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Abstract: Optical coherence tomography (OCT), known for its noncontact and 3D imaging capabilities,
has found widespread application in fingerprint antispoofing detection. However, the existing
methods rely heavily on single-frame B-scan images, underutilizing the 3D spatial information
inherent in OCT volume data. High computational costs further limit its practical applications.
Thus, this study proposes an efficient fingerprint antispoofing method which leverages the spatial
continuity of OCT volume data to enhance both the accuracy and computational efficiency. Using an
OCT system, we collected 320 real fingerprints and 320 spoofed fingerprints. Then, to distinguish
between genuine and spoofed fingerprints, we developed the proposed ResMamba model, which
is based on an enhanced 3D convolutional network integrated with a state space model (SSM). We
extracted regions of interest (ROIs) from B-scan images and segmented them into volume slices
for training and classification. The experimental results demonstrate that ResMamba achieved a
0.56% error rate (ERR) and 99.22% area under the curve (AUC), with an inference time of just 11 ms.
Furthermore, compared to the existing models, ResMamba effectively balances its accuracy, inference
speed, and model size. Ablation studies confirm that integrating the SIC module enhances the
model’s robustness. Overall, ResMamba offers an efficient and reliable fingerprint antispoofing
solution, outperforming the traditional methods in terms of its accuracy and performance.

Keywords: optical coherence tomography; fingerprint antispoofing; state space model

1. Introduction

Biometric technology has revolutionized personal identity verification in real-world
applications. This technology leverages unique biological traits, such as fingerprints
and palm prints, to significantly enhance the accuracy and user-friendliness of identity
authentication. Its broad range of applications ranges from smartphone unlocking to
managing access at high-security facilities, highlighting its crucial role in ensuring personal
and information security [1–3]. Currently, over 40% of biometric authentication systems
worldwide employ fingerprint recognition [4] owing to its efficiency, ease of use, and ability
to reliably differentiate between identities, even in the rare cases of identical twins.

Despite its advantages, fingerprint recognition technology now faces significant chal-
lenges [5,6]. To date, security vulnerabilities have emerged, particularly concerning the cre-
ation of fake fingerprints, as their use has become more widespread [7,8]. Fake fingerprints,
made from materials such as silicone or capacitive gels [9], can deceive recognition systems,
granting unauthorized access and posing a direct threat to privacy and data security [10,11].
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These issues highlight the limitations of traditional optical and capacitive fingerprint recog-
nition technologies in distinguishing real fingerprints from counterfeits [12,13]. As a result,
researchers are now exploring new methods and technologies to enhance system security
and resistance to spoofing, thus ensuring that biometric technology can continue to fulfill
its critical role in real-world applications [14].

Fingerprint characteristics, such as minutiae types, ridge features, and the shape and
spacing of ridge valleys, are commonly used to detect fake fingerprints in presentation
attacks [15,16]. Marcialis et al. [17] analyzed high-resolution fingerprint images to calculate
the sweat pore density and average spacing, enabling them to distinguish real fingers
from artificial ones. To assess the authenticity of fingerprints, Galbally et al. [18] collected
various fingerprint features, including ridge strength, direction, and continuity. Addition-
ally, dynamic fingerprint features have become a central focus of antispoofing research.
Park et al. [19] proposed a small fully convolutional neural network (FCN) that integrates
with fingerprint systems to classify real, fake, and background fingerprint information,
thus facilitating antispoofing detection. Wang et al. [20] divided fingerprint images into
small segments, which they then inputted into a fully connected network for classification
and authenticity determination.

Hardware-based liveness detection methods have also been explored. For example,
Martin et al. [21] found that heart-induced blood flow changes slightly alter the finger
contact volume—a variation detectable by sensors and subsequently analyzed by control
systems. Reddy et al. [22] assessed blood oxygen levels by measuring the light absorption
characteristics of fingers and artificial membranes at various wavelengths, thus enabling
automatic antispoofing detection.

Recently, optical coherence tomography (OCT) has been applied to fingerprint acquisi-
tion tasks. First proposed by David Huang in 1991 [23], OCT is a noncontact, noninvasive
3D imaging technique based on low-coherence light interference [14]. With its high resolu-
tion (approximately 10 µm) and depth of 1–2 mm, OCT has been successfully employed in
clinical ophthalmology and cardiovascular diagnostics and has broad application potential
in fields such as brain science, dermatology, and dentistry [24]. OCT can also capture 3D
volumetric data within a subcutaneous range of 1–2 mm. After processing, it can generate
clear surface fingerprints [25], internal fingerprint structures [26], and sweat gland distri-
butions [27]. Figure 1 presents a typical OCT B-scan image of a human finger obtained
through OCT imaging.

Figure 1. Example of finger OCT imaging data.

Cheng et al. [28] used an A-line autocorrelation analysis to distinguish the optical
properties of real skin from those of artificial fingerprint materials. Bossen et al. [29] focused
on extracting the internal fingerprint structures, specifically the dermal papillae, using
B-scan OCT imaging. Similarly, Liu et al. [30] used spectral domain OCT (SD-OCT) to
map the sweat gland distribution within the fingertips, providing robust tertiary biometric
features for forgery detection. Darlow et al. [13] combined OCT with an autocorrelation
analysis and deep feature extraction to identify counterfeit fingerprints and adhesive layers.
Chugh et al. [3] also used deep convolutional neural networks (CNNs) to analyze the
structural differences in OCT depth profiles to improve the detection accuracy. Liu et al. [31]
developed a method based on dual-peak and sub-peak features derived from A-line OCT
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depth profiles to classify real and fake fingerprints. Sun et al. [32] proposed the integration
of total internal reflection (TIR) with OCT for simultaneous acquisition of external and
internal fingerprint features, coupled with grid calibration to correct optical distortion.
Liu et al. [33] introduced an autoencoder network to model the reconstruction errors and
weighted activation maps to improve the robustness of counterfeit detection. Sun et al. [34]
extracted external and internal fingerprint features from OCT data and incorporated hand-
crafted features such as self-matching scores (SMSs) and sweat-gland-related metrics for
classification. Zhang et al. [35] used OCT volume data and a 3D convolutional neural
network to exploit spatial continuity for antispoofing. Table 1 shows a direct comparison of
these methods.

Despite notable advances in OCT-based fingerprint antispoofing techniques, several
limitations remain. Many of the existing approaches rely heavily on specific features such as
the optical properties [28], sweat gland distribution [30], or depth profiles [3,13], which may
prove inadequate when dealing with complex or anomalous spoofing materials. In addition,
the application of OCT data is often limited to two-dimensional slices or superficial depth
features [29,35], which does not account for the extensive spatial continuity present in
volumetric data. Methods that rely on deep learning models, such as convolutional neural
networks (CNNs) and 3D CNNs [3,35], typically require extensive labeled datasets, which
are scarce in this domain. This can lead to overfitting problems in small-sample scenarios.
In addition, the high computational complexity of these models hinders their use in real-
time or resource-constrained environments. Finally, modern spoofing techniques, such as
multi-layered or biomimetic materials, pose significant challenges to the robustness of the
existing methods [33,34].

