conditions (no PBCs).

Except for sub-case (e), the dynamics always ends up broken along −1. The PBCs
accelerate the process with fewer Monte Carlo steps than with no PBCs.

Sub-cases (g, h, i) show the outcomes for p = 0.48 using different initial distributions
of spins and no PBCs for (g) and PBCs for (h, l). The associated numbers of Monte Carlo
steps differ.
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Figure 7. Results of Monte Carlo simulations for initial respective conditions p = 0.47 (a), 0.52 (b),
0.53 (c) with Periodic Boundary Conditions (PBCs). Sub-cases (d–f) show the results of the same
Monte Carlo simulations but with no Periodic Boundary Conditions (no PBCs). Except for sub-case
(e), the dynamics always ends up broken along −1. The PBCs accelerate the process with fewer
Monte Carlo steps than with no PBCs. Sub-cases (g–i) show the outcomes for p = 0.48 using different
initial distributions of spins and no PBCs for (g) and PBCs for (h,i). The associated numbers of Monte
Carlo steps differ.
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I also run additional simulations with a larger sample, 40 × 40, having an associated
range of amplitude ±0.025 for statistical fluctuations. Figure 8 shows the results with initial
conditions p = 0.47 (a, b, c, d) and 0.53 (e, f, g, h). PBCs are applied in (a, b, e, f) and not
in (c, d, g, h). Domain coexistence is found in (a, b, d, e, g). More numerous Monte Carlo
steps are needed than for the sample 30 × 30.
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Figure 8. Results for a 40 × 40 sample with Initial conditions p = 0.47 (a–d) and 0.53 (e–h). PBC
are applied in (a,b,e,f) and not in (c,d,g,h). Domains coexistence is found in (a,b,d,e,g). Many more
Monte Carlo steps are needed than for the sample 30 × 30.
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12. The Social Consequences of Social Collective Symmetry Breaking

Elaborating about the details of the mentioned effective frameworks, which are re-
quired to monitor the update of opinions in a social network, is out of the scope of this
work. At this stage of the study, it is sufficient to assert the existence of such frameworks,
noticing that they are likely different from one social community to another. They can
also share similar parts. Their existence is sufficient to draw the social consequences of
their activation.

12.1. Echo Chambers Are the Outcome of Spontaneous Symmetry Breaking

The various results of the above simulations demonstrate that when a social network
is facing a debate about an issue for which there is no objective difference between the two
competing options, the pair interactions among its agents lead to a spontaneous symmetry
breaking along one of them. The winning option is selected randomly.

I claim that it is the process of completing a spontaneous symmetry breaking, which
in turn generates quite automatically the appearance of echo chambers. Echo chambers
are then an unexpected, unplanned but natural outcome of the maximization of agent
utilization via pair interactions. They arise step by step, following the update dynamics of
agent choices with unanimity of choice when full symmetry breaking is achieved.

My suggestion is that it is the interacting structure linking agents by interacting
pairs which triggers the building of unanimity among related agents. Once the symmetry
breaking is fully implemented, the related driving structure turns the associated network
into an echo chamber.

Therefore, the qualification of echo chamber does not apply at the beginning of the
opinion dynamics within the network. Its reality emerges only at the end of the update
dynamics when reaching final outcome. At the start of what will become an echo chamber
stands a collection of agents holding heterogeneous opinions.

The other surprising and a bit disturbing conclusion from the study is the actual
final winning choice is indeed selected randomly when a symmetry of choice holds at the
individual level.

My statement goes against current explanations of the making of echo chambers,
which all claim echo chambers are the result of a preferential attachment dynamics of
agents sharing the same opinion. Here people with different choices start interacting in
their network, ending all along the same choice. The symmetry breaking is random, and
the actual choice labeling the network could have been the opposite one.

Moreover, the existence of non-interacting communities results in the emergence of a
series of different and separate echo chambers.

12.2. Polarization Is a Byproduct of the Random Selection of the Final Equilibrium State

Since the final state labeling a given echo chamber is selected randomly by the update
process used to reach the full symmetry breaking, different echo chambers end up holding
different opinions or choices. The various existing echo chambers are thus opposed in their
respective quenched unanimities. This fact fuels the emergence of possible hate between
members of opposed echo chambers.

