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Abstract: In the era of big data, cloud, internet of things, virtual communities, and interconnected
networks, the prominence of multiview data is undeniable. This type of data encapsulates diverse
feature components across varying perspectives, each offering unique insights into the same un-
derlying samples. Despite being sourced from diverse settings and domains, these data serve the
common purpose of describing the same samples, establishing a significant interrelation among them.
Thus, there arises a necessity for the development of multiview clustering methodologies capable of
leveraging the wealth of information available across multiple views. This study introduces two novel
weighted multiview k-means algorithms, W-MV-KM and weighted multiview k-means using L2
regularization, W-MV-KM-L2, designed specifically for clustering multiview data. These algorithms
incorporate feature weights and view weights within the k-means (KM) framework. Our approach
emphasizes a weighted multiview learning strategy, which assigns varying degrees of importance
to individual views. We evaluate the clustering performance of our algorithms on seven diverse
benchmark datasets spanning dermatology, textual, image, and digit domains. Through extensive
experimentation and comparisons with existing methods, we showcase the superior effectiveness
and utility of our newly introduced W-MV-KM-L2 algorithm.

Keywords: k-means; clustering; multiview; weighted multiview k-means (W-MV-KM)

1. Introduction

Clustering is one of the basic methods to uncover the underline structure within
data. Clustering divides a dataset into clusters, where data points contained within each
cluster display strong similarity, while those belonging to separate clusters demonstrate
significant dissimilarity [1,2]. In the era of the internet of things (IoT) and big data, a
substantial volume of data is generated across various areas of interest. The collected data
originate from various sources or multiple views with diverse representations, including
documents in different languages, mobile internet usage, social networks, multimedia
data analysis, information and image retrieval, healthcare applications, and scientific
research. In multivariate analysis, clustering methods can generally be categorized into
two main approaches: probability model-based clustering and nonparametric clustering.
This study focuses on the latter, emphasizing nonparametric clustering techniques. Several
widely used nonparametric clustering methods are used in the literature, including the
k-means [3,4], fuzzy c-means [5–7], and possibilistic c-means [8,9]. However, while these
clustering techniques may work well for low-dimensional data, they are not well suited
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for high-dimensional datasets. Multiview learning is gaining ground as a promising path
within the field of pattern recognition and machine learning. Unlike conventional single-
view clustering, multiview clustering leverages valuable feature knowledge from diverse
perspectives to enhance clustering performance; multiview data encompass more shared,
complementary, and redundant information. Numerous methodologies for multiview
clustering methods have been proposed in order to increase the efficacy.

In the multiview clustering literature, Bickel and Scheffer [10] were the first to intro-
duce multiview clustering as a method for handling multiview data. Since then, numerous
researchers in the multiview clustering literature have contributed to advancements across
various domains, such as in the paradigm of unsupervised multiview clustering (Yang and
Hussain [11] and Hussain et al. [12]). In the field of multiview graph learning, various re-
searchers have made significant contributions [13–17]. For incomplete multiview clustering,
algorithms were proposed by [18–22]. In the area of tensor-based multiview clustering, no-
table algorithms have been proposed by Liu and Song [23], Li et al. [24], Chen et al. [25] and
Benjamin and Yang [26]. Regarding multiview feature learning, several schemes have been
developed. For example, Xu et al. [27] proposed feature learning for contrastive clustering,
Zhang et al. [28] introduced sparse feature selection for images, Tang et al. [29] intro-
duced consensus learning for unsupervised feature selection, and Xu et al. [30] presented a
weighted multiview scheme for feature selection. In weighted multiview clustering, several
researchers have made valuable contributions. Jiang et al. [31] introduced collaborative
fuzzy clustering, Wang and Chen [32] proposed minimax optimization for fuzzy clustering,
Yang and Sinaga [33] developed a feature reduction algorithm for k-means, and Yang and
Sinaga [34] also proposed a collaborative scheme for FCM clustering. Some recent weighted
multiview clustering techniques have been proposed. Benjamin and Yang [35] presented an
algorithm for PCM using L2 regularization, Khan et al. [36] introduced a weighted concept-
based scheme for incomplete multiview clustering, Zhou et al. [37] proposed evidential
c-means clustering in a multiview scenario, Liu et al. [38] introduced an adaptive scheme
with feature preference, Ouadfel and Abd Elaziz [39] proposed a multi-objective gradient
optimizer approach-based scheme, Houfar et al. [40] introduced a binary weighted scheme
in a multiview scenario, and Liu et al. [41] proposed a weighted scheme in evidential
clustering in a multiview paradigm.

The rest of this study is structured as follows: Section 2 introduces a literature review.
In Section 3, we introduce the weighted multiview k-means algorithms designed for
clustering multiview datasets. Experimental results and comparisons with existing methods
are discussed in Section 4. Discussions are outlined in Section 5. Lastly, Section 6 concludes
this study and offers some future recommendations, particularly suggesting the use of
a point symmetry-based distance instead of Euclidean distance to better capture cluster
symmetry behaviors [42,43].

2. Literature Review

In this section, we review some multiview clustering algorithms that we compared
with our proposed algorithms. We use two hard clustering algorithms built on multiview k-
means, and two soft clustering algorithms based on multiview fuzzy c-means are discussed.

Xu et al. [30] introduced a multiview clustering algorithm based on k-means, termed
the multiview weighted algorithm with feature selection (WMCFS). This algorithm incor-
porates two approaches for data points and feature selection. The objective function of
WMCFS, as described by Xu et al. [30], is as follows:

JWMCFS(U, A, W) =
s

∑
h=1

(vh)
α

c

∑
k=1

n

∑
i=1

zik

dh

∑
j=1

(
wh

j

(
xh

ij − ah
kj

))2
+ τ

s

∑
h

dh

∑
j=1

(
wh

j

)2
(1)

The parameter α is utilized to regulate the sparsity of view weights, while τ is em-
ployed to regulate the sparsity of feature weights. In WMCFS, the balancing parameter τ is
utilized to control the feature weights within each view.
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Yang and Sinaga [33] introduced the feature reduction multiview k-means (FRMVKM)
clustering algorithm. The objective function of FRMVKM [33] is defined as:

JFRMVKM(U, A, V, W) =
s

∑
h=1

(vh)
α

c

∑
k=1

n

∑
i=1

zik

dh

∑
j=1

wh
j δh

j

(
xh

ij − ah
kj

)2
+

n
dh

s

∑
h=1

dh

∑
j=1

wh
j ln wh

j δh
j (2)