Table 1. Existing studies on OCT-based fingerprint antispoofing.

Study Approach OCT Data Types Used

Cheng et al., 2006 [28] Using an A-line autocorrelation analysis A-line

Bossen et al., 2010 [29] Extraction of the internal papillary layer
structure of fingerprints B-scan

Liu et al., 2010 [30] Extraction of fingertip sweat gland
distribution as an antispoofing feature. B-scan

Darlow et al., 2016 [13] Combining OCT autocorrelation analysis
and deep feature extraction B-scan

Chugh et al., 2019 [3] Detecting structural differences with a
CNN based on B-scans B-scan

Liu et al., 2019 [31] Utilization of B-scan bimodal and
sub-peak characteristics A-line

Sun et al., 2020 [32]
Combining TIR and OCT to synchronize

the collection of external and internal
fingerprint information for comparison

B-scan

Liu et al., 2021 [33] Reconstruction errors are detected using
a self-encoder network. B-scan

Sun et al., 2023 [34]
Extraction of OCT external and internal

features based on manual
feature detection.

B-scan

Zhang et al., 2023 [35] Detection of forgeries based on OCT
volumetric data and the 3DCNN method. Volume data

Proposed method

Extracting the spatial continuity features
of volumetric data using ResMamba,
a 3D convolutional network with an
integrated state space model (SSM)

Volume data
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In order to address these challenges, we introduce a lightweight network model,
which fully leverages OCT volume data and their 3D spatial continuity. This approach
enhances fingerprint antispoofing detection while minimizing the computational overhead.
The fingertip volume data obtained through OCT contain rich biometric features with in-
herent three-dimensional consistency, offering a significant advantage over the traditional
fingerprint collection methods. This study develops the ResMamba architecture, specifi-
cally for OCT-based fingerprint antispoofing tasks, with the objective of maximizing the
potential of OCT data while simultaneously reducing the computational costs. In contrast
to existing methodologies that depend on particular features (e.g., optical characteristics
or the sweat gland distribution), ResMamba integrates global spatial continuity with local
fine-grained details, enabling the effective detection of anomalies and subtle differences
between genuine and imitated fingerprints. In fully leveraging the three-dimensional
nature of OCT data, ResMamba incorporates a state space model (SSM) to preserve the
critical spatial continuity across the entire volume, thereby ensuring a comprehensive
analysis of the fingerprint’s structure. The lightweight architecture of the system minimizes
the dependency on extensive labeled datasets, thereby mitigating the risk of overfitting,
particularly in scenarios involving a limited number of samples. Moreover, the efficient
design of ResMamba markedly reduces its computational complexity, thereby enabling
its real-time deployment in resource-constrained environments. The integration of these
capabilities allows ResMamba to maintain robust performance, even against advanced
spoofing techniques such as multilayered or biomimetic materials, thus making it a reliable
and practical solution for OCT-based fingerprint antispoofing.

In this work, we propose a lightweight antispoofing network model based on OCT
3D volume data implemented through the following steps: First, we collected 320 sets of
OCT fingerprint data from real fingers and 320 sets from artificial fingerprint materials,
which could be detected by traditional fingerprint recognition systems. Next, we developed
an algorithm to accurately extract region of interest (ROI) volume slices from the OCT
cross-sectional images (B-scans). Subsequently, we introduced the ResMamba network
model to classify each 3D volume slice as either belonging to a real finger or an artificial one.
In this step, we applied a symmetry-based approach to transforming the 3D data into a 1D
representation, which was then fed into the SSM module for modeling. We then designed
a strategy to prevent artificial fingerprints from being falsely identified as real ones. This
allowed us to address the challenge posed by certain artificial fingerprint membranes that
closely resemble real fingerprints in specific local regions and that may potentially lead
to misclassification.

After testing on a database containing OCT data from various artificial materials,
the results demonstrate that the proposed technology exhibits exceptional antispoofing
performance, thus confirming its feasibility and robustness.

2. The Proposed Method
2.1. Preliminaries
2.1.1. State Space Models

A state space model (SSM), which has time-invariant properties, is a linear system
that maps the input x(t) ∈ RL to the output y(t) ∈ RL. Mathematically, this system
is represented by a set of linear ordinary differential equations (ODEs), as shown in
Equations (1) and (2). For a system with state dimension N, the model parameters are
represented by A ∈ CN×N , B, C ∈ CN×L, and the skip connection D ∈ CL. In this paper, R
and C represent the sets of real and complex numbers, respectively. The derivative of the
state and the output signal are described by the following equations:

h′(t) = Ah(t) + Bx(t) (1)

y(t) = Ch(t) + Dx(t) (2)
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2.1.2. Discretization

In the process of integrating the SSM method into the design of deep learning networks,
the continuous nature of its structure presents certain challenges to the computational
process. Therefore, discretization is required.

The primary objective of discretization is to transform continuous ordinary differential
equations into discrete functions. This conversion is essential to aligning the model with
the sampling rate of the input data, thus enabling efficient computation [36]. For a given
output xk ∈ RL×B, which represents a sampled vector from a signal sequence of length L,
Equations (1) and (2) can be discretized using the zero-order hold method as follows [37]:

hk = Adhk−1 + Bdhk (3)

yk = Cdhk + Dxk (4)

where Ad = eA∆, Bd = (eA∆ − I)A−1B, and Cd = C. In these equations, B, C ∈ RD×N , and
∆ ∈ RD. According to [38], B can be approximated by its first-order Taylor series expansion:

B = (eA∆ − I)A−1B ≈ (∆A)(∆A)−1∆B = ∆B (5)

2.1.3. A Selective Scan Mechanism

Unlike mainstream methods that primarily focus on linear time-invariant SSMs,
the proposed ResMamba incorporates the selective scanning mechanism (S6) [38] as a core
operator. In the S6 mechanism, the matrices B ∈ RB×L×N , C ∈ RB×L×N , and ∆ ∈ RB×L×D

are derived from the input x ∈ RB×L×D where B refers to the batch size, L is defined as
the sequence length of the input, D represents the feature dimension of the input, and N
denotes the state dimension of the hidden states within the state space model. This design
facilitates the extraction of contextual information embedded within the input, thereby
ensuring the dynamic nature of the weights within the S6 mechanism. For a more compre-
hensive understanding of S6, a detailed explanation is provided in [39].

