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1. Motivation

Under the umbrella of Artificial Intelligence (Al), neural network (NN) operators
supply a vigorous structure for solving complex real-life problems in various fields of
science such as cybersecurity, healthcare, economics, medicine, psychology, sociology, etc.
Thanks to their differentiability properties, they can optimize parameters directly. Moreover,
NN operators need correctly selected activation functions to work effectively. When we
look at the literature, we encounter a very wide range of activation functions [1]. In this
study, we choose hy—a parametrized and deformed half-hyperbolic tangent function—as
the activation function. tan h-like functions can be more effective in reaching the optimum
solution due to their trainability [2]. One of the interesting aspects of this work is that
all higher-order approximations are based on trigonometric and hyperbolic-type Taylor’s
formulae inequalities (see [3-5]). Next, we emphasize the following: as is well known, the
human brain has been proven medically to be a non-symmetrical human organ. As a result,
NN try to imitate its operation and are not symmetrical mathematical structures. But in
our paper, we build an approximation apparatus that is as close as possible to symmetry.
Namely the activation function we initially use is described as reciprocal anti-symmetrical
(see Proposition 1). This is the building block for our density function which is used in our
approximation NN operators. We prove that this density function is a reciprocal symmetric
function (see Equation (3)). This represents our study’s interesting connection to the general
“symmetry” phenomenon.

The first construction of approximation by NN operators in the sense of the “Cardaliaguet
Euvrard” and “Squashing” types was made by G.A. Anastassiou in 1997. As a fruit of this
construction, he also brought to the literature the ability to calculate the convergence speed
with the help of convergence rates using the modulus of continuity [6].

Symmetry 2024, 16, 1568. https:/ /doi.org/10.3390/sym16121568

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym16121568
https://doi.org/10.3390/sym16121568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3781-9824
https://doi.org/10.3390/sym16121568
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16121568?type=check_update&version=2

Symmetry 2024, 16, 1568

2 0f27

The mathematical expression of the one-hidden-layer neural network (NN) architec-
ture is presented as

n
Nyu(x) =Y kip({@; - x) +@;), x€R’, seN,
i=0

for 0 <i < n, where w; = (w;1,Wjy,...,w;s) € R are the connection weights, k; is the
coefficient, (w; - x) is the inner product of @;, x; @; € R is the threshold, and ¥ is the
activation function. For more knowledge of NNs, readers are recommended to read [7-9].

This paper is organized as follows: in Section 1, we present our motivation to the
readers. In Section 2, step by step, we build up our activation function hy. We also include
our basic estimations, which form the basis for the main results. We devote Sections 3 and 4
to the construction of density function A,, and the creation of the C—valued linear NN
operators, respectively. In Section 5, the authors perform deformed and parametrized
half-hyperbolic tangent function-activated high-order neural network approximations
on continuous functions over compact intervals of a real line with complex values. All
convergences have rates expressed via the modulus of continuity of the involved functions’
high-order derivatives, derived from very tight Jackson-type inequalities. We conclude
with Section 6.

2. Activation Function: Parametrized Half-Hyperbolic Tangent Function Ta
We consider the following function inspired by [10]

~ T —ae™

hlx(x) = m, YV x € R, (1)

to be a parametrized half-hyperbolic tangent function for «,y > 0. Also, one has T (0)

Proposition 1. We observe that

forx e R;a > 0.

Proposition 2. The function Ry is strictly increasing on R. Because

~ (1 —ae ¥ ), _ 2aye

h frd _— =
a(x> 14 we 7 (efyx +D()2 >0,

for every x € R; o,y > 0.

Proposition 3. When we take the second-order derivative of ﬁa, we have

!

Au 2uyer* — X
hy(x) = el LS ZK’YZEWCM € C(R),Vx e R;a,y > 0. )
(e7* + zx)2

According to the above calculation, the following are true:
. 1 T e apy 0 7 (Ina) _
Case1: ifx < %, then hy is strictly concave upward, with h, (%) =0.
Case 2: if x > 1“7”‘, then hy is strictly concave downward.



Symmetry 2024, 16, 1568

3 0f27

3. Construction of Density Function A,

In this section, we aim to create the density function A,, and we also present its basic
properties, which will be used throughout the paper. Itis clear that1 > -1 = x+1 >
x — 1. So, for every x € R;a,y > 0, let us consider the following density function:

1/~ A
Aa(x) = 5 (Ralx + 1) =Ta(x = 1)) > 0,
4
Furthermore, note that

lim A,(x) = lim A,(x) =0,

X—>400 X—>—00

so the x-axis is a horizontal asymptote. One can write that

VN
—_ —_
NI x
2| 2
= =
T ¥
—_ —_
= | =
22—

677(7(71) — 1
11 11

Thus,
Ap(—x) = A1 (x),Vx e Ry > 0. 3)

1
w

Remark 1. We have ,

Ay(x) = 7 (By(x +1) = Fi(x—1)).