In this formulation, δh
j represents the parameter used to control the feature weights

within the k-th cluster of each view, while α > 0 denotes the view weight.
Jiang et al. [31] presented another extension to the multiview clustering algorithm,

termed WV-Co-FCM. In this approach, they accounted for varying weights for each view,
incorporating parameters to control the distribution of these view weights. The objective
function of WV-Co-FCM is expressed as:

JWV−Co−FCM(U, A, V) =
s

∑
h=1

vh

[
n

∑
i=1

c

∑
k=1

(
zh

ik

)m(
dh

ik

)2
+ ∆h

]
+ λ

s

∑
h=1

vh ln vh (3)

where vh is the h-th view weight with
s
∑

h=1
vh = 1, λ > 0 used to regulate view weights, ∆h =

n
∑

i=1
αh

ik

c
∑

k=1
zh

ik

(
1 −

(
zh

ik

)m−1
)
−

n
∑

i=1
τh

ik

c
∑

k=1
zh

ik

(
1 −

(
zh

ik

)m−1
)

, and dh
ik =

√
dh
∑

j=1

(
xh

ij − ah
kj

)2
.

WV-Co-FCM is designed to address multiview data, where weights play a crucial
role in the final step. Specifically, without the influence of weights, the membership of the
cluster center and each object are updated independently.

Wang and Chen [32] presented the Minmax-FCM clustering algorithm, which operates
without a collaboration step and considers different weights for each view. Minmax-FCM is
constructed based on the single-view FCM, where it evaluates the least distance between the
membership matrix (U∗) and cluster centers (Ah) in each view. The extreme value within
views (vh) influences the smallest separation between (U∗) and (Ah). Consequently, the
consistent clustering results in Minmax-FCM are achieved through Minmax optimization,
aiming to minimize dissimilarities across diverse views. The formulation of Minmax-
FCM [35] is as follows:

min
U∗ ,{Ah}s

h=1

max
{vh}s

h=1

s

∑
h=1

(vh)
αQh (4)

In the Minmax-FCM scenario, Qh =
n
∑

i=1

c
∑

k=1

(
z∗ik
)m
∥∥∥xh

i − ah
k

∥∥∥2
and α serve as user-

defined parameters to regulate the distribution of views.
While previous works, such as WMCFS, FRMVKM, WVCoFCM, and Minmax-FCM,

have made significant contributions to multiview clustering by focusing on feature selection,
relevance filtering and different weights for views, there remains a gap in the effective
integration of feature and view weights within the k-means framework. Specifically,
existing algorithms focus either exclusively on feature selection (e.g., WMCFS) or weight
adjustment (e.g., FRMVKM and WVCoFCM) but fail to comprehensively combine feature
and view weights within a unified clustering strategy. Although the Minmax FCM takes
view weights into account, it does not include a collaboration step, which further limits its
ability to effectively capture the interdependencies between features and views. In response
to this gap, we propose two novel algorithms, W-MV-KM and W-MV-KN-L2-Norm, both of
which are based on the k-means algorithm and integrate feature weights and view weights
in a synergistic manner. These algorithms provide an innovative approach by extending the
k-means framework with weighted strategies to better capture the complex relationships
in multiview datasets, improve clustering performance, and ensure more accurate feature
selection. This contribution addresses the limitations of previous methods and presents a
more comprehensive solution for multiview clustering.
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3. Weighted Multiview K-Means Clustering

In this section, we introduce two weighted multiview k-means clustering algorithms
tailored for multiview data. We additionally explore the clustering performance of weighted
multiview k-means in comparison to existing multiview clustering algorithms. Con-
sider a multiview dataset denoted as X, comprising h views and dh features, where

X = {x1, x2, . . . , xn} in the Euclidean space Rdh where xi =
{

xh
i

}s

h=1
. Let us consider

the view vector weight vh ∈ [0, 1], V = [vh]1×s with
s
∑

h=1
vh = 1. let Z = [zik]n×c, where

zik = 1 assuming the data point xi belongs to the k-th cluster, zik = 0 otherwise, i.e.,

zik ∈ [0, 1], let W =
[
wj
]

1×dh
where wj =

{
wh

j

}s

h=1
, let A = {a1, a2, . . . , ac} be the c clusters.

Therefore, we introduce our first weighted multiview k-means (W-MV-KM) algorithm,
which assigns distinct weights to both views and features. Our objective is to devise a
weighted scheme that aims to discern the significance of views as well as features within
each view. The objective function for the proposed W-MV-FCM is

J(V, Z, A, W) = ∑s
h=1 (vh)

α∑n
i=1 ∑c

k=1 zik∑dh
j=1

(
wh

j

)τ(
xh

ij − ah
kj

)2
(5)

Theorem 1. Assume zik ∈ [0, 1], let W =
[
wj
]

1×dh
, ∑dh

j=1 wh
j = 1 and vh is the view weight

for the h-th view
s
∑

h=1
vh = 1. The constraints for minimizing the objective function of W-MV-

KM J(V, Z, A, W) are as follows:

ah
kj =

n
∑

i=1
zikxh

ij

n
∑

i=1
zik

(6)

zik =

 1 if
s
∑

h=1
(vh)

α
dh
∑

j=1

(
wh

j

)τ(
xh

ij − ah
kj

)2
=

min
1 ≤ k ≤ c

s
∑

h=1
(vh)

α
dh
∑

j=1

(
wh

j

)τ(
xh

ij − ah
kj

)2

0 otherwise
(7)

vh =


s

∑
h′=1


n
∑

i=1

c
∑

k=1
zik

dh
∑

j=1

(
wh

j

)τ(
xh

ij − ah
kj

)2

n
∑

i=1

c
∑

k=1
zik

dh
∑

j=1

(
wh′

j

)τ(
xh′

ij − ah′
kj

)2


1/α − 1


−1

(8)

wh
j =

 dh

∑
j′=1

 (vh)
α

n
∑

i=1

c
∑

k=1
zik

(
xh

ij − ah
kj

)2

(vh)
α

n
∑

i=1

c
∑

k=1
zik

(
xh

ij′ − ah
kj′

)2


1/τ − 1


−1

(9)

Proof. For the optimization of the proposed W-MV-KM, the Lagrange multiplier tech-

nique is used. J(V, Z, A, W) =
s
∑

h=1
(vh)

α
n
∑

i=1

c
∑

k=1
zik

dh
∑

j=1

(
wh

j

)τ(
xh

ij − ah
kj

)2
+ λ1

(
s
∑

h=1
vh − 1

)
+

λ2

(
dh
∑

j=1
wh

j − 1

)
regarding the cluster center, membership, view weight, and feature weight,

the constraints for minimizing the W-MV-KM are as follows. Initially, we hold V, W, and Z
fixed and solve the updated equation for the cluster center. By taking the partial deriva-
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tive of the J(V, Z, A, W) with respect to ah
kj and making them equal to zero, we have