2.2. The SSM in the Convolution Module

In recent years, Transformer-based deep learning methods have achieved remarkable
success in image processing tasks. However, these methods are heavily reliant on powerful
computational resources, with both memory and spatial complexity scaling as O(N2). Such
heavy reliance imposes substantial demands on the training environment and application
scenarios. Moreover, medical image datasets are often small (fewer than 1000 samples),
and Transformer-based methods typically underperform on such datasets compared to
large-scale datasets (e.g., ImageNet) containing over one million images. In these cases,
convolutional neural networks (CNNs) tend to yield better results. However, CNNs are
limited by their relatively small receptive fields, which hinder their ability to effectively
capture global information and model long-range dependencies.

Inspired by the strong performance of the SSM in visual tasks and the Mamba model’s
ability to handle long-sequence tasks [40], we explored the process of integrating the
SSM into CNNs to enhance the model’s capacity to capture long-range dependencies. We
also introduced the SSM as a parallel module within the CNN framework to expand the
network’s global receptive field, as illustrated in Figure 2.

Once the input data underwent initial encoding and feature extraction through the
Stem layer, it was passed to the SIC (SSM in Convolution) module. This module consists
of two layers, including 1 × 1 convolutions, along with batch normalization and ReLU
activation functions. The feature map, with dimensions B × C × H × W × D, is reshaped
into B × C × L, where L = H × W × D. In this process, we converted the 3D data into a
1D representation by employing a symmetrical flattening method. This method involved
linearizing the spatial diagonal of the data, thus preserving the symmetry of the feature
structure. The flattened data were then passed to the SSM module for global modeling,
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thereby enhancing the network’s ability to capture long-range dependencies and improving
its overall global context awareness.

Figure 2. The architecture of the ResMamba model.

2.3. The ResMamba Block

We adopted a core architecture based on a residual encoder, as shown in Figure 2. This
novel architectural unit was designed to integrate the SSM-based SIC (SSM in Convolution)
module into traditional 3D CNNs for sequence modeling, thus enhancing the network’s
global perception capabilities. The ResMamba block consisted of two 3D convolutional
layers, each followed by batch normalization to stabilize the training and ReLU activation
to introduce nonlinearity. At the heart of the architecture is the SIC module, which serializes
the input data by flattening them into a 1D form for sequential processing, facilitating the
capture of spatially continuous information.

Moreover, residual connections bypass the entire block to mitigate the vanishing
gradient problem, allowing the network to more effectively learn from the feature data. This
design also enhances the network’s ability to learn complex spatial features, which is critical
for the OCT fingerprint antispoofing detection task. The experimental results show that
compared to traditional network units, the ResMamba block excels at capturing features
from OCT volume data, thus demonstrating its potential to improve the performance of 3D
convolutional networks in handling serialized information.

2.4. ResMamba for OCT Fingerprint Antispoofing

This antispoofing task is fundamentally a classification task, for which we have
adopted a residual-based encoder as the core network architecture, as shown in Figure 2.
Based on the assumption that reducing the feature map size enhances the capture of long-
range dependencies, we strategically introduced the SIC module after the Stem layer to
optimize the data flow through residual connections. The input data were then processed
by three ResMamba blocks, with the final output passed through a multilayer perceptron
(MLP) to produce the classification result.

As shown in Figure 2, the ResMamba block was designed specifically to handle input
data with a reduced resolution. The data were first downsampled using a convolutional
layer, which reduced the dimensionality, lightened the computational load, and facilitated
the extraction of higher-level features. The data then passed through two ResMamba blocks,
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each equipped with skip connections that improved the gradient flow during training, thus
mitigating the vanishing gradient problem and enabling the model to learn more effectively
at greater depths.

To augment the training dataset, we applied the method proposed by Sun et al. [34].
Specifically, we performed peak detection along the vertical direction of the B-scan, ex-
tracted the curves representing the glass surface, and selected 100 pixels (based on empirical
findings) below this curve as the ROI for OCT volume data. This ROI was then sliced
into smaller volumes. A region of size 300 × 600 × 100 can be sliced into 18 volumes of
size 100 × 100 × 100, which were subsequently used for the network training. This slicing
process enhanced the data diversity and improved the robustness of the model.

2.5. The Antispoofing Method

To confirm the authenticity of the OCT volume data, we began by flattening each
collected volume and randomly selecting 8 slices, each with a size of 100× 100× 100. These
slices were then inputted into the trained classifier for evaluation. If any of the 8 slices were
classified as fake, the entire volume was considered counterfeit; otherwise, the volume
was classified as coming from a real finger. The number of slices selected was empirically
determined to ensure sufficient coverage for reliable classification. This process guarantees
that even if part of the volume data is compromised, the system can still accurately identify
counterfeit samples. Figure 3 illustrates a diagram outlining the process of the proposed
antispoofing method.

Figure 3. Our proposed antispoofing method.

3. Experiments and Analysis
3.1. OCT Systems and Data Acquisition

OCT is a noninvasive imaging technique used to scan the fingertip and capture vol-
umetric data consisting of multiple cross-sectional slices. In this study, a swept-source
OCT system was employed for fingerprint image acquisition, using a light source with
a central wavelength of 1310 nm. Each B-scan image contained 300 pixels in the axial
(Z) direction and 600 pixels in the lateral (X) direction. The OCT volume dataset con-
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sisted of 300 individual B-scan images, which, together, formed a 3D representation of the
scanned area.

In this study, we simulated artificial fingerprints using various common materials,
such as transparent silicone, flesh-colored silicone, and ELMER’s glue. These samples
were categorized into two groups: one simulating only the external fingerprint features
and the other simulating the external and internal features. All of the fabricated fingerprints
were verified by traditional optical fingerprint recognition systems. Figure 4 illustrates the
typical scanning outcomes for real fingers and artificial fingerprints.

Figure 4. Samples of various types of fingerprint data. (a) Real finger fingerprints and corresponding
B-scan images. (b) Artificial fingerprints (silicone) with only the outer-layer fingerprint features
and corresponding B-scan images. (c) Artificial fingerprints with the outer- and inner-layer features
(double-layer silicone overlay) and corresponding B-scan images.

In most cases, real fingers and artificial fingerprints that simulate only the external
features can be differentiated easily in B-scan images. However, artificial fingerprints
that simulate the external and internal features are more likely to be misclassified by the
recognition system. Existing OCT-based fingerprint anticounterfeiting systems typically
rely on single-frame B-scans for recognition; however, such systems fail to fully utilize the
3D spatial information available in the OCT data. Although some OCT-based anticounter-
feiting detection networks have begun to incorporate volumetric data, these approaches
often incur a significant computational overhead and require extensive computational
resources and memory, thus limiting their practical efficiency.

To address these challenges, we propose an OCT fingerprint anticounterfeiting detec-
tion method based on ResMamba. This method fully leverages the features in OCT volu-
metric data to more accurately extract and identify fingerprint characteristics while simul-
taneously reducing the computational costs and enhancing the overall system efficiency.