Then,

(i) Letx < 1““ —1,thenx—1<x+1< 1““ Jand by (x +1) > T (x — 1), that is, Al (x) > 0
Thus, Aa is strictly increasing on ( o, 1“7“ - 1).

(ii) Letx—1 > lnT”‘, then x +1 > x—1 > h‘T”‘, and W (x +1) < hy(x—1), namely,
Ay (x) < 0. Therefore, Ay is strictly decreasing on (1“7"‘ +1, +oo>.

Remark 2. Let 1“7"‘ —1<x< 1“7"‘ + 1. Then,

A;(x):i<ﬁ”(x+l xl)
_ or(x+1) _ oy(x=1)
— L’YZ ey(x—i—l (DC <! (Dé e’ ) (4)
2 (@reem) T (aretn)y?

Explicitly, according to (4); one determines that A, (x) < 0 for x € [1“7“ -1, 1“7”‘ + 1} , and is
strictly concave downward on (1“—"‘ 1, ln"‘ + 1) Therefore, Ay is a bell-shaped function on R.

Moreover, A’ (1“"‘> < 0 is satisfied.

Remark 3. The maximum value of Ay is
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Theorem 1 ([10]). We determine that

Y Aw(x—j)=1VxeR Va>0.

j==eo

Thus .
Y Ax(nx—j)=1VneN,VxeR.

j==co

In this manner, it holds that

Y Ai(x—j)=1VxeR

j=—00

However,

®)

AL(x =]) = Aalj = %),

2=

So .
Y Au(j—x)=1VxeRa>0,

jzfoo
and -
Y Au(j+x)=1VxeR,a>0.

j==eo

Theorem 2 ([10]). It holds that

/ Ap(x)dx =1; « > 0.

—00

Thus, this means that A, is a density function over R such that o > 0.
Next, the following result is needed.

Theorem 3 ([10]). Let 0 < A < 1,and n € Nwith n'=* > 2; «, v > 0. Then,

(o]

Y Ag(nx —k) < Zmax{oc, % }ez7e7”

(1-A 1-A)

F—icem™Y ) (5)
k= —o
{: |nx — k| > nl=*
where C := Zmax{a, %}327.

Let [-] and |- | be the ceiling of the number and the integral part of the number,
respectively.
Let us continue with the following conclusion:

Theorem 4 ([10]). Let x € [a,b] C Rand n € N so that [na] < |nb]. For a,y > 0, we consider
the number vy, > py > 0 with Ay (p,) = Ax(0), and v, > 1. Then,

1 1
[nb| < max{Aa('ya)'A (7 ) } =: V(a). (6)

k=[na]

We also mention the following:
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Remark 4 ([10]). (i) We also notice that

lim E Ay(nx —k) # 1, for at least some x € [a, b],

n—>+00

where o > 0.
(ii) Let [a,b] C R. For large n, we always have [na] < |nb|. Alsoa < £ < b, iff
[na] <k < |nb]|. In general, it holds that

Lnb)
Y Ax(nx—k) <1 @)

k=[na]

4. Generation of C-Valued Linear NN Operators

Let (C,|-|) be the Banach space of the complex numbers on the reals.

Definition 1. Let f € C([a,0],C) and n € N : [na] < |nb|. We introduce and define the
C-valued linear neural network operators as follows:

Z f( )A,X(nx—k)
Ou(f,x) = = [m[nbj , x €labl; a>0,a#1. 8)
Y. Ax(nx—k)
k=[na]

For large enough n, we always obtain [na] < |nb]. Also, a < % < b, iff [na] <k < |nb].
The same ®,, may be used for real-valued functions. Here, we study the pointwise and uniform
convergence of ®,(f,x) to f(x) with rates.

Clearly, here, ©,(f) € C([a,b],C).
For the sake of usefulness, we can follow the following;:

[nb]
O (f,x) : 2 f< )A,x nx — k), )
that is, .
On(f,x) = Lnbfa"(f’x) . (10)
Y, Ax(nx—k)
k=[na]
so that

Lnb)
O3(f,x) ~ £(x) (k_z Ag(nx - k))
Ou(f,3) — f(x) = T —
Y Agx(nx —k)

k=[na]

(11)

Therefore, we state that

©n(f, %) = f(x)| < V(a)|©
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, (12)

where V(&) is as in (6).
We will calculate (12) by virtue of the classical first modulus of continuity for f € C([a, b], C)

defined below:
wi(f,0) = sup |[f(x)—f(y)l, 6>0.
X,y € [a,b]
lx—yl <o

Moreover, f € C([a,b],C) is equivalent to (lsirr(l)wl (f,6) =0 (see [6]).
—

5. Approximation Results

Now, we are ready to perform C-valued neural network high-order approximations
to a function f given with rates. Let us start with a trigonometric approach.