∂J
∂ah

kj
= (vh)

α
n
∑

i=1
zik

(
wh

j

)τ
(−2)

(
xh

ij − ah
kj

)
= 0; solving for ah

kj, we obtain the updated Equa-

tion (6). Subsequently, with V, A, and W held constant, we solve the updated equation
for the membership. By taking the partial derivative of the Lagrangian concerning zik and
equating it to 0, we obtain Equation (7). Assuming Z, A, and W are fixed, we proceed
with the partial derivative of the Lagrangian J(V, Z, A, W) with respect to vh and equate

the result to 0. ∂J
∂vh

= αvα−1
h

n
∑

i=1

c
∑

k=1
zik

dh
∑

j=1

(
wh

j

)τ(
xh

ij − ah
kj

)2
+ λ1 = 0. We obtain the up-

dated Equation (8) for the view weight. Given fixed Z, A, and V, we compute the partial
derivative of the Lagrangian J(V, Z, A, W) with respect to vh and set it equal to zero, such

that ∂J
∂wh

j
= (vh)

α
n
∑

i=1

c
∑

k=1
zikτ

(
wh

j

)τ−1(
xh

ij − ah
kj

)2
+ λ2 = 0. Upon solving the equation, we

can drive the updating Equation (9) for the feature weight wh
j . Therefore, the proposed

W-MV-KM algorithm can be summarized as Algorithm 1. □

Algorithm 1. The W-MV-KM Algorithm.

Input : Dataset X = {x1, x2, . . . . . . , xn} with xi =
{

xh
i

}s

h=1
and xh

i =
{

xh
ij

}dh

j=1
,

“c” number of cluster and ε > 0

Output : ah
kj, zik, wh

j and vh.

Initialization : Randomly generate Z(t). Initialize the feature weight

Wh(0) =
[
wh

j

]
1×dh

, 1 ≤ j ≤ dh with
d
∑

j=1
wj = 1 by wh

j = 1/dh , initialize view weight

V(0) = [vh]1×s (user may define vh = 1/s∀h), and set t = 1.

Step 1: Compute the cluster centers Ah(t) using Z(t−1) by Equation (6).

Step 2: Update the membership matrix Z(t) using Ah(t), V(t−1) and Wh(t−1) by
Equation (7).

Step 3: Update the view weight V(t) by (8) using Z(t), Ah(t) and Wh(t−1).

Step 4: Update the feature weight Wh(t) using (9) Z(t), Ah(t) and V(t).

Step 5: If
∣∣∣∥∥∥Wh(t)

∥∥∥− ∥∥∥Wh(t−1)
∥∥∥∣∣∣ < ε, then stop;

Else go back to Step 1.

In W-MV-KM, α and τ represent two exponent parameters utilized for regulating the
distribution of feature weights and view weights. When both α and τ are set to zero, the
W-MV-KM objective function simplifies to the k-means objective function.

We aim to discover an optimal combination of α and τ values to minimize the intra-
cluster variance of the h-th view and j-th features. The parameter α regulates the distribution

of view weights. Let F1(h) =
c
∑

k=1

n
∑

i=1

dh
∑

j=1
zik

(
wh

j

)τ(
xh

ij − ah
kj

)2
then Equation (8) will can be

expressed as vh = 1/

 1
∑

h′=1
(F1(h)/F1(h′))

1
α − 1

 , where F1(h) is the intra-cluster variance.

When values of α ≤ 1, Equation (8) suggests that only one view is chosen for clustering,
which is not suitable for handling multiview datasets. As the values of α increase, the distri-
bution of view weights becomes more uniform, indicating that more views will contribute
to the clustering process. Conversely, the parameter τ, which governs the distribution of
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feature weights, can be examined as follows: Let us use F2(h) =
s
∑

h=1
vα

h

c
∑

k=1

n
∑

i=1
zik

(
xh

ij − ah
kj

)2

to represent the intra-cluster variance of the j-th feature. With this, Equation (9) can be

expressed as wh
j = 1/

 dh′
∑

j=1
(F2(j)/F2(j′))

1
τ − 1

 . If τ = 1, this indicates the selection

of only one feature. Then, we need to select values of τ that stabilize the algorithm and
ultimately yield favorable results for W-MV-KM.

The clustering outcomes are influenced by the parameters α and τ in the W-MV-KM
algorithm, posing challenges in both the control and estimation of results. Hence, to
manage and stabilize these effects, we set the values of both α and τ to 2. This is how we
apply regularization to the objective function for both the feature and view weights. We
subsequently introduce another multiview learning approach for W-MV-KM, integrating L2
regularization, which we refer to as W-MV-KM-L2. In W-MV-KM-L2, L2 regularization is
applied to both the features and view weights. The objective function of the W-MV-KM-L2
is formulated in the following:

J(V, Z, A, W) =
s
∑

h=1
(vh)

2 n
∑

i=1

c
∑

k=1

dh
∑

j=1
zik

(
wh

j

)2(
xh

ij − ah
kj

)2
+ α

s
∑

h=1
∥vh∥2

2 + τ
dh
∑

j=1

∥∥∥wh
j

∥∥∥2

2

s
∑

h=1
vh = 1,

dh
∑

j=1
wh

j = 1,
dh
∑

j=1

∥∥∥wh
j

∥∥∥2

2
=

dh
∑

j=1

(
wh

j

)2
,

s
∑

h=1

∥∥∥vh
j

∥∥∥2

2
=

s
∑

h=1
(vh)

2.
(10)

In Algorithm 2, we incorporate the exponential parameters α and τ with the regu-
larization framework. This integration serves to control the distribution of both features
and views. In W-MV-KM, the parameters α and τ are determined by the user, while in
W-MV-KM-L2, we calculate the parameters within the regularization terms by means of the

equations α = c/dh and τ =
n
∑

i=1

∥∥∥xh
i − xh

i

∥∥∥2
/n. Likewise, we derive the updating equations

for the W-MV-KM-L2 objective function through the utilization of the Lagrange multiplier.
Consequently, we derive Theorem 2, as presented below.