3.2. Experimental Settings
3.2.1. Datasets

In this study, we employed a custom-built OCT system to collect both real fingerprint
data and data from artificial fingerprint prostheses, allowing us to accurately evaluate
the anticounterfeiting performance of each model. The training and testing datasets were
selected from this data collection. For the real fingerprint data, we sampled 80 fingers from
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10 individuals of various age groups (primarily students), with each finger sampled 4 times,
resulting in 320 sets of real OCT volumetric data. For the artificial prosthesis data, we used
10 common prosthetic materials to fabricate 20 types of fingerprint prostheses, which in-
cluded various combinations: 10 types simulating internal fingerprint features and 10 types
simulating internal and external features. Each prosthesis type had 8 samples each sampled
4 times, thus producing a total of 320 sets of artificial prosthetic OCT fingerprint data.

During the network training phase, we used 60 sets of real fingerprint data and
60 sets of artificial prosthesis data as the training dataset. In the testing phase, the types
of prosthetics included in the training dataset were excluded to ensure robustness in
antispoofing detection. While real fingerprint data were included in the testing dataset,
they were collected from individuals who were not part of the training dataset, thereby
ensuring no overlap in subjects between the training and testing datasets.

We tested the model with the prosthetic types excluded in the training phase to ensure
the robustness of the anticounterfeiting detection. This strategy aimed to evaluate the
model’s ability to generalize previously unseen prostheses, thus providing a more compre-
hensive assessment of its generalization performance and anticounterfeiting effectiveness
in real-world applications.

The collection of human fingerprint data for this study was approved by the Ethics
Committee of Foshan University (Project Identification Code: FUME2022001) and adhered
to the ethical principles outlined in the Declaration of Helsinki for research involving
human participants. All of the participants were fully informed about the research objec-
tives, procedures, and potential risks before the data collection and voluntarily signed an
informed consent form. This study ensured the privacy and security of the participants’
data, which were anonymized and used exclusively for research purposes.

3.2.2. Evaluation Metrics

We compared the proposed method with other approaches using several evaluation
metrics, including the ERR, AUC, TPR@FPR = 0.1, and BCPER20.

Error rate (ERR) is a commonly used metric for assessing classification accuracy,
representing the probability of making an incorrect prediction. The ERR is calculated
as follows:

EER =
FP + FN

TP + TN + FP + FN
(6)

where TP (true positive) refers to the number of positive instances correctly identified as
positive, TN (true negative) refers to the number of negative instances correctly identified
as negative, FP (false positive) indicates the number of negative instances incorrectly
classified as positive, and FN (false negative) refers to the number of positive instances
misclassified as negative. These metrics are fundamental for evaluating the performance of
binary classification models and their ability to correctly distinguish between positive and
negative samples.

AUC is another commonly used metric to assess a model’s overall performance
across all possible thresholds. This metric quantifies the model’s ability to discriminate
between positive and negative samples. A higher AUC (closer to 1) indicates a stronger
discriminative power.

TPR@FPR measures the percentage of TP samples identified at a fixed FP rate (FPR).
This metric helps evaluate the model’s performance under specific FPR conditions. For ex-
ample, when the FPR is fixed at 0.1, TPR@FPR represents the percentage of true samples
correctly identified by the presentation attack detection (PAD) model when the FP rate is
0.1. A higher TPR@FPR indicates a better model performance under the given FPR.

BPCER (Biometric Presentation Classification Error Rate) is a critical metric in the field
of biometric antispoofing. It evaluates the accuracy of biometric systems, such as those
used for facial recognition, in distinguishing between legitimate and spoofed biometric
data. A higher BPCER indicates a higher likelihood of misclassifying legitimate users as
spoof attempts, which negatively impacts the user experience and system usability. Ideally,
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the BPCER should be as low as possible to ensure legitimate users can pass through the
biometric verification process smoothly.

BCPER20 (Bona Fide Presentation Classification Error Rate at 20% APCER) is a key
performance indicator that measures the misclassification rate for legitimate users (Bona
Fide Presentations) when the attack presentation classification error rate (APCER) is set
to 20%. This metric evaluates a model’s security and reliability, ensuring that the model
can effectively differentiate between legitimate samples and spoofed attempts, even when
faced with a fixed attack error rate.

3.2.3. Optimization

The algorithm was implemented in PyTorch, utilising the Adam optimizer due to
its capacity for adaptive learning rate adjustments, which is well suited to deep learning
tasks. The initial learning rate was set to 0.001, a value determined following a series of
hyperparameter search experiments. During the course of these experiments, the efficacy
of the learning rates within the range of [10−4, 10−2] was evaluated. It was established that
a rate of 0.001 demonstrated the optimal equilibrium between the convergence stability
and performance.

The training process was conducted on an NVIDIA RTX 3080 GPU with 10 GB of
VRAM, thereby ensuring the availability of sufficient computational resources for the
experiments. The batch size was set to 32, selected following an evaluation of values
of 16, 32, and 64. A batch size of 32 proved to be the optimal compromise between the
computational efficiency and the model performance. Increasing the batch size to 64
resulted in a slight decline in the convergence speed, while reducing it to 16 increased the
gradient noise without conferring notable gains in accuracy.

The cross-entropy loss function was selected on the grounds of its suitability for classi-
fication tasks. The training process was conducted for a maximum of 100 epochs, with an
early stopping criterion designed to halt training if no improvement in the validation
performance was observed for 10 consecutive epochs. This criterion was subsequently
validated through testing of stopping patience values of 5, 10, and 15 epochs, wherein
10 epochs were identified as providing an optimal balance between preventing overfitting
and avoiding premature termination of training.

The finalization of these hyperparameter values was based on systematic experimen-
tation and a grid search on a validation set. Each parameter was tuned independently
while the others were held constant, and combinations were subsequently tested to confirm
their compatibility. This process ensured the stability and reliability of the training pipeline
while maximizing the model’s performance.

3.3. The Antispoofing Performance Experiment

In this section, we compared the proposed method with several leading 3D CNN ar-
chitectures. All of the networks utilized the processing techniques outlined in Figure 3, with
the only difference being the prediction network used. The test set consisted of 260 instances
of real fingerprint volume data and 260 instances of artificial fingerprint volume data. The
experimental results for the different methods are presented in Table 2.

Table 2. Comparison of results in OCT fingerprint antispoof detection.