Theorem 5. Let f € C?([a,b],C),0 <A <1,n € N:n'"* > 2, x € [a,b]. Then,
(1)

’®ﬂﬂX>f“”féVM)waﬂ(;A+<bMCeﬂ“lm)
f// ( Ce nl1= A))+

( 1Uhs, ”A)+Hf”+fHoo a>2c6—w<“>>],

(2)  Iff'(x) = f"(x) = 0, we obtain

f// fﬁ 1
@ww—ﬂmsww() I+ flL Cew)l

21124
Note here that there is a high rate of convergence at n=>*.
(3)  In addition, we obtain
100f ~ ll < V) |1l (5 + (b= )Ce )

1
||f2|| (2/\ + (b )Zce—'}‘n(l/\))

w f”'+‘f 1 1A
-I-(l(znZA)'f‘Hf”-f'fH b—a)Ce ™" ))]

namely, Lu}: O, (f) = f, pointwise and uniformly,
n oo
(4)  Eventually, it holds that

©u(f,) = £ (1O sin(- ~ 1)x) ~ 21" ()0, (sin? (5 ) x) )

w f//+f 1 1
= [l<2nzA>+Hf”+fH e ]
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and a high speed of convergence at n=3* is gained.

Proof. Inspired by [3], and applying the trigonometric Taylor’s formula for f € C?(]a, b], C),

let %,x € [a, b]; then,

f<"> = f(x) + (%) sin(}’z _ x) L2 sin2<,’; ;x)

n

o,

Furthermore, it holds that

f(z)Aa(nx —k) = f(x)Ax(nx —k)

==

[(F/(8) + FD) — (F"(x) + F(x))] sin<z _ t) n

k
n

+£(x) sin(i — x)Aa(nx —k)+2f"(x) sin2< ;x>A,X(nx —k)

Ay (nx — K) ( L1100+ 50) - (7760 + )] sin( £ 1) )

So, we have
b k |nb]
) f<n>Aa(nx—k)—f(x) Y Ax(nx—k)
k={[na k=[na]

™ Lt} k_
:f’(x) Z Aa(nx—k) sin<z —x) _|_2f//(x) 2 A,x(nx—k) sin2<” 3 x)

k=[na k=[na]
[nb] K
T ([ 100+ 50) - (701 st s - 1))

Hence, we gain
Lnd]

O, (f.x) = f(x) ). Ax(nx—k)

k=[na]
— (1O (sin(- ~ 1)) +2f" ()0} (sn? (;)) 1 T,),

where

b
Tu(x) = Y Aa(nx—k)</x

k=[na]

Sk

[(70)+£(6) (7" + £(x) sin (£ 1) ‘”)'

We assume that

) = [0+ 50) = (7"3) + )] sin( £ = 1),

1
whenn > | (b —a)” 7 |, in other words, when large enoughn € N, b —a > n% is assumed.
1

k
ﬁ—x‘>n7

Thus, this yields ’% — x’ < n%\ or
For the case % —x| < ni,\, the following are obtained:
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1 If % > x, then

)| = ‘ L1570+ 50) (7160 + s sim (& )

sin(k — t> ‘dt
n

S/jwl(f"—i-f,t—x)

(employing [sinx| < |x|,V x € R)

k

S/x"cul(f”—l—f,t—x)(fl—t>dt§w1(f”_._f/z_x> (ﬁ_zx)z

— 2127

namely,

1" 1
)| < Gl ) <f21;;f' ”A>.

(i) If % < x, then

‘_‘/ f&)+f(#) sm( t)dt
*/k[(f()Jrf()) (" )Jsin( £ t>dt‘
< [ 070+ F0) = (70 + 1) SIH(fl_t>‘dt

< (/;wl (f”+f,x :) (t k)dt
k

<w (f“+f,x_ 1’2) (x‘zn)z

- wl(f”JFf/n%)

2127 ’
Therefore,
(k)
’F(n)' = 2n2) )
So, we have proven that when ‘f - x’ < A it is always true that
Wy (f "+ £ )
’F(n ’ - 2n2A '

(a) Againlet % > x:
[T 0+ £00) = (764 £ i — )l

k
sin(k — t) ’dt
n

< [T+ £0) ~ (70 + £00)]

o] -




Symmetry 2024, 16, 1568

9 of 27

(employing [sinx| < x|,V x € R)

< 2||f"+f||oo</f (5- t))dt

()
=20+ o5 < I+ fllo(0—a)?