Theorem 2. Suppose
s
∑

h=1
vh = 1, vh ∈ [0, 1] and

dh
∑

j=1
wh

j = 1, wj ∈ [0, 1]. The necessary conditions

for minimizing the objective function JW−MV−KM−L2(V, Z, A, W) are

ah
kj =

∑n
i=1 zikxh

ij

∑n
i=1 zik

(11)

zik =

 1 if
s
∑

h=1
(vh)

2
dh
∑

j=1

(
wh

j

)2(
xh

ij − ah
kj

)2
=

min
1 ≤ k ≤ c

s
∑

h=1
(vh)

2
dh
∑

j=1

(
wh

j

)2(
xh

ij − ah
kj

)2

0 otherwise
(12)

vh =
s

∑
h′=1


n
∑

i=1

c
∑

k=1
zik

dh
∑

j=1

(
wh

j

)2(
xh

ij − ah
kj

)2
+ α

n
∑

i=1

c
∑

k=1
zik

dh
∑

j=1

(
wh′

j

)2(
xh′

ij − ah′
kj

)2
+ α


−1

(13)

wh
j =

dh

∑
j′=1

 (vh)
2 n

∑
i=1

c
∑

k=1
zik

(
xh

ij − ah
kj

)2
+ τ

(vh)
2 n

∑
i=1

c
∑

k=1
zik

(
xh

ij′ − ah
kj′

)2
+ τ


−1

(14)
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Proof. To demonstrate the optimization problem described in Equation (10), we employ
the Lagrange multipliers. Consequently, we construct the Lagrangian function as follows.
We first set W, V and Z to solve the updated equation for cluster centers ah

kj. We achieve this

by computing partial derivatives with respect to ah
kj and subsequently setting them equal

to zero, yielding the following equation ∂J
∂
(

ah
kj

) = (vh)
2 n

∑
i=1

zik

(
wh

j

)2(
xh

ij − ah
kj

)
(−2) = 0.

Upon solving for ah
kj, we obtained the updated Equation (11) ah

kj =

n
∑

i=1
zikxh

ij

n
∑

i=1
zik

. Subsequently,

by fixing A, W, and V, we proceed to solve the updated equation for the membership
degree zik. After computing the partial derivative of J(V, Z, A, W) with respect to zik

and setting it equal to zero, we obtain ∂J
∂zik

=
s
∑

h=1
(vh)

2
dh
∑

j=1

(
wh

j

)2(
xh

ij − ah
kj

)2
= 0. From

this, we obtain the updated Equation (12). Consequently, with fixed Z, A, and W, we
compute the partial derivative of J(Z, A, W, V) with respect to vh and equating it to zero,

we have ∂J
∂vh

= 2(vh)
n
∑

i=1

c
∑

k=1
zik

dh
∑

j=1

(
wh

j

)2(
xh

ij − ah
kj

)2
+ 2α(vh) + λ1 = 0. Further solving this

equation leads to the derivation of the updated Equation (13). We compute the partial
derivative of J(V, Z, A, W) with respect to wh

j and set it to zero. The results obtained are

as follows ∂J
∂wh

j
= (vh)

2 n
∑

i=1

c
∑

k=1
zik(2)

(
wh

j

)(
xh

ij − ah
kj

)2
+ 2τ

(
wh

j

)
+ λ3 = 0; therefore, the

updated Equation (14) is obtained. □

Algorithm 2. The W-MV-KM-L2 Algorithm

Input : Dataset X = {x1, x2, . . . , xn} with xi =
{

xh
i

}s

h=1
and xh

i =
{

xh
ij

}dh

j=1
, “c” number

of cluster and ε > 0.

Output: ah
kj, zik, wh

j and vh.

Initialization : Randomly generate Z(t). Initialize the feature weight Wh(0) =
[
wh

j

]
1×dh

,

1 ≤ j ≤ dh with
d
∑

j=1
wj = 1 by wh

j = 1/dh , initialize view weight V(0) = [vh]1×s

(user may define vh = 1/s∀h), and set t = 1.

Step 1: Calculate α = c/dh and τ =
n
∑

i=1

(
xh

i − xh
i

)2
/n where τ is the covariance of

the data points in the hth view.

Step 2: Compute the cluster centers Ah(t) using Z(t−1) by Equation (11).

Step 3: Update the membership matrix Z(t) using Ah(t), Wh(t−1) and V(t−1) by
Equation (12).

Step 4: Update the view weight V(t) using (13) Z(t), Wh(t−1) and Ah(t).

Step 5: Update the feature weight Wh(t) using Equation (14) Z(t), V(t) and Ah(t).

Step 6: If
∣∣∣∥∥∥Wh(t)

∥∥∥− ∥∥∥Wh(t−1)
∥∥∥∣∣∣ < ε, then stop.

Otherwise, go back to Step 2.

The W-MV-KM-L2 incorporates parameters α and τ, which play a vital role in deter-
mining the classification of view weights and feature weights. To regulate the behavior
of α and τ, we select appropriate values of parameters in a manner that ensures the sta-
bility of the algorithm, thus enabling the computation of final estimates. The parameters
α and τ in the W-MV-KM-L2 objective function are computed through α = c/dh and
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τ =
n
∑

i=1

(
xh

i − xh
i

)2
/n, where c signifies the total number of clusters and dh signifies the

total number of features in each view. If the value of dh is larger than the value of α,
it becomes very small and consequently does not significantly contribute to the deter-
mination of view weights. The role of c becomes crucial in regulating the values of α.

Let G1(h) =
c
∑

k=1

n
∑

i=1

dh
∑

j=1
zik

(
wh

j

)2(
xh

ij − ah
kj

)2
be the intra-cluster variances in the h-th view.

Then, it becomes vh =
s
∑

h′=1
[G1(h) + αh/G1(h′) + αh′ ]. Smaller values of αh will result in

smaller weights, whereas large values of αh′ will lead to larger view weights vh. This
demonstrates that αh supervises the weights in each view. Thus, view weights are uti-
lized to update the feature weights wh

j in each view. Meanwhile, the other parameter

τ is estimated using the sample variance for each view, such that τ =
n
∑

i=1

(
xh

i − xh
i

)2
/n

and it is utilized to regulate the distribution in each view. From Equation (14), we regard

G2(j) =
s
∑

h=1
(vh)

2 c
∑

k=1

n
∑

i=1
zik

(
xh

ij − ah
kj

)2
as the intra-cluster variance of the features in view.

Thus, Equation (14) becomes wh
j =

dh
∑

j′=1

[
G2(j) + τj

G2(j′) + τj′

]
. If the values of τj are larger, then the

feature weights also become larger, whereas if the values of τj are smaller, then the feature
weights also become smaller. Hence, τj is employed to diminish the feature weights that
are irrelevant. Consequently, features with larger weights are prioritized over those with
smaller weights.