Model AUC ERR TPR@FPR = 0.1 BCPER20

MobileNet [41] 0.991 0.044 0.804 0.582
ResNet [42] 0.997 0.023 0.973 0.051

DenseNet [43] 0.997 0.016 0.975 0.091
ResMamba 0.998 0.002 0.990 0.004

Note: The bold numbers represent the best evaluation metrics.
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Notably, our method demonstrates superior performance, achieving an error rate
of only 0.2%, validating its excellent antispoofing capabilities. Compared to other super-
vised networks, our proposed method effectively captures subtle differences in internal
struc-tures, even with a limited training set. The training set comprised data from only
10 individuals with real fingerprints and 10 types of artificial materials simulating external
fingerprint features. These results further prove our method’s strong generalization ability
in detecting synthetic samples.

As shown in Table 2, which compares the performance of MobileNet, ResNet, DenseNet,
and our proposed ResMamba model, ResMamba achieves the best performance across
several metrics. In particular, it shows significant advantages in terms of the AUC, error
rate (ERR), and TPR at a fixed FPR (TPR@FPR = 0.1). Notably, ResMamba scored just
0.004 on the BCPER20 metric. These results highlight that ResMamba outperforms the
other methods in terms of its accuracy and antispoofing capabilities, thus underscoring its
practical value for fingerprint recognition tasks.

3.4. The Runtime Performance Experiment

We evaluated the runtime performance of several CNN models using an NVIDIA
GeForce RTX 3080 GPU. Table 3 presents the key metrics, including the number of parame-
ters, GFLOPs, and inference time per volume dataset, for MobileNet, ResNet, DenseNet,
and the proposed ResMamba model. In the OCT fingerprint antispoofing detection task,
the full volume data must be processed to make a final decision. To ensure consistent
timing, we averaged the inference time over 100 sets of OCT volume data, which consisted
of 50 sets of artificial fingerprints and 50 sets of real fingerprints.

Table 3. Comparison of model parameters.

Model Param (M) GFLOPs Inference Time (ms)

MobileNet [41] 3.3 1.34 2.7
ResNet [42] 33.2 43.76 24.3

DenseNet [43] 25.38 55.3 59.9
ResMamba 13.62 22.91 11

As detailed in Table 3, MobileNet is the lightest model, with just 3.3 million parameters,
1.34 GFLOPs, and the fastest inference time of 2.7 ms. Furthermore, its compact architecture
reduces the model’s complexity, making it more suitable for resource-constrained envi-
ronments. ResNet, with 33.2 million parameters and 43.76 GFLOPs, has a more complex
structure and an inference time of 24.3 ms. DenseNet, known for its dense connectivity, has
25.38 million parameters. However, its GFLOPs are the highest at 55.3, and it requires the
longest inference time (59.9 ms), thus indicating its high computational demand.

In comparison, the proposed ResMamba model achieves an optimal balance be-
tween the parameter count and computational efficiency, with 13.62 million parameters,
22.91 GFLOPs, and an inference time of 11 ms. These results indicate that the ResMamba
model falls between ResNet and DenseNet in terms of its performance. Furthermore, due
to its optimized architectural design and the inclusion of the SIC module, it can enhance
feature learning without significantly increasing the parameter count.

In summary, ResMamba offers an ideal balance between speed and model complexity,
making it a competitive choice for applications that require high accuracy and computa-
tional efficiency.

3.5. The Ablation Experiment

Table 4 summarizes the results of ablation studies conducted with different SIC mod-
ule configurations to evaluate its contribution to the ResMamba model’s performance.
The configurations were assessed using AUC, EER, TPR@FPR = 0.1, and BCPER20.
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Table 4. Ablation experiment results.

Introduction Location AUC ERR TPR@FPR = 0.1 BCPER20

No introduction 0.977 0.056 0.908 0.140
Only introduced at the model’s early stage 0.986 0.015 0.983 0.009
Only in the first ResMamba layer 0.988 0.021 0.973 0.082
Only in the second ResMamba layer 0.988 0.030 0.953 0.051
Only in the third ResMamba layer 0.994 0.023 0.982 0.022
Only in all three ResMamba layers 0.981 0.070 0.866 0.224
Model’s early stage + first ResMamba layer 0.992 0.034 0.869 0.649
Model’s early stage + second ResMamba layer 0.994 0.014 0.971 0.033
Model’s early stage + third ResMamba layer 0.986 0.005 0.993 0.009
Model’s early stage + all three ResMamba layers 0.995 0.002 0.990 0.004

Note: The bold numbers represent the best evaluation metrics.

No SIC module: When the SIC module was not introduced at any stage, the model
achieved an AUC of 0.977, an EER of 0.056, and a TPR@FPR = 0.1 of 0.908. However,
the relatively high BCPER20 of 0.140 indicates a limited ability to handle challenging cases
and an elevated error rate.

The SIC module at specific layers: Introducing the SIC module into individual
ResMamba layers yielded the following outcomes:

• First layer only : With an AUC of 0.988 and a TPR@FPR = 0.1 of 0.973, this configura-
tion provided moderate improvements. However, an EER of 0.021 and a BCPER20 of
0.082 suggest the model still struggles in certain scenarios.

• Second layer only : This achieved an AUC of 0.988 and an EER of 0.030, with a
TPR@FPR = 0.1 of 0.953 and a BCPER20 of 0.051, indicating strong performance in
feature extraction but occasional misclassifications.

• Third layer only : This demonstrated the best performance among the single-layer
integrations, with an AUC of 0.994, an EER of 0.023, and a TPR@FPR = 0.1 of 0.982.
The BCPER20 of 0.022 highlights its effectiveness in reducing the number of false
positives and improving reliability.

SIC module in all ResMamba layers: When the SIC module was introduced across
all ResMamba layers, the model achieved an AUC of 0.981 but showed increased errors,
with an EER of 0.070 and a TPR@FPR = 0.1 of 0.866. The BCPER20 of 0.224 reflects a trade-off
in performance due to redundancy in feature extraction.

SIC module at the model’s early stage only: Introducing the SIC module solely at the
early stage resulted in significant gains. The model achieved an AUC of 0.986, an EER of
0.015, and a TPR@FPR = 0.1 of 0.983, with a BCPER20 of 0.009, showcasing the early stage’s
critical role in enhancing the feature representation and robustness.

Combined configurations: The integration of the SIC module at the model’s initial
stage combined with specific ResMamba layers further improved the model’s performance:

• Early stage + first ResMamba layer : Achieved an AUC of 0.992 and an EER of 0.034,
with a lower TPR@FPR = 0.1 of 0.869 and a higher BCPER20 of 0.649, indicating limited
improvement in error control.

• Early stage + second ResMamba layer : Showed an AUC of 0.994, an EER of 0.014,
and a TPR@FPR = 0.1 of 0.971, with a BCPER20 of 0.033, reflecting a balanced trade-off
between accuracy and error control.

• Early stage + third ResMamba layer : Demonstrated excellent performance, with an
AUC of 0.987, an EER of 0.005, a TPR@FPR = 0.1 of 0.993, and a BCPER20 of 0.009,
highlighting this configuration’s robustness.