Accordingly, a social community divided into several networks becomes naturally
polarized between two opposed subparts. The simulations showed also that sometimes a
given network gets polarized with two opposed subparts.

My takeaway from the simulations is counterintuitive and seems contradictory since,
on the one hand, polarization materializes the unconditional support of a specific social
choice, and, the other hand, this very choice has been selected randomly. This fact sheds a
disruptive light on the polarization phenomenon.
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13. Conclusions

I would like to highlight that figuring out that the equilibrium state associated with
Equation (9) is having all agents (spins) making the same choice (orientation) is not a
surprise by itself. What comes as a non-trivial and unexpected outcome is the fact that a
collection of agents (spins) connected only by a few pair interactions manages to come up
with a collective coordination aligning all agents, while each agent (spin) is connected only
to a few other ones. The question is not the final outcome but how it can be reached.

In the geometrical grid used for the simulations, the question is how the existence of
simultaneous short-range order interactions manages to create a long-range order. That
puzzle has been solved a long time ago in statistical physics and is denoted as spontaneous
symmetry breaking.

In this work, I have recovered the phenomenon of spontaneous symmetry breaking in
the case of a collection of agents having the choice between two opinions and interacting in
pairs simultaneously, which is also not new.

The novelty of the work is the exploration of the effect of both the initial conditions and
update algorithm on the final equilibrium state and the number of steps required to reach it.
In particular, in physics what matters is the equilibrium state, which must be independent
of the actual dynamics used to reach it. When running Monte Carlo simulations for which
the implementation of a dynamics of repeated updates is a prerequisite, the final state must
be independent of the associated dynamics used. With respect to social systems, I claim
that the opposite holds true. The algorithm used to monitor the individual updates is an
instrumental feature of each social network.

I have thus shown that different initial conditions and update schemes produce
different equilibrium states. These equilibrium states display either a full spontaneous
symmetry breaking or a fragmented spontaneous symmetry breaking with the stable
coexistence of two opposed domains of different sizes. Four types of update schemes,
namely the random, sequential, simultaneous, and checkerboard updates, have exhibited
different outcomes.

On this basis, the various simulations shed a new light on the making of echo chambers.
In my process, echo chambers appear quite naturally at the end of a dynamics of local
updates within an existing social network where agents share initially different opinions. It
is the existence of a social network bounding a collection of interacting agents which leads
step by step to their alignment on the same choice.

This conclusion refutes the usual and well-accepted definition of an echo chamber,
viewed as a network built via a preferential attachment of people sharing the same opinion.
Here, the network exists prior to the symmetry breaking achievement.

In addition, the simulations have shown that the selection of the actual choice adopted
by all members of a social network is made randomly. Indeed, the opinion shared by all
members of a so-called echo chamber could have been the opposite one.

Furthermore, it is the random character of the spontaneous symmetry breaking which
prompts the occurrence of polarization within communities made of several social networks.
Polarization turns out to be a side effect of the random selection of the respective unanimous
choices made in the various echo chambers present in a given social community. In
particular, the simulations have indicated that the details of the update processing are
instrumental to monitor the dynamics of individual updates.

Therefore, the design of dedicated algorithms aimed at hindering or accelerating the
completion of the symmetry breaking among agents opens the way to a purely technical
lever to tackle polarization independently of the issue and opinions at stake.

While trying to control the initial distribution of individual choices might be tricky,
acting on the update process seems more feasible. For instance, implementing a checker-
board update proved to be very efficient and quick in reaching the full symmetry breaking
of a social network. In contrast a simultaneous update traps the network in a highly
heterogeneous distribution of different choices.
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In this paper, all individual opinions are symmetrical, which in turn makes random the
selection of the final unique choice. In a forthcoming work, I intend to investigate the effect
of thwarting the random selection of the spontaneous symmetry breaking by applying
external homogeneous symmetry breaking pressure, as well as internal heterogenous
individual pressures.
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