Thus, we obtain R
[T < [+ fll (b -

(b) One more time, let % < x,

= [ 10+ 50) ~ (7@ 4 ) sin(E s

[;[(f (6)+£)) = (70 + £ sin (£ = 1))
< J107 0456 = (70 + 50 fin (£ )
<2 "+ fl., f Jsin( )

<ol Al [ (15 )2 =+ Al (- o)
2.

<"+ floo (0 -

So, we gain
[E)| < [+ fll (b -
Also, we have

T,(x) = nz An(nx — k)T (n)
= [na

41

k
k
n

1
f <

+ "Z: Ay (nx — k)T (n).

k = [na]
: % x’ > %
Thus, it follows that
Lnb]
IT(x)] < Y Adnx—R)[T(n)|
k= [na]
[N
Lnb]
+ y Ag(nx — k)‘r(n)‘
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|nb] w1 f”'f'f,n%\
< Z Aa(n.X*k) (2}/12)‘)

[nb] , by (7))
+ X (mx = K|+ £l (b~ <
k = [na]
k

: E_x’>n7

@+ f )

s T+ flle (b

[nb] (by Theorem 3)
Ax(nx —k) <

wl(f//+f 1)
2n2)

As a result, we derive

)

+Hf”+f|| Ce f)/nl

f// f "
raeon < ) o afcem
Again, we apply |sinx| < |x|,V x € R.

We obtain

O} (sin(- — Z An(nx —k s1n<:§—x>,

k=[na]
. (k )
sm{ — — X
n

and

b
©;(sin(- —x),x)| < ) Ax(nx—k)

k=[na]
nb] [k
- ) Ay(nx —k) sm<n—x)‘
k = [na]
E-x <k
[nb] k
+ Ayp(nx —k) sin(n - x> ’
— Tna]
%—x’ > &
b
< Aa(nxk)’x
k = [na]
: %—x < ,%,x

A)

(13)
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[nb] k
+ 2 Aa(nx—k)'n—x

k= [na]
: k—x‘>ﬂ%

n

1 [nb]
S+ (b—a) Y Aw(nx —k)

. { k = [na]
1

: ﬁ_x’>n7

by (7)) 1
< -

(1-4)
—= Tl/\ .

+ (b—a)Ce™ 1
We determine that

*(on 1 —qn(1-A)
|®;, (sin(- — x),x)| < n—/\+(b—a)Ce e

Then, we calculate

o; (sinz('x) x) = anbj Ay(nx —k) sin2<l’§_x>
n 4 - © ’
2 k=[na] 2

using |sinx| < |x|,V x € R, and calculate

* .of T —X Lnbj . % — X 2
O (sin®( —— |, x) = Y Au(nx—k)[sin
2 k={[na 2
1 |nb] 2
SZ ) A,X(nx—k)‘—x
k=[na]

1 |nb] 2
=1 Y Alx(nx—k)‘—x
k= [na]
: %—x’ <

ie.,

R 1 1 _
@Z <Sin2 <2x>,x) S Z |:;,12)L + (b — 0)2C677n(1 A):| .

As a consequence, we obtain the following;:
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@

©4(f,%) = )] < V@) |15 (5 + 6 - e ")

+|f”2(x)’ (ni/\‘i'(b a)2Ce~ 1" “)

f'+ o
+ (wl(z,qm) | f7 o (0 — a)Pce ))] (14)
(2) If f'(x) = f"(x) = 0, according to (14), we have
wi(f"+ fo (1A
©u(f,3) ~ F2)] < V(@) 1(2) 7+ b a2 Ce )]-

Here, we keep in mind that 773" has a high convergence rate.

(3) Inaddition, according to (14), we have

181f = flloo < V(&) [||f’Hw (ﬂ +(b— a)Ce—vnuA))

1!
||f2||oo < + (b )2Ce,},n(l/\))

w f// f nl/\ .
+ (1(2”2)\) + Hf// +f|| a)zCe””’( ))]

We state that convergence is pointwise and uniform such that lirE O.(f) =f.
n——+00
We consider that

0, (f,3) = (1)@ (sin(- = 2),) ~ 2" (1)@, (sin? (5 ). ) = )

— @Z(f,X) - /(x) @Z(Sil’l('*X),X) _

ZIEZanﬂ Ax(nx —k) ZIEZMW Ax(nx —k)

in ), x EthJ Ag(nx —k)
2 S (2 )) —f(x)( -
Zk (nal )

" (Tn(x)).
2,& me] Ay(nx —k)

Lastly, we obtain (V x € [a,b], n € N):
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(4)

O4(f, %) = F/()0y (sin(- ~ x),3) =2 (1) (sin? (5 ), ) ~ f(x)
< V@)

w " 1
@v(lx) [M I+ f] )2Ce™ n1= A)].