• Early stage + all ResMamba layers : Produced the best overall results, with an AUC of
0.995, an EER of 0.002, and a TPR@FPR = 0.1 of 0.990. The lowest BCPER20 of 0.004 em-
phasizes this configuration’s superiority in enhancing the stability and predictive accuracy.
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The experimental results demonstrate that introducing the SIC module at the model’s
initial stage is essential for boosting the feature extraction and overall robustness. Moreover,
combining early-stage integration with selective placement in the ResMamba layers signifi-
cantly enhances the model’s performance. The best results are achieved with a dual-module
approach involving the model’s initial stage and all three RMB layers, effectively reducing
the error rates, improving the performance on complex tasks, and ensuring the ResMamba
model’s stability and reliability.

3.6. Visualization

Figure 5 shows the results of applying the GRAD-CAM technique to visualize the
features learned by the network, thus providing insights into the key information it utilizes
for prediction. In particular, Figure 5a displays a volumetric slice of a real finger. The net-
work predominantly focuses on the internal structures, as well as the surface fingerprint
patterns and sweat gland features. The model’s predictions demonstrate spatial continuity,
indicating smooth feature representation across neighboring regions. Meanwhile, Figure 5b
illustrates a spoof fingerprint that includes the internal and external structures. The net-
work focuses on the seams formed during the fabrication, which are key indicators of
fake fingerprints. By capturing these distinctive details, the network is able to make more
accurate identifications. Figure 5c presents a spoof fingerprint containing only external
structures. In this case, the network focuses on the contact area between the fake fingerprint
and the glass surface. Given that the characteristics of these regions differ significantly
from those of a real finger, the results provide important cues for the network to make
accurate classifications.

Figure 5. Grad-CAM [44]: Visualization of cross-sectional slices. (a) Heatmap of a cross-sectional
image of a real finger. (b) Heatmap of a cross-sectional image of an artificial fingerprint with external
fingerprint features. (c) Heatmap of a cross-sectional image of an artificial fingerprint with simulated
internal fingerprint features (cool-toned regions indicate the neural network’s focus areas).

4. Discussion

The proposed ResMamba model evinces considerable advancement in the perfor-
mance of OCT-based fingerprint antispoofing detection through the integration of the
selective state space module (SSM). In comparison to the most recent approaches, including
ResNet, DenseNet, and MobileNet, the ResMamba model demonstrates superior results
across a range of evaluation metrics. In particular, the model achieves an AUC of 0.998 and
a TPR@FPR = 0.1 of 0.99 while simultaneously reducing the ERR and BCPER20 to 0.002
and 0.004, respectively. These results serve to validate the exceptional capabilities of the
proposed approach in the context of fingerprint antispoofing. Moreover, the model exhibits
an optimal trade-off between its inference speed and computational complexity, with an
inference time of merely 11 ms and a parameter count of 13.62 M. These characteristics
render ResMamba particularly well suited to resource-constrained environments.

In contrast, the existing methods were found to exhibit distinct limitations. While
ResNet and DenseNet achieve strong accuracy, they are both computationally intensive and
challenging to deploy in real-time applications. MobileNet offers a lightweight alternative
with faster inference but lacks the precision required to handle complex spoofing scenarios.
Additionally, conventional algorithms relying on single-frame B-scan images fail to leverage
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the rich 3D spatial information of OCT data, resulting in reduced robustness against
sophisticated spoofing techniques, such as multilayered or biomimetic materials.

While ResMamba offers a number of advantages, it is not without limitations that
warrant further investigation. The model is contingent upon the availability of high-
quality 3D OCT datasets, which are costly to acquire and label, thereby constraining its
scalability. While the incorporation of the SSM facilitates long-range dependency modeling,
the resilience of this approach to highly intricate or unconventional spoofing materials
necessitates further assessment. Moreover, while ResMamba has been optimized for
OCT fingerprint antispoofing, its performance in multitasking environments, such as its
integration with other biometric recognition systems, remains to be investigated.

To address these limitations and enhance the model’s capabilities further, a number
of research avenues are proposed. Future work should concentrate on increasing the
diversity and size of the training datasets in order to enhance the model’s generalization
across different spoofing materials and conditions. Furthermore, the development of more
efficient architectures or the utilization of compression techniques could assist in reducing
the computational overhead while maintaining high accuracy. The integration of OCT
data with other biometric modalities, such as thermal or capacitive imaging, represents
a promising avenue for enhancing the robustness of detection. Moreover, the model’s
application could be extended to other biometric tasks, such as palm print or iris recognition,
in order to explore its adaptability across a range of domains.

Overall, the ResMamba model provides a robust and efficient solution for OCT fin-
gerprint antispoofing, demonstrating superior accuracy and computational efficiency com-
pared to those of the existing methods. By addressing its current limitations through data
diversification, architectural refinements, and application extensions, this model’s potential
will be further unlocked, paving the way for the development of advanced biometric
security solutions.

5. Conclusions

This study introduced the ResMamba model, a lightweight and efficient framework for
OCT-based fingerprint antispoofing. It leveraged the 3D spatial continuity of volume data
and a novel SIC module to address the limitations of the existing methods. The experimental
results highlight several critical findings.

• Enhanced detection accuracy and efficiency: The ResMamba model achieved state-
of-the-art performance, with an ERR of 0.2% and an AUC of 99.8%, significantly
surpassing that of the traditional methods. Its lightweight architecture ensures an
inference time of only 11 ms, making it suitable for real-time applications in resource-
constrained environments.

• Robustness against advanced spoofing techniques: By fully exploiting OCT vol-
umetric data, the model effectively distinguishes genuine fingerprints from those
created using complex multilayered materials, demonstrating strong generalization
capabilities even with a limited training dataset.

• Model limitations: Despite its advantages, the model’s reliance on OCT volume
data increases the computational requirements compared to those of 2D-image-based
approaches. Additionally, the robustness to rare or highly sophisticated spoofing ma-
terials, such as biomimetic polymers, requires further evaluation. The model’s reliance
on labeled data also poses challenges for its scalability to diverse fingerprint datasets.

• Future directions: Future work will focus on dataset diversity, architectural opti-
mization, and the integration of multimodal biometric data to further enhance the
robustness and scalability of the proposed model.

To summarize, the ResMamba model effectively balances accuracy, efficiency, and ro-
bustness in OCT-based fingerprint antispoofing. The proposed approach demonstrates
significant potential for addressing the current challenges in the field, with room for further
optimization and broader dataset exploration to enhance its applicability across diverse
biometric authentication systems.



