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Abstract: Point clouds obtained from laser scanners or other devices often exhibit incompleteness,
which poses a challenge for subsequent point cloud processing. Therefore, accurately predicting the
complete shape from partial observations has paramount significance. In this paper, we introduce
PCCDiff, a probabilistic model inspired by Denoising Diffusion Probabilistic Models (DDPMs),
designed for point cloud completion tasks. Our model aims to predict missing parts in incomplete
3D shapes by learning the reverse diffusion process, transforming a 3D Gaussian noise distribution
into the desired shape distribution without any structural assumption (e.g., geometric symmetry).
Firstly, we design a conditional point cloud completion network that integrates Missing-Transformer
and TreeGCN, facilitating the prediction of complete point cloud features. Subsequently, at each
step of the diffusion process, the obtained point cloud features serve as condition inputs for the
symmetric Diffusion ResUNet. By incorporating these condition features and incomplete point clouds
into the diffusion process, PCCDiff demonstrates superior generation performance compared to
other methods. Finally, extensive experiments are conducted to demonstrate the effectiveness of our
proposed generative model for completing point clouds.

Keywords: 3D point cloud; shape completion; denoising diffusion probabilistic models; Missing-
Transformer

1. Introduction

Recent advancements in depth sensing and laser scanning have made point clouds a
popular representation for modeling 3D shapes. However, it is true that point cloud data
obtained from existing 3D sensors may not always be complete or satisfactory for various
reasons, such as self-occlusion, light reflection, limited sensor resolution, etc. Consequently,
the task of recovering complete point clouds from partial and sparse raw data has become
crucial and of increasing significance [1,2].

Denoising Diffusion Probabilistic Models (DDPMs) [3–5] have emerged as a promising
approach for generating high-quality and diverse images. Unlike traditional generative
models, such as variational auto-encoders (VAEs) [6] and generative adversarial networks
(GANs) [7], the DDPM constructs a forward diffusion process by incrementally adding
noise to data points and learns the reverse denoising process to generate new samples.
One advantage of the DDPM is its ability to handle complex data distributions, making
it suitable for modeling point clouds where traditional methods may struggle because of
limitations in stability or flexibility. The DDPM has demonstrated impressive results in
generating images with diverse and realistic characteristics. Moreover, the DDPM has
proven effective in tasks such as super-resolution and deblurring, which require unique
ground truth because it captures complex data distributions to accurately reconstruct
images [8,9]. In summary, the DDPM offers a powerful alternative to traditional generative
models for modeling images. Its forward diffusion process and reverse denoising process
enable the synthesis of high-quality and diverse images, making it a valuable tool in various
image-related tasks.
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Our proposed model, PCCDiff, is a probabilistic generative model inspired by DDPM
for point cloud completion. It establishes a connection between the distribution of comple-
tion point clouds and the noise distribution through the diffusion process. Specifically, we
focus on the reverse diffusion process, which aims to recover the target point distribution
from the noise distribution in order to model the point distribution for point cloud genera-
tion. To address the challenge of learning the features of complete point clouds during the
iterative sampling process, we introduce the condition network. This network captures the
point clouds feature throughout the completion process. Furthermore, drawing inspiration
from the success of the Transformer architecture in point cloud representation learning,
we incorporate the Transformer into our framework. The designed Missing-Transformer
network enhances the learning of missing point proxies, resulting in a more comprehensive
understanding of the point cloud structure. Then, the obtained point cloud features are
utilized as condition inputs in the reverse diffusion process at each step. This improvement
enables us to enhance the accuracy of generating completion point clouds by refining the
point distribution. Our proposed PCCDiff model utilizes a reverse diffusion process and
Missing-Transformer framework to achieve accurate and effective point cloud completion.
The primary contributions of our work are as follows:

(1) We introduce PCCDiff, a novel conditional diffusion model specifically designed
for point cloud completion.

(2) We develop a Missing-Transformer network to serve as the condition net, effectively
learning complete point cloud features.