- 212A

The theorem is proved. [

We move ahead with a hyperbolic high-order neural network approximation.

Theorem 6. Let f € C%([a,b],C),0< A <1,ne€N:n'"*>2 x € [a,b]. Then,
(1)

‘®n(f/x) —f(X)| < V(D() Cosh(b — a) |:‘f/(X)| (r}/\ + (b _ a)ce_,yn(l/\))

|f”2( )|< (b )2Ce7”(”)>

w 1! 1
+(1<fznf ") 4 gl e )]

(2) If f'(x) = f"(x) = 0, we obtain

©n(f, %) = f(x)| < V(a) cosh(b —a)

w1 f// f 1/\
(W")HW flluo® = ay>ce M,

considering the high rate of convergence at n=3*.

(3) In addition, we obtain

1©nf = fllw < V(&) cosh(b — a) {Hf/HOO(nlA +(b—a)Ce1" A>)
Hf”Hoo ( + (b )ZCe—’yn(lA)>

2
+((fo> S Flo - ce )]

it yields that Llrf Oy (f) = f, pointwise and uniformly, and
n 0
4)

On(f,x) — f'(x)@u(sinh(- — x), x) — 2f" (x)®y (sinhz (;">x> — f(x)

< V(DC) COSh(b — a) [(fznf) + Hf// fHoo C — 1= )\)] /

3A

Here, again, n=>" is our high convergence speed.
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Proof. Using the mean value theorem, we write
sinh x = sinhx —sinh 0 = (cosh¢)(x —0),

for some ¢ in (0, x), for any x € R.
Thus,
|sinh x| < [|cosh||s,;_ (p—a) p—a]|X], VX € [-(b—a),b—a].

In other words, there exists M > 1 such that
|sinhx| < M|x|, Vx € [-(b—a),b—a], (15)

where M := [|cosh||o | (y—g) p—q = cosh(b —a).
Inspired by [3,4], and applying the hyperbolic Taylor’s formula for f € C?([a, b],C),
when %, x € [a,b], then

k_
f<,lz) = f(x)+ f'(x) sinh<: — x> +2f"(x) sinh? (nzx>
+ [T 100 = 50) = (") = £()]sin (5 1)
So, it holds that
f(:)Aa(nx —k) = f(x)Ax(nx — k)
k E_
/() sin (%) Ag(mr = )+ 27 (x)sink? (”2>Aa<nx .

k
n

[(F"(5) — () — (F"(x) - £(2))] sinhcz _ t> dt>.

+Ay(nx — k) (/x

Accordingly, we obtain

nb] |nb]
2 f(i)Aa(nx —k)— f(x) Z WA,J‘(nx —k)

k=[na] k=[na
[7b] b K
= f'(x) Zh: Ax(nx —k) sinh(i — x) +2f"(x) Zb: Ag(nx —k) sinh? <£§2x>
k=[na] k=na]
[nb] k
"k el (/ (70~ £0)) ~ (5") — £ simn (£ 1) ‘“)'

So, we obtain
[nb]
O (f,x) = f(x) ), Au(nx—k)

k=Tna]
= f'(x)@}(sinh(- — x),x) + 2f"(x)O;}; (sinh2 <_2x>,x> +Tp(x), (16)

where
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We assume that

k

) = [ 1570 = 50) = (7"(3) = )] sin (£ 1)

|

=

For large enoughn € N, letb —a > n%, that is, when n > [(b —a)”

k 1
NN

Hence, ‘779(‘ < A or

For ’ < )\ we have the following;:

(1) If > x, then

-]

</ L(F = ft—x)

£0) = (")~ £(x)) ] sinh (£ — ) a

51nh<k— )‘dt
2 /jwl(f”f,tx)M(it)dthwl(f”f,flx> /f(:t>dt

k_ 2 g 1
— Man (f//_f’: _x) (n ZX) = Mwl(];nmfl nA),
that is,
o] « 222,
- 2n
(i) If% <x then
‘ _ ’/ // . . //(x) _f(x))] SlI‘lh(: t)dt