Computational Complexity: We conduct an analysis of computational complexity
for both the proposed W-MV-KM algorithm and the W-MV-KM-L2 algorithm. These
algorithms can be segmented into four parts: (1) compute the cluster center ah

k with O(nsc);
(2) update the membership degree zik with O(nsc2d); (3) update the view weight vh with
O
(
nscd2

h
)
; (4) update the feature weights vh with O

(
nscd2

h
)
. The total computational

complexity for the W-MV-KM and W-MV-KM-L2 algorithm is O
(
nsc2dh + nsc2dh

)
. where n

represents the number of data points, s denotes the number of views, c signifies the number
of clusters, and dh stands for the dimensionality of data points.

4. Experimental Comparisons and Results

In this section, two synthetic and seven real-life datasets are used to demonstrate
the performance of the proposed W-MV-KM-L2 algorithm. We compare the W-MV-KM-
L2 algorithm with five existing algorithms, W-MV-KM, WMCFS [30], WV-Co-FCM [31],
Minmax-FCM [32], and FRMVKM [33], in this section. For the experiments, we use the
same initializations for the cluster center, feature weight, and view weights. For measuring
the clustering performance, we use the following evaluation measures: accuracy rate
(AR), Jaccard index (JI) [44], Fowlkes–Mallows index (FMI) [45], Rand Index (RI) [46],
and normalized mutual information (NMI) [47]. Accuracy rate (AR) is the term used to
describe the proportion of correct predictions or classifications made by a model or system,
expressed as a percentage of the total number of predictions or classifications attempted.
The Jaccard index (JI) [44] shows how similar two sets are by comparing the number of
items they have in common to the overall count of unique items in both sets. The FMI [45]
is a metric utilized to assess the similarity between two clustering results. It calculates
the geometric mean of the pairwise similarity between points in the same clusters across
two different clustering results. The RI [46] measures how similar two sets of clusters are.
It counts pairs of data points that are either in the same cluster in both sets or different
clusters in both sets, and the NMI [47] is like a friendly compass that helps us navigate
through clusters of data. It measures how well two different clustering results match up,
considering the size and arrangement of the clusters. The greater the magnitudes of AR, JI,
FMI, RI, and NMI, the more exceptional the clustering performance becomes.
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The experiments are executed in Matlab 2020a with identical initializations. They
are repeated 100 times using distinct random initializations of the WMCFS, FRMVKM,
WV-Co-FCM, Minmax-FCM, W-MV-KM, and W-MV-KM-L2 algorithms. For Minmax-FCM
and WV-Co-FCM, the fuzziness index m is 2 for the methods.

Example 1. We generate a dataset with two distinct views using a Gaussian mixture model:
2
∑

h=1

1
2

N
(

µh
i , ∑h

i

)
, where h represents the view index. These two views are then merged to form the

samples
(

x1
i , x2

i , ck
)
. The dataset consists of two clusters across both views, with 1500 data points

sampled for each view. For the first view, the cluster means are set to µ
(1)
1 =

(
1.5 1.5

)
and µ

(1)
2 =(

7 7
)
. In the second view, the cluster means are µ

(2)
1 =

(
2.5 −2.5

)
and µ

(2)
2 =

(
5 5

)
. The

covariance matrices ∑
(i)
1 =

(
0.25 0

0 0.25

)
, i = 1,. . .,4, are applied to both views. Each view consists

of two main features: x(1)1 & x(1)2 for view 1, and x(2)1 & x(2)2 for view 2. Additionally, we introduce

one noise feature per view. For view 1, the noise feature is x(1)3 , sampled from a uniform distribution

in the range [0, 5], and for view 2, the noise feature is x(2)3 , sampled from a uniform distribution in
the range [0, 10], named Artificial 1 dataset. A 2D and 3D graph illustrating the dataset is shown
in Figure 1a–d for both view 1 and view 2, respectively.
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Figure 2 shows the clustering visualization of the two algorithms W-MV-KM and W-
MV-KM-L2 for both view 1 and view 2 in 3D representation. Table 1 shows the clustering 
performance of the proposed algorithms with the existing algorithms, where the W-MV-
KM-L2 algorithm performs well, as compared to other algorithms in all evaluation 
measures. In this example, we try different values for two parameters  and α τ  and re-
port the values of the algorithms in Table 2. 

Figure 1. A 2D and 3D graphical representation of 2-cluster dataset with 2 views, each containing
1500 data points. (a) 2D visualization of view 1; (b) 2D visualization of view 2; (c) 3D visualization of
view 1; and (d) 3D visualization of view 2.

Figure 2 shows the clustering visualization of the two algorithms W-MV-KM and
W-MV-KM-L2 for both view 1 and view 2 in 3D representation. Table 1 shows the clustering
performance of the proposed algorithms with the existing algorithms, where the W-MV-KM-
L2 algorithm performs well, as compared to other algorithms in all evaluation measures.
In this example, we try different values for two parameters α and τ and report the values
of the algorithms in Table 2.
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Table 1. Clustering performances of WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM, W-MV-KM
and W-MV-KM-L2 for Artificial 1 multiview data based on average (STD).

Methods AR JI FMI RI NMI

WMCFS 0.844 (0.212) 0.764 (0.310) 0.826 (0.230) 0.826 (0.230) 0.647 (0.464)

FRMVKM 0.960 (0.116) 0.926 (0.187) 0.949 (0.132) 0.949 (0.132) 0.889 (0.280)

WV-Co-FCM 0.500 (0.000) 0.500 (0.000) 0.707 (0.000) 0.500 (0.000) 0.706 (0.000)

Minmax-FCM 0.500 (0.000) 0.500 (0.000) 0.707 (0.000) 0.500 (0.000) 0.706 (0.000)

W-MV-KM 0.718 (0.311) 0.686 (0.333) 0.765 (0.764) 0.768 (0.250) 0.530 (0.499)

W-MV-KM-L2 0.960 (0.137) 0.947 (0.180) 0.960 (0.135) 0.960 (0.135) 0.920 (0.270)

Table 2. Clustering sensitivity analysis of the parameters α and τ.

Algorithms α τ

W-MV-KM 1, 2, 3. . . 1, 2, 3. . .

W-MV-KM-L2 α = c/dh τ =
n
∑

i=1

(
xh

i − xh
i

)2
/n

In W-MV-KM, we try different values for the two parameters, as mentioned in Table 2.
If we choose for both parameters α = τ = 1, then the algorithm is unable to give results; if
we choose α = 2, then the algorithm performs, but the results are very poor as compared to
other existing algorithms. Thus, we propose W-MV-KM-L2, where the values of α and τ
are determined by the following formulas, as discussed in Section 3. In the W-MV-KM
algorithm, if we keep values of α < 2, then the algorithm is unable to perform. So, for this,
it should be α ≥ 2. If we increase the parameter values α = τ ≥ 2, even then, the clustering
performance is not improved. In both algorithms, W-MV-KM and W-MV-KM-L2, the view
weight should be ≥ 2 because if it is < 2, then only one view is selected, which is against
the basic principal of multiview clustering.