Symmetry 2024, 16, 1603 15 of 17

Author Contributions: Conceptualization, X.M., L.A., and J.X.; data curation, X.M., Z.L., and S.Y.;
formal analysis, X.M., G.L., Y.H., J.Q., and L.A.; funding acquisition, G.L., Y.H., J.Q., L.A., J.X., and
J.C.; methodology, X.M., L.A., and J.X.; software, X.M., M.C., and Z.L.; validation, X.M.; visualization,
X.M., L.A., and J.X.; writing (original draft), X.M.; writing (review and editing), X.M., G.L., Y.H., J.Q.,
L.A., J.X., and J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(62005045, and 61975030); Guangdong Basic and Applied Basic Research Foundation (2024A1515011344);
Research Project of the Department of Education of Guangdong Province (2022ZDZX2055); Innovation
and Entrepreneurship Team Project of the Guangdong Pearl River Talent Program (2019ZT08Y105); and
Research Fund of the Guangdong–Hong Kong–Macao Joint Laboratory for Intelligent Micro–Nano-
Optoelectronic Technology (No. 2020B1212030010).

Institutional Review Board Statement: The protocol was approved by the Ethics Committee of
Medical Ethics Committee, Foshan University of Science and Technology (FUME2022001).

Informed Consent Statement: Informed consent for participation was obtained from all subjects
involved in the study.

Data Availability Statement: The data that support the findings of this study are available upon
request from the corresponding author.

Conflicts of Interest: Gongpu Lan, Yanping Huang, and Jingjiang Xu are consultants at Weiren
Meditech Co., Ltd. Jia Qin, and Lin An are currently working at Weiren Meditech Co., Ltd. The re-
maining authors declare no conflicts of interest. The funders had no role in the design of this study;
in the collection, analyses, or interpretation of the data; in the writing of this manuscript; or in the
decision to publish the results.

References
1. Das, A.; Galdi, C.; Han, H.; Ramachandra, R.; Dugelay, J.L.; Dantcheva, A. Recent advances in biometric technology for mobile

devices. In Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS),
Redondo Beach, CA, USA, 22–25 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–11.

2. Khan, T.M.; Bailey, D.G.; Khan, M.A.; Kong, Y. Efficient hardware implementation for fingerprint image enhancement using
anisotropic Gaussian filter. IEEE Trans. Image Process. 2017, 26, 2116–2126. [CrossRef] [PubMed]

3. Chugh, T.; Jain, A.K. OCT Fingerprints: Resilience to Presentation Attacks. arXiv 2019, arXiv:1908.00102. [CrossRef]
4. Meissner, S.; Breithaupt, R.; Koch, E. Defense of fake fingerprint attacks using a swept source laser optical coherence tomography

setup. In Proceedings of the Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIII, San Francisco,
CA, USA, 2–7 February 2013; SPIE: New York, NY, USA, 2013; Volume 8611, pp. 49–52.

5. Ametefe, D.S.; Sarnin, S.S.; Ali, D.M.; Zaheer, M. Fingerprint liveness detection schemes: A review on presentation attack. Comput.
Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 10, 217–240. [CrossRef]

6. Zukarnain, Z.A.; Muneer, A.; Ab Aziz, M.K. Authentication Securing Methods for Mobile Identity: Issues, Solutions and
Challenges. Symmetry 2022, 14, 821. [CrossRef]

7. Gamassi, M.; Lazzaroni, M.; Misino, M.; Piuri, V.; Sana, D.; Scotti, F. Quality assessment of biometric systems: A comprehensive
perspective based on accuracy and performance measurement. IEEE Trans. Instrum. Meas. 2005, 54, 1489–1496. [CrossRef]

8. Xiao, Q. Technology review-biometrics-technology, application, challenge, and computational intelligence solutions. IEEE Comput.
Intell. Mag. 2007, 2, 5–25. [CrossRef]

9. Sousedik, C.; Busch, C. Presentation attack detection methods for fingerprint recognition systems: A survey. Iet Biom. 2014,
3, 219–233. [CrossRef]

10. Aum, J.; Kim, J.H.; Jeong, J. Live acquisition of internal fingerprint with automated detection of subsurface layers using OCT.
IEEE Photonics Technol. Lett. 2015, 28, 163–166. [CrossRef]

11. Memon, N. How biometric authentication poses new challenges to our security and privacy [in the spotlight]. IEEE Signal Process.
Mag. 2017, 34, 196-194. [CrossRef]

12. Marasco, E.; Ross, A. A survey on antispoofing schemes for fingerprint recognition systems. ACM Comput. Surv. (CSUR) 2014,
47, 1–36. [CrossRef]

13. Darlow, L.N.; Webb, L.; Botha, N. Automated spoof-detection for fingerprints using optical coherence tomography. Appl. Opt.
2016, 55, 3387–3396. [CrossRef] [PubMed]

14. Sedik, A.; El-Latif, A.A.A.; El-Affendi, M.; Mostafa, H. A Cancelable Biometric System Based on Deep Style Transfer and
Symmetry Check for Double-Phase User Authentication. Symmetry 2023, 15, 1426. [CrossRef]

15. Lee, H.S.; Maeng, H.J.; Bae, Y.S. Fake finger detection using the fractional Fourier transform. In Proceedings of the Biometric ID
Management and Multimodal Communication: Joint COST 2101 and 2102 International Conference, BioID_MultiComm 2009,
Madrid, Spain, 16–18 September 2009; Proceedings 2; Springer: Berlin/Heidelberg, Germany, 2009; pp. 318–324.

http://doi.org/10.1109/TIP.2017.2671781
http://www.ncbi.nlm.nih.gov/pubmed/28237927
http://dx.doi.org/10.48550/arXiv.1908.00102
http://dx.doi.org/10.1080/21681163.2021.2012826
http://dx.doi.org/10.3390/sym14040821
http://dx.doi.org/10.1109/TIM.2005.851087
http://dx.doi.org/10.1109/MCI.2007.353415
http://dx.doi.org/10.1049/iet-bmt.2013.0020
http://dx.doi.org/10.1109/LPT.2015.2487962
http://dx.doi.org/10.1109/MSP.2017.2697179
http://dx.doi.org/10.1145/2617756
http://dx.doi.org/10.1364/AO.55.003387
http://www.ncbi.nlm.nih.gov/pubmed/27140346
http://dx.doi.org/10.3390/sym15071426


Symmetry 2024, 16, 1603 16 of 17

16. Ding, Y.; Ross, A. An ensemble of one-class SVMs for fingerprint spoof detection across different fabrication materials. In
Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, United Arab
Emirates, 4–7 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–6.

17. Marcialis, G.L.; Roli, F.; Tidu, A. Analysis of fingerprint pores for vitality detection. In Proceedings of the 2010 20th International
Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: New York, NY, USA, 2010; pp. 1289–1292.