< /\ (F"(5) ~ () — (" (x) — F(x) s
<Mcu1<f”—fx—k> /;<t—)dt Man (f/—f/x_fl> (X—2ﬁ>2

_ My (7~ £.%)

- 2124

ie.,
Mwl(f"—frn%)

’F(n)‘ = 2n2A

So, we have verified that when ‘% — x‘ < nl—a, it gives

’f(”)‘ < Hen (J;;zz f,%)
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Now, let us again assume that % > x; then,

‘f(n)‘ =

/xﬁ [(F"(t) = F(1) — (f"(x) — f(x))] sinh(fl - t>dt

sinh(k — t) ’dt
n

< / ") = £8) = (F'(x) = £(x)]
<amly” = gl [7 (5 1)
k

2
= 2M||f" —f||oo("2> < MJ|f" = fll (b~ )™
Thus, R
T(m)| < M|l = fllo (0 =)

If % < x, then

’f(n)} =

/;[(f”u) ) = () - F()] sinh(z _ t) dt‘

sinh(k - t) ‘dt
n

< [0 = £5) = (£ (x) — )|

< 2M||f"—f||oo/; (f‘ i)‘”

_k
n

2
—2M]|f" —fum<2) < M||f" — fl| (b~ a)?

Hence, it verifies that
‘f(n)’ < M|f" — f|| (b —a)

Also, we have

|nb] R
Iy(x) = ) Ap(nx —k)I'(n)
k = [na]
HE—x <k
[nb| R
+ ) Ap(nx —k)I'(n)
k = [na]
: % — x’ > %\
Thus, it yields that
Lnd]
ITs(x)] < y Aa(nx—)[T(n)|
{ k = [na]
: ’% —x| < n%
b
n y Ag(nx — k)’l“(n)‘



Symmetry 2024, 16, 1568

17 of 27

b
< ) Ay(nx —k) 52
k = [na]
<
Lnb] 5
+ ) A(nx —k) | M||f" — f| (b —a)
k = [na]
: %—x‘ > n%
by ) My (f" — f, &
< (2n2A ) +MHf"_fHoo(b_“)2
nb]
) Ay (nx —k)
k = [na]
k-2 >k

1
1-A)

(by Theorem 3) W1 f// — f, - g o
eyl t) 7 ) o o—ace
Therefore, we determine that

" 1
Al L) g fuwwa)z@—ww]_

ITu(x)] <M [2”2,\11 (17)

Also, we have that

1)
Oy (sinh(- —x),x) = ) A(nx—k) sinh(ﬁ — x),

k=[na]
and
nb) k
@;(sinh(- —x),1)| < Y. Aa(nx—k) sinh<n _ x)
k=[na]
nb) k
= Ay (nx —k) sinh(n - x)
k= [na]
: % — x’ < n%
|nb] . k
+ ) Ay (nx —k) smh(n - x>
k = [na]
k_ x‘ > L
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[1d]
<M Aa(nxk)’x
k = [na]
lnb]
+ Y A,x(nx—k)‘—x
k = [na]
1 L] (by ()
<M n—)\—i-(b—a) ) Ay(nx —k) <
k = [na]

We obtain that
(18)

@7 (sinh(- — x), x)| < M[nlA - a)Ce"Y”(lA)}

Then, we calculate

O (sinh?( =1 ),x) = anbj Ay (nx — k) sinh? b
g 2 ) ¢ 2 )

k=[na]

One determines that

* . 2f X ] . % —X ’
O, (sinh™( — |,x | = Ax(nx —k) | sinh
2 k=Tna] 2

|nb] 2
< M Aa(nx—k)<k —x)
4 k=[na] n
M |nb] k 2
= ) A,X(nxk)<n x)
k = [na]
L[ == 5
|nb] k 2
+ ) Aa(nx—k)(n —x)
k = [na]
|k —x‘ >4
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M| 1 (1-2)
§4[ 5y (b —a)*Ce” ™ }
That is,
* . =X M 1 _aa(1-A)
0; (sink (5 5),x) < M [+ - ace ). (19
According to (12), and based on (16)—(19), we acquire the following:
ey
1 _
©u(f,%) = £ < V(@M ||f W) (5 + - ayce ™)
1!
AL e )
w1 fN - fl L/\ A)
: ( ( T a— ), IF" = flloo—ayce ™) | (20)

(2) If f'(x) = f"(x) = 0, according to (20), we achieve that
O (f,x) = f(x)]

w f/l _f/;,%/\ 1
< V<“>M{l(2nu>+ 1" = £l = a)*ce ]

with the high rate of convergence at n=3".