Example 2. In this example, we use the synthetic data used in [35], called Syn1. To implement
the dataset in the proposed and existing algorithms, we keep different initializations for existing
algorithms: we choose α = 2 and τ = 0.001 for WMCFS; for FRMVKM, we assume α = 2 ; and for
WV-Co-FCM, τ= 1.3. These serve as the parameters. With the given initializations, we apply these
algorithms to the dataset, and their clustering performance is summarized in Table 3. The results
indicate that W-MV-KM-L2 obtained the highest values across all evaluation metrics.

Table 3. Clustering performances of WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM, W-MV-KM
and W-MV-KM-L2 for Syn1 multiview data based on average (STD).

Methods AR JI FMI RI NMI

WMCFS 0.861 (0.218) 0.807 (0.303) 0.855 (0.227) 0.855 (0.227) 0.710 (0.453)

FRMVKM 0.924 (0.154) 0.870 (0.249) 0.906 (0.180) 0.906 (0.180) 0.805 (0.371)

WV-Co-FCM 0.943 (0.132) 0.902 (0.184) 0.938 (0.125) 0.929 (0.147) 0.842 (0.291)

Minmax-FCM 0.500 (0.000) 0.499 (0.000) 0.707 (0.000) 0.499 (0.000) 0.000 (0.000)

W-MV-KM 0.856 (0.291) 0.868 (0.265) 0.901 (0.198) 0.901 (0.198) 0.802 (0.297)

W-MV-KM-L2 0.972 (0.112) 0.960 (0.158) 0.970 (0.118) 0.970 (0.118) 0.940 (0.237)

Example 3. In this example, we use the synthetic dataset used in [48] to implement the W-MV-
KM-L2, W-MV-KM, Minmax-FCM, WV-Co-FCM, FRMVKM, and WMCFS in the Syn500
dataset. For our initializations, we choose α = 4 and τ = 0.01 for WMCFS; for FRMVKM, we
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assume α = 2; and for WV-Co-FCM, τ= 4. For Minmax-FCM and WV-Co-FCM, the fuzziness
index is m = 2. With the given initializations, we apply these algorithms to the dataset, and their
clustering performance is summarized in Table 4. The results indicate that W-MV-KM-L2 obtained
the highest values across all evaluation metrics.

Table 4. Clustering performances of WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM, W-MV-KM
and W-MV-KM-L2 for Syn500 multiview data based on average (STD).

Methods AR JI FMI RI NMI

WMCFS 0.671 (0.138) 0.429 (0.116) 0.593 (0.101) 0.592 (0.102) 0.152 (0.178)

FRMVKM 0.873 (0.015) 0.644 (0.029) 0.784 (0.023) 0.778 (0.021) 0.532 (0.062)

WV-Co-FCM 0.740 (0.000) 0.446 (0.000) 0.617 (0.000) 0.614 (0.000) 0.179 (0.000)

Minmax-FCM 0.500 (0.000) 0.499 (0.000) 0.706 (0.000) 0.499 (0.000) 0.000 (0.000)

W-MV-KM 0.740 (0.152) 0.499 (0.118) 0.658 (0.106) 0.656 (0.104) 0.265 (0.189)

W-MV-KM-L2 0.880 (0.027) 0.657 (0.017) 0.793 (0.013) 0.784 (0.013) 0.523 (0.027)

We first normalized all the real datasets. We tested the performance of our proposed
algorithms with seven real datasets. Seven real-world multiview datasets serve as the
benchmark to assess the efficacy of the W-MV-KM-L2 algorithm. These are the Minist4
dataset [49], Handwritten4 (HW) [50], Caltech2 dataset [51], UCI Derm dataset [52], Hu-
manEva 3D Motion [53–55] dataset, UCI 3views dataset [50], and Microsoft Research
Cambridge Volume 1 (MSRC-V1) dataset [56], respectively. The characteristics of these
seven real datasets are displayed in Table 5 in terms of cluster number c, data type s, the
data number n, the feature dimension dh, and the view numbers.

Table 5. Clustering performances of WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM, W-MV-KM
and W-MV-KM-L2 for Syn500 multiview data based on average (STD).

Methods C n s d1 d2 d3 d4 d5

Caltech2 3 2033 2 300 256 - - -

HumanEva 3D Motion 5 5000 2 48 48 - - -

Derm 6 366 2 11 12 - - -

Minist4 4 4000 3 30 9 30 - -

UCI 3views 10 2000 3 240 76 6 - -

HW1256 10 2000 4 76 216 47 6 -

MSRC-V1 7 210 5 24 576 512 256 254

Example 4. In this example, we use seven real datasets for comparing W-MV-KM-L2 with all
the algorithms, such as WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM and W-MV-KM.
Various combinations of α and τ will result in different distributions for the view and feature
weight vectors, respectively. This is the case for WMCFS and WV-Co-FCM, where α and τ are
user defined. For FRMVKM, we use α = 2 for all datasets. In W-MV-KM-L2, the regularization
parameters α and τ are used to control the sparsity of the view weights and feature weights,
respectively. The parameters α and τ in W-MV-KM-L2 are simply calculated by α = c/dh and τ =

n
∑

i=1

(
xh

i − xh
i

)2
/n . We compare the results of the proposed algorithms with existing algorithms.

To achieve this, we utilize real datasets and apply the algorithms using the assumed values of τ in
Table 6.

For each given value of α, we ran 100 simulations for each algorithm using different
seed generations across all clustering methods and recorded their clustering performance
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metrics. This process was repeated for all real datasets listed in Table 6. We present only
the overall average mean and standard deviation of the performance measures for each
algorithm and compare them with the results of W-MV-KM-L2. The outcomes, summarized
in Table 7, show that W-MV-KM-L2 consistently achieves higher results for AR, RI, NMI, JI,
and FMI across all real datasets.

Table 6. Clustering performances of WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM, W-MV-KM
and W-MV-KM-L2 for Syn500 multiview data based on average (STD).

Minist4 Handwritten4 Caltech2 Derm Human Eva 3D UCI 3views MSRC-V1

WMCFS 0.1 0.001 0.001 0.001 0.01 0.01 0.01

WV-Co-FCM 3 5 3 2 4 2 3

Table 7. Clustering performances of WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM, W-MV-KM
and W-MV-KM-L2 for seven real multiview data based on average (STD).