(3) We demonstrate the effectiveness of PCCDiff through extensive experiments on
the ModelNet40 and ShapeNet-34/21 datasets.

2. Related Work
2.1. Point Cloud Completion

Three-dimensional shape completion tasks have traditionally relied on voxel grids
or distance fields to describe 3D objects. However, researchers are increasingly turning
to unstructured point clouds as a representation of 3D objects because of their compact
memory footprint and strong ability to represent fine-grained details. In [10], PointNet was
designed as a novel type of neural network that directly consumes point clouds and uses a
single symmetric function, max pooling, to aggregate information from all the points. Yuan
et al. proposed the first deep learning network, Point Completion Network (PCN) [11],
for shape completion without any structural assumption (e.g., symmetry) or annotation
(e.g., semantic class) about the underlying shape, building upon PointNet [10] and Fold-
ingNet [12] architectures. Since then, numerous methods have emerged, aiming for higher
resolution and improved robustness in point cloud completion. Xie et al. introduced the
Gridding Residual Network (GRNet) [13], a novel approach for point cloud completion that
incorporates 3D grids as intermediate representations to regularize unordered point clouds.
Additionally, Yu et al. proposed innovative architectures, PoinTr [14] and AdaPoinTr [15],
which transform the point cloud completion task into a set-to-set translation problem
and employ a transformer encoder-decoder architecture for point cloud completion. This
approach has demonstrated state-of-the-art performance in various real-world scenarios.

2.2. Diffusion Models for Point Clouds

Denoising Diffusion Probabilistic Models (DDPMs) represent a class of latent variable
models renowned for their ability to seamlessly transition from a noise distribution to
the target data distribution through the use of Markov chains. This innovative approach
has recently found application in the realm of point cloud processing, notably in tasks
involving 3D point cloud generation and shape reconstruction. Point·E introduces a system
for generating intricate 3D point clouds from diverse prompts, employing a diffusion
model to translate images into 3D point clouds [16]. PC2 presents a projection-conditioned
point cloud diffusion approach for single-image 3D reconstruction [17]. This method
progressively refines an initially random point cloud to align with the input image, demon-
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strating the versatility of DDPM in various applications. Lyu proposed a dual-path Point
Diffusion-Refinement (PDR) paradigm supplemented by a ReFinement Network (RFNet)
for point cloud completion. This approach combines the coarse completion generated
by DDPM with the refined output from RFNet, enhancing the overall quality of point
cloud reconstruction [18]. However, existing works primarily utilize diffusion models to
generate coarse point clouds, leaving room for improvement in capturing finer details.
In this research, we aim to address this limitation by leveraging conditional DDPM to
predict fine, complete point clouds. By harnessing the generation power of DDPM, we
anticipate achieving more precise and comprehensive representations of 3D point clouds,
thus advancing the state-of-the-art in point cloud processing.

3. Methods

The overall framework of PCCDiff is delineated in Figure 1. Below, we provide a
comprehensive exposition of our approach. We commence with an introductory overview,
followed by a detailed presentation of the diffusion models, which constitute the funda-
mental pillars of our methodology. Subsequently, we elucidate the conditional point cloud
completion network responsible for generating the condition features. Finally, we expound
on the training loss utilized within our model.
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Figure 1. Network architecture of the point cloud completion with conditional denoising diffu-
sion probabilistic model (PCCDiff). It comprises two main components: conditional point cloud
completion network and diffusion model.

3.1. Point Cloud Completion Conditional Diffusion Models

Our proposed PCCDiff model builds upon the foundation of DDPMs. When incom-
plete point clouds I are inputted, the condition network extracts crucial condition features
c. However, relying solely on incomplete point clouds I for learning the characteristics of
complete point clouds can pose challenges. To address this, we introduce a novel approach,
wherein we fuse the incomplete point clouds I and the point clouds features c to the Diffu-
sion ResUNet for the diffusion step. By leveraging this combined information, our model
gains a more comprehensive understanding of the underlying data distribution, facilitating
the generation of complete and refined point clouds. This fusion strategy enhances the
capability of our PCCDiff model to capture the intricate details and nuances present in
complete point clouds. Through this iterative diffusion process, our model effectively
bridges the gap between incomplete input data and the desired output, resulting in more
accurate and realistic point cloud reconstructions.
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3.2. Diffusion Models