18. Galbally, J.; Alonso-Fernandez, F.; Fierrez, J.; Ortega-Garcia, J. A high performance fingerprint liveness detection method based
on quality related features. Future Gener. Comput. Syst. 2012, 28, 311–321. [CrossRef]

19. Park, E.; Kim, W.; Li, Q.; Kim, J.; Kim, H. Fingerprint liveness detection using CNN features of random sample patches. In
Proceedings of the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 21–23
September 2016; IEEE: New York, NY, USA, 2016; pp. 1–4.

20. Wang, C.; Li, K.; Wu, Z.; Zhao, Q. A DCNN based fingerprint liveness detection algorithm with voting strategy. In Proceedings of
the Biometric Recognition: 10th Chinese Conference, CCBR 2015, Tianjin, China, 13–15 November 2015; Proceedings 10; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 241–249.

21. Drahansky, M.; Notzel, R.; Funk, W. Liveness detection based on fine movements of the fingertip surface. In Proceedings of the
2006 IEEE Information Assurance Workshop, West Point, NY, USA, 21–23 June 2006; IEEE: New York, NY, USA, 2006; pp. 42–47.

22. Reddy, P.V.; Kumar, A.; Rahman, S.; Mundra, T.S. A new antispoofing approach for biometric devices. IEEE Trans. Biomed. Circuits
Syst. 2008, 2, 328–337. [CrossRef]

23. Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.;
et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [CrossRef] [PubMed]

24. Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In
High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Bille, J.F., Ed.; Springer: Cham,
Switzerland, 2019.

25. Ding, B.; Wang, H.; Chen, P.; Zhang, Y.; Guo, Z.; Feng, J.; Liang, R. Surface and internal fingerprint reconstruction from optical
coherence tomography through convolutional neural network. IEEE Trans. Inf. Forensics Secur. 2020, 16, 685–700. [CrossRef]

26. Darlow, L.N.; Connan, J. Efficient internal and surface fingerprint extraction and blending using optical coherence tomography.
Appl. Opt. 2015, 54, 9258–9268. [CrossRef]

27. Sun, S.; Guo, Z. Sweat glands extraction in optical coherence tomography fingerprints. In Proceedings of the 2017 International
Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Shenzhen, China, 15–17 December 2017; IEEE: New York, NY,
USA, 2017; pp. 579–584.

28. Cheng, Y.; Larin, K.V. Artificial Fingerprint Recognition by Using Optical Coherence Tomography with Autocorrelation Analysis.
Appl. Opt. 2006, 45, 9238–9245. [CrossRef]

29. Bossen, A.; Lehmann, R.; Meier, C. Internal Fingerprint Identification With Optical Coherence Tomography. IEEE Photonics
Technol. Lett. 2010, 22, 507–509. [CrossRef]

30. Liu, M.; Buma, T. Biometric Mapping of Fingertip Eccrine Glands With Optical Coherence Tomography. IEEE Photonics Technol.
Lett. 2010, 22, 1677–1679. [CrossRef]

31. Liu, F.; Liu, G.; Wang, X. High-Accurate and Robust Fingerprint Anti-Spoofing System Using Optical Coherence Tomography.
Expert Syst. Appl. 2019, 130, 31–44. [CrossRef]

32. Sun, H.; Zhang, Y.; Chen, P.; Wang, H.; Guo, Z.; He, Y.H.; Liang, R. Synchronous Fingerprint Acquisition System Based on Total
Internal Reflection and Optical Coherence Tomography. IEEE Trans. Instrum. Meas. 2020, 69, 8452–8465. [CrossRef]

33. Liu, F.; Liu, H.; Zhang, W.; Liu, G.; Shen, L. One-Class Fingerprint Presentation Attack Detection Using Auto-Encoder Network.
IEEE Trans. Image Process. 2021, 30, 2394–2407. [CrossRef] [PubMed]

34. Sun, H.; Zhang, Y.; Chen, P.; Wang, H.; Liu, Y.P.; Liang, R. A new approach in automated fingerprint presentation attack detection
using optical coherence tomography. IEEE Trans. Inf. Forensics Secur. 2023, 18, 4243–4257. [CrossRef]

35. Zhang, Y.; Yu, S.; Pu, S.; Wang, Y.; Wang, K.; Sun, H.; Wang, H. 3D CNN-based Fingerprint Anti-Spoofing through Optical
Coherence Tomography. Heliyon 2023, 9, e20052. [CrossRef]

36. Gu, A.; Johnson, I.; Goel, K.; Saab, K.; Dao, T.; Rudra, A.; Ré, C. Combining recurrent, convolutional, and continuous-time models
with linear state space layers. Adv. Neural Inf. Process. Syst. 2021, 34, 572–585.

37. Gupta, A.; Gu, A.; Berant, J. Diagonal state spaces are as effective as structured state spaces. Adv. Neural Inf. Process. Syst. 2022,
35, 22982–22994.

38. Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752.
39. Gu, A.; Goel, K.; Ré, C. Efficiently modeling long sequences with structured state spaces. arXiv 2021, arXiv:2111.00396.
40. Zhang, Y.; He, X.; Zhan, C.; Li, J. Visual State Space Model for Image Deraining with Symmetrical Scanning. Symmetry 2024, 16.

[CrossRef]
41. Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://dx.doi.org/10.1016/j.future.2010.11.024
http://dx.doi.org/10.1109/TBCAS.2008.2003432
http://dx.doi.org/10.1126/science.1957169
http://www.ncbi.nlm.nih.gov/pubmed/1957169
http://dx.doi.org/10.1109/TIFS.2020.3016829
http://dx.doi.org/10.1364/AO.54.009258
http://dx.doi.org/10.1364/AO.45.009238
http://dx.doi.org/10.1109/LPT.2010.2041347
http://dx.doi.org/10.1109/LPT.2010.2079926
http://dx.doi.org/10.1016/j.eswa.2019.03.053
http://dx.doi.org/10.1109/TIM.2020.2988988
http://dx.doi.org/10.1109/TIP.2021.3052341
http://www.ncbi.nlm.nih.gov/pubmed/33493115
http://dx.doi.org/10.1109/TIFS.2023.3293414
http://dx.doi.org/10.1016/j.heliyon.2023.e20052
http://dx.doi.org/10.3390/sym16070871


Symmetry 2024, 16, 1603 17 of 17

43. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

44. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	The Proposed Method
	Preliminaries
	State Space Models
	Discretization
	A Selective Scan Mechanism

	The SSM in the Convolution Module
	The ResMamba Block
	ResMamba for OCT Fingerprint Antispoofing
	The Antispoofing Method

	Experiments and Analysis
	OCT Systems and Data Acquisition
	Experimental Settings
	Datasets
	Evaluation Metrics
	Optimization

	The Antispoofing Performance Experiment
	The Runtime Performance Experiment
	The Ablation Experiment
	Visualization

	Discussion
	Conclusions
	References