Dataset Methods AR JI FMI RI NMI

Minist4

WMCFS 0.661 (0.166) 0.445 (0.157) 0.600 (0.145) 0.795 (0.075) 0.483 (0.175)

FRMVKM 0.444 (0.163) 0.267 (0.103) 0.411 (0.123) 0.698 (0.062) 0.229 (0.170)

WV-Co-FCM 0.250 (0.000) 0.250 (0.000) 0.500 (0.000) 0.250 (0.000) 0.000 (0.000)

Minmax-FCM 0.250 (0.000) 0.250 (0.000) 0.500 (0.000) 0.250 (0.000) 0.000 (0.000)

W-MV-KM 0.209 (0.016) 0.171 (0.001) 0.293 (0.001) 0.609 (0.002) 0.043 (0.000)

W-MV-KM-L2 0.789 (0.126) 0.568 (0.097) 0.720 (0.083) 0.853 (0.051) 0.637 (0.085)

HW1256

WMCFS 0.470 (0.055) 0.284 (0.026) 0.444 (0.032) 0.877 (0.010) 0.522 (0.028)

FRMVKM 0.445 (0.078) 0.260 (0.056) 0.412 (0.072) 0.869 (0.056) 0.459 (0.072)

WV-Co-FCM 0.100 (0.000) 0.100 (0.000) 0.000 (0.000) 0.100 (0.000) 0.316 (0.000)

Minmax-FCM 0.200 (0.000) 0.142 (0.000) 0.340 (0.000) 0.529 (0.000) 0.264 (0.000)

W-MV-KM 0.322 (0.185) 0.186 (0.092) 0.338 (0.110) 0.676 (0.325) 0.300 (0.226)

W-MV-KM-L2 0.470 (0.055) 0.284 (0.026) 0.444 (0.032) 0.877 (0.010) 0.522 (0.028)

Caltech2

WMCFS 0.748 (0.150) 0.558 (0.141) 0.707 (0.114) 0.792 (0.082) 0.543 (0.144)

FRMVKM 0.404 (0.076) 0.343 (0.046) 0.532 (0.054) 0.513 (0.058) 0.144 (0.120)

WV-Co-FCM 0.394 (0.000) 0.354 (0.000) 0.595 (0.000) 0.354 (0.000) 0.000 (0.000)

Minmax-FCM 0.390 (0.006) 0.351 (0.006) 0.587 (0.015) 0.362 (0.019) 0.013 (0.012)

W-MV-KM 0.437 (0.068) 0.337 (0.018) 0.517 (0.019) 0.546 (0.051) 0.132 (0.050)

W-MV-KM-L2 0.758 (0.161) 0.591 (0.160) 0.731 (0.126) 0.808 (0.092) 0.600 (0.161)

Derm

WMCFS 0.673 (0.093) 0.536 (0.099) 0.695 (0.083) 0.868 (0.040) 0.734 (0.067)

FRMVKM 0.677 (0.085) 0.476 (0.070) 0.643 (0.062) 0.850 (0.034) 0.680 (0.054)

WV-Co-FCM 0.475 (0.038) 0.290 (0.023) 0.488 (0.023) 0.636 (0.040) 0.322 (0.038)

Minmax-FCM 0.306 (0.000) 0.199 (0.000) 0.446 (0.000) 0.199 (0.000) 0.000 (0.000)

W-MV-KM 0.633 (0.135) 0.501 (0.128) 0.668 (0.105) 0.815 (0.170) 0.669 (0.192)

W-MV-KM-L2 0.734 (0.117) 0.629 (0.131) 0.769 (0.099) 0.881 (0.131) 0.797 (0.168)

HumanEva 3D motion

WMCFS 0.448 (0.057) 0.304 (0.027) 0.480 (0.031) 0.722 (0.038) 0.412 (0.038)

FRMVKM 0.200 (0.000) 0.200 (0.000) 0.447 (0.000) 0.304 (0.000) 0.000 (0.000)

WV-Co-FCM 0.200 (0.000) 0.200 (0.000) 0.447 (0.000) 0.200 (0.000) 0.000 (0.000)

Minmax-FCM 0.339 (0.000) 0.227 (0.001) 0.473 (0.001) 0.621 (0.007) 0.324 (0.005)

W-MV-KM 0.200 (0.000) 0.200 (0.000) 0.447 (0.000) 0.200 (0.000) 0.000 (0.000)

W-MV-KM-L2 0.691 (0.114) 0.533 (0.093) 0.693 (0.077) 0.865 (0.044) 0.691 (0.072)
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Table 7. Cont.

Dataset Methods AR JI FMI RI NMI

UCI 3views

WMCFS 0.471 (0.067) 0.285 (0.033) 0.446 (0.035) 0.87 (0.079) 0.526 (0.060)

FRMVKM 0.316 (0.044) 0.202 (0.021) 0.351 (0.027) 0.813 (0.029) 0.375 (0.037)

WV-Co-FCM 0.100 (0.000) 0.100 (0.000) 0.316 (0.000) 0.100 (0.000) 0.000 (0.000)

Minmax-FCM 0.200 (0.000) 0.142 (0.000) 0.340 (0.000) 0.529 (0.000) 0.264 (0.000)

W-MV-KM 0.228 (0.043) 0.154 (0.016) 0.277 (0.012) 0.789 (0.203) 0.336 (0.099)

W-MV-KM-L2 0.654 (0.070) 0.450 (0.051) 0.620 (0.048) 0.920 (0.011) 0.697 (0.032)

MSRC-VI

WMCFS 0.543 (0.080) 0.314 (0.049) 0.477 (0.055) 0.844 (0.020) 0.513 (0.054)

FRMVKM 0.297 (0.047) 0.137 (0.017) 0.240 (0.240) 0.782 (0.007) 0.225 (0.033)

WV-Co-FCM 0.143 (0.000) 0.139 (0.000) 0.373 (0.000) 0.139 (0.000) 0.000 (0.000)

Minmax-FCM 0.286 (0.005) 0.181 (0.000) 0.371 (0.002) 0.559 (0.007) 0.234 (0.002)

W-MV-KM 0.358 (0.036) 0.163 (0.010) 0.281 (0.015) 0.786 (0.009) 0.298 (0.024)

W-MV-KM-L2 0.590 (0.078) 0.343 (0.044) 0.511 (0.049) 0.856 (0.016) 0.547 (0.045)

Example 5. In this example, we compare the number of iterations required for convergence, along
with the running time, for the WMCFS, FRMVKM, WV-Co-FCM, Minmax-FCM, W-MV-KM,
and W-MV-KM-L2 clustering algorithms. The number of iterations needed for convergence is
reported in Table 8. The initial parameters are set as follows: m = 2 is used as the fuzzifier value for
Minimax-FCM and WV-Co-FCM. The convergence (error) tolerance for all the algorithms is set to
be 1 × 10−3. The running time per second achieved by all the six algorithms is reported in Table 9,
and the lowest running time for any dataset achieved by any algorithm is highlighted in bold face.