(3) Moreover, according to (20), we gain

18nf = flloo < V(& [Hf ||m(1A _a)cwnm))
||f;||oo <2/\+(b )ZCe‘V”““)

e

It yields a pointwise and uniform convergence such that lirf On(f) = f.
n——+00
We note that

On(f,x) — f'(x)@u(sinh(- — x), x) — 2f" (x)O, (sinhz (2">x> — f(x)

®Z(f’x) _f/(x) @Z(smh(—x),x)
ZIE"me] Ay(nx —k) 2]£Zme] Ay(nx —k)

@} (sinh? (), x ZMH Ax(nx —k)
2" (x) LnE 99 -
Y Aa(nx —k) Zk: (na Ap(nx —k)
_ 1
Z,EZbHM Ap(nx —k)

[©;,(f,x) = f'(x)©;(sinh(- — x), x)
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—2f"(x)®; (sinh2<' ;x>,x) —f(x)kMZb:J Aa(nx—k)]

Z[nbjm] T (Tn(x)).

Consequently, we gain (V x € [a,b], n € N):
4)

‘@n( £,x) — f'(x)@pu(sinh(- — x), x) — 2f" (x)©, <sinh2 (;")x) — f(x)
(6)
<

V() [Ty (x)|
(1§7)V(zx) [(ff“)ﬂw Fllo (b —a)>Ce” W”)].

21224

The theorem is accomplished. [

Now, we go further with a hybrid-type, i.e., hyperbolic-trigonometric high-order NN
approximation.

Theorem 7. Let f € C4([a, b],C),0<A<1,neN: nl=*>2 xe [a,b]. Then,
(1)

©u(f,x) — f(x) — f'éx) ®,((sinh(- — x) + sin(- — x)), %)

_fllz(x)@n((COshC —x) —cos(- —x)), )

3
_f 2(X) On((sinh(- — x) —sin(- — x)), x)

oo (77) (59

< V(a)(cosh(b —a) +1)
- 2

® - ’% 1-A
wl(f znz/\f n ) +"f( fH Ce nl )],

2) Iff9(x) =0,i=1,2,3,4, we obtain

V(a)(cosh(b—a) +1)

©u(f,x) = f(x)] < -
w ® - 'Lf\ (1-A
[ ' znzAf «) =g o - arce )]/ @1)

and in (21), n=3 appears as the highest speed.

Proof. Inspired by [4], we employ the hyperbolic-trigonometric Taylor’s formula for
f € C4([a,b],C):
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When %, x € [a,b], then

inh( X — x in( k- x
f(k)—f(x)—f’(x)(s (5 ) +an(s ))

n 2

cosh( & —x) —cos(k —
(2l (-0)

2

From Theorems 5 and 6, we determine that

[nb]
O, (f,x) = f(x) ) Au(nx—k)

k=[na|
#@Z((Sinh(- —x) +sin(- — x)), x)

f'()
aeH(

»((cosh(- — x) — cos(- — x)), x)

®3)
TG

f(4)2(x)®;‘,(<sinh2(' ;x> Sinz(' ;x>>,x) = D, (x),

D, (x) := %blj Aa(nxk)cbn(k,x).

k=[na] n

where

>l

Without loss of generality, let us consider that n > [(b —a)”
k

|

Hence, ‘% —x’ < n% or

— 1
NS

For ’% — x’ < n%, we gain the following cases:

(i) If % > x, then

(5
;/xk [(FY® - £1) = (FY )~ f()] (mh(ﬁ = t> —sin<’; = t))dt
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Finally, when ‘% — x‘ < %, we always determine that
n

()

Again, let % > x; then,

(cosh(b—a) + 1) (f4) - £, %)

4n2A

<
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Hf(4) —fHoo(cosh(b —a)+1) o\ 2

Aoty
Hf(‘l) —fHoo(cosh(b —a)+1)(b—a)?

< > .

which is why there exists that

So,
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|nb] (cosh(b —a)+1)wq (f(4) —f %)

< ). Ag(nx —k) 2

nb]
+ ) Ay(nx —k)

{ k = [na]
.|k 1

: g—x‘>n7

(Hf(‘l) —f‘ oo(Cosh(b —a)+1)(b— a)2)
2

(cosh(b —a) + 1) (f4) - £, %)
4n2A

Hf(4) - fHoo(cosh(b —a)+1)(b—a)*

2

<

+ ce—1" Y,

We try to prove that
(cosh(b—a)+1)
2

~

q)n(x)‘ <

{““ (1)

21127 + Hf(4) _fHoo(b _ ﬂ)ZCe_“Y”(lA)] .