Table 8. Number of iterations to converge the algorithms.

Datasets WMCFS FRMVKM WV-Co-FCM Minmax-FCM WMVKM W-MV-KM-L2

Minist4 8 5 >=20 >=50 24 19

Handwritten4 3 6 >=20 >=50 16 29

Caltech2 3 4 >=20 >=50 7 3

Derm 3 5 >=20 >=50 6 11

HumanEva 3D Motion 19 2 >=20 >=50 3 5

UCI3views 3 4 >=20 >=50 26 17

MSRC-V1 8 5 >=20 >=50 24 19

Table 9. The running time (RT) achieved through the proposed and other existing algorithms:
WMCFS, FR-MV-KM, WV-Co-FCM, Minmax-FCM, W-MV-KM and W-MV-KM-L2 (the best is marked
in boldface).

Datasets WMCFS FRMVKM WV-Co-FCM Minmax-FCM WMVKM W-MV-KM-L2

Minist4 0.5790 0.4200 204.3660 8.7610 1.9390 0.9830

Handwritten4 0.7980 0.7420 424.6910 12.7080 4.9650 6.0090

Caltech2 0.6210 0.5410 30.0290 7.7870 1.6920 0.4800

Derm 0.2100 0.2600 15.4410 0.8510 0.4840 0.3130

HumanEva 3D Motion 2.5780 0.3790 172.9800 15.7600 0.9250 0.6910

UCI3views 0.7430 0.6440 296.3110 13.1700 8.3240 3.9570

MSRC-V1 0.3280 0.3280 47.3710 2.6450 0.9830 0.7260
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Example 6. In this example, we use the multiview cluster validity indices proposed by Yang and
Hussain [11], the multiview Dunn (MV-Dunn) index, and multiview generalized Dunn (MV-G-
Dunn) index. We implement the multiview validity indices only based on k-means such as WMCFS,
FRMVKM, and W-MV-KM-L2. We consider the WMCFS+MV-Dunn, WMCFS+MV-G-Dunn,
FRMVKM+MV-Dunn, FRMVKM+MV-G-Dunn, W-MV-KM-L2+MV-Dunn, and W-MV-KM-
L2+MV-G-Dunn regularization with 40 different initializations. The estimated number of clusters,
along with their percentages, determined using the MV-Dunn and MV-G-Dunn indices, are
presented in Table 10 for WMCFS, Table 11 for FRMVKM, and Table 12 for WMVKML2.

Table 10. Results of WMCFS with MV-Dunn and MV-G-Dunn.

Datasets\Indices MV-Dunn MV-G-Dunn

Artificial 1 2 (65%) 2 (70%)

Syn1 2 (50%) 2 (72.5%)

Syn500 2 (42.5%) 2 (17.5%)

Caltech2 3 (10%) 3 (0%)

HumanEva 3D motion 5 (2.5%) 5 (0%)

Derm 6 (10%) 6 (0%)

Minist4 4 (15%) 4 (0%)

UCI3views 10 (2.5%) 10 (0%)

HW1256 10 (2.5%) 10 (0%)

MSRC-IV 7 (5%) 7 (0%)

Table 11. Results of FRMVKM with MV-Dunn and MV-G-Dunn.

Datasets\Indices MV-Dunn MV-G-Dunn

Artificial 1 2 (100%) 2 (2.5%)

Syn1 2 (100%) 2 (0%)

Syn500 2 (100%) 2 (0%)

Caltech2 3 (0%) 3 (0%)

HumanEva 3D motion 5 (0%) 5 (0%)

Derm 6 (0%) 6 (0%)

Minist4 4 (0%) 4 (0%)

UCI3views 10 (0%) 10 (0%)

HW1256 10 (0%) 10 (0%)

MSRC-IV 7 (0%) 7 (0%)

Table 12. Results of WMVKML2 with MV-Dunn and MV-G-Dunn.

Datasets\Indices MV-Dunn MV-G-Dunn

Artificial 1 2 (100%) 2 (2.5%)

Syn1 2 (100%) 2 (0%)

Syn500 2 (100%) 2 (0%)

Caltech2 3 (2.5%) 3 (0%)

HumanEva 3D motion 5 (0%) 5 (0%)

Derm 6 (2.5%) 6 (0%)
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Table 12. Cont.

Datasets\Indices MV-Dunn MV-G-Dunn

Minist4 4 (0%) 4 (0%)

UCI3views 10 (0%) 10 (0%)

HW1256 10 (0%) 10 (0%)

MSRC-IV 7 (0%) 7 (0%)

5. Discussion

Defining the structure of multiview data through L2 regularization for k-means and
incorporating view weights and feature weights into its objective function presents a
significant challenge. In this manuscript, we introduce two innovative clustering algorithms
for multiview data, namely W-MV-KM and W-MV-KM-L2, building on the foundation
of k-means. In W-MV-KM, users are tasked with assigning weights to both features and
views. The parameters α and τ are utilized to regulate the distribution of weights and
features in W-MV-KM, respectively. As the values of α and τ are user-determined for these
weights, identifying an optimal combination of view and feature weights can present a
challenge. To tackle this concern, we suggest an alternative method called W-MV-KM-L2,
which integrates L2 regularization into the W-MV-KM framework. The parameters α and τ
utilized for the regularization of W-MV-KM-L2 are subsequently estimated. This approach
enhances the significance of results for both view and feature weights, ultimately leading
to an improvement in clustering performance.

6. Conclusions

In the empirical findings for real-world datasets for both the proposed algorithm and
existing algorithms, W-MV-KM-L2 outperformed in clustering performance. In our future
work, we aim to explore making the W-MV-KM-L2 algorithm independent of initialization
requirements. Additionally, we plan to enhance the W-MV-KM-L2 algorithm by incorpo-
rating the ability to determine an unsupervised optimal number of clusters. Since point
symmetry-based distance [42] is more effective at representing cluster symmetry behav-
ior [43] compared to Euclidean distance, we plan to extend the W-MV-KM-L2 algorithm
in future work by incorporating point symmetry-based distance to enhance its ability to
present cluster symmetry.
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