We examine that
Ou(f,x)— f(x)— f gx) O, ((sinh(- — x) +sin(- — x)), x)

£'(x)
— ol

cosh(- — x) — cos(- — x)), x)
(3)(x
_fT()®n((sinh(~ —x) —sin(- — x)), x)

s (o () -90(5%)) )

Lnb]

k=[na]

_f//z(x) O}, ((cosh(- — x) — cos(- — x)), x)

®)
i z(x) ©;,((sinh(- —x) —sin(- —x)), x)

(22)

(23)

O (f,x) — f(x) Z A,X(nx—k)—@@Z((sinh(—x)—%sin(—x)),x)
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s (sme() s (7)) | s

_ Py (x)
ZIEZanﬂ Ax(nx —k)

As a result, we obtain (V x € [a,b], n € N):

0u(£, )~ £(x) ~ L1 0, ((sinh(- ~ 2) + sin(- ~ 1)), )

—@@n((cosh(‘ —x) —cos(- —x)),x)

_f(g)(x) ©n((sinh(- —x) —sin(- — x)), x)

2
s (sme(5%) ~ane(57) ).
o [TA(<)’ R R

2n2_/\ = n Hf(4) _fHOO(b _ a)zcew(l—)o] .

The theorem is established. [

Now, a general trigonometric result will be considered.

Theorem 8. Let f € C*([a,b],C),0<A<1,neN:n""*>2,x ¢ [ab],and &, € Rsuch
that 56(32 - 62) # 0. Then,
(1)

O (f, %) — f(x) - ~f'(x)~)®n((5‘ sin( (%)) — & sin(@(- ~ ) ), %)

g(e-
—é%@n((cos(g(- — x)) —cos(&(- — x))),x)
w Zsin(& (- —x)) — & sin(E(- — x)) ), x
SE-) 0, ((Esin(E (- —x)) & sin(@(- ) ), )

(e

oo (P (57) e (25 )

V() [wl((f +(E+ )+ ETF) k)

=2 ~2’ 2\

< ‘é‘
+2Hf(4 (EZ Jrgz)f// + EZEZfHOO(b B a)2C€_7”(17A)},
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2) IffO(x) =0,i=1,2,3,4, we obtain

1Ou(f, %) = f(x)] <

S
-
/
——~
T

Y4 (E4D)f+ETS) k)

2

~2 -2 (1-7)
+2Hf<4)+(c’§ +3)f+& éfH (b—ayce™" "],
3A s the high convergence speed in both (1) and (2).

Proof. This proof is inspired by [4] (Chapter 3, Theorem 3.13, pp. 84-89), and also the proof
of Theorem 7. O

We finalize with a general hyperbolic result.

Theorem 9. Let f € C*([a,1],C),0< A <1,neN: nr>2xe [a,b], and let E,E eR
with 56(52 — Ez) # 0. Then,
(1)

Ou(f, ) — £(x) - L0, ((Fsinh(£ (- 1)) — & sinh (-~ x) ) %)

ge(e-&)
Cflf (j) @n((cosh(g(- —x)) — cosh(g(- — x))),x)
_sc(;(—)ﬁ@”((g sinh(Z(- — x)) — Zsinh (£ (- = 1)) ), )

) (2<f<4><x> — (& Cz)f”(x)))

e E-o)
@n((gzsinh2<§('2_x)> f:zsinhz(g(';x))),x)
V() cosh(b—a) [@ ((FO = (E+T) " +ETf), &)
R

2| f - (E7+8) 1+ TS| (o —ayce

(a- A)}

2) Iff(x) =0,i=1,2,3,4, we obtain

©4(f,3) — flx)| < Lo —)
F-
|:w1((f(4) — (524_62)];//_’_5252]‘_),”%)
27
+2Hf(4) — <§2+32)f//+§ ng Ce (1= /\):|'

Again, n=3" is the high convergence speed in both (1) and (2).
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Proof. This proof is inspired by [4], and also the proof of Theorem 7. [

6. Conclusions

As we have seen, the foundations of neural operators are based on a rich tapestry
of branches such as approximation theory and computational analysis. The sophisti-
cated architecture of single-layer neural networks offers effective and faster solutions to
many problems in engineering and science. Our study stands out in terms of revealing
complex-valued hyperbolic, trigonometric, and hybrid convergence cases with the help of
an activation function that is relatively easy to train. Moreover, the types of convergence
that reach a promising speed of approximation are our key findings. Finally, we would like
to point out that we worked with Ostrowski- and Opial-type inequalities, norms, and also
trigonometric- and hyperbolic-type Taylor formulae to reach this convergence rate result.
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