The DDPM stands as a versatile generative model inspired by stochastic differential
equations and non-equilibrium thermodynamics, encompassing both forward and reverse
diffusion processes [19]. In the forward diffusion process, which comprises a series of steps
T, this process transforms complete point clouds x0 into a Gaussian noise distribution xT .
This process is instrumental in capturing the underlying data distribution and facilitating
the generation of realistic samples. The forward diffusion process is formally defined
as follows:

q(x1, . . . , xT |x0) = ∏T
t=1 q(xt|xt−1), where q(xt|xt−1) = N

(
xt;

√
1 − βtxt−1, βt I

)
(1)

where β1, . . . , βt are variance schedule hyper-parameters. We set T = 1000 and use a linear
variance schedule from 0.0001 to 0.02 following the DDPM [19].

Our goal is to generate complete point clouds. We consider the generation process to be
the reverse of the forward diffusion process. Unlike the forward diffusion process that adds
noise to the points, the purpose of the reverse diffusion process is to reconstruct complete
point clouds x0 from the input Gaussian noise xT . Firstly, we sample xT ∼ N (0, IN×3),
then obtain xt−1 ∼ pθ(xt−1|xt, I, c) for t = T, T − 1, . . . , 1, and finally reconstruct x0. Here,
N represents the Gaussian distribution, and IN×3 denotes the incomplete point clouds
provided as input. To achieve this, the model undergoes training using available data. The
reverse diffusion process is mathematically represented as

pθ(x0, . . . , xT−1|xT, I, c) = ∏T
t=1 pθ(xt−1|xt, I, c), where pθ(xt−1|xt, I, c) = N

(
xt−1; µθ(xt, c, t), σ2

t I
)

(2)

µθ(xt, c, t) =
1√
αt
(xt −

βt√
1 − αt

ϵθ(xt, I, c, t)) (3)

The variance σ2
t = 1−αt−1

1−αt
βt is a time-step dependent constant. The estimated mean

µθ is implemented by a neural network ϵθ . Specifically, we utilize a Diffusion ResUNet
as the network ϵθ , with θ representing the parameters of the reverse diffusion process. To
enhance the quality of the generated complete point clouds, our network ϵθ takes multiple
inputs. These include the noisy point clouds xt, the diffusion step t, the incomplete point
clouds I, and the condition features c. These condition features c serve as latent encodings
that capture the target shape of the point clouds, facilitated by the conditional point cloud
completion network. By incorporating these inputs into our network architecture, we aim
to leverage the synergy between various sources of information to generate more accurate
and realistic complete point clouds.

The architecture of our Diffusion ResUNet combines elements from both ResNet
and the symmetric UNet, like encoder–decoder architecture, as detailed in Figure 2. This
hybrid structure integrates Residual blocks, DownSampling and UpSampling blocks, Self-
Attention mechanisms, and Skip Connections. Each Residual block consists of two convo-
lutional blocks, each comprising Group-Norm [20], SiLU activation [21], and convolutional
layers, as depicted in Figure 3. Within the Residual block, the time-step embedding under-
goes SiLU activation before undergoing linear transformation. Subsequently, it is added
to the output of the first convolutional block. Skip Connections connect features with the
same resolution in the encoder and the symmetric decoder. The condition features c are
seamlessly integrated into both the encoder and decoder stages of the ResUNet network,
facilitating the incorporation of latent information about the target point cloud shape (as
shown in Figure 1). Finally, a standard convolutional layer is employed to make predic-
tions for the final output. This comprehensive architecture harnesses the strengths of both
ResNet and symmetric UNet, enabling our model to effectively capture intricate details and
dependencies within the data, thereby enhancing the quality and fidelity of the generated
complete point clouds.
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3.3. Conditional Point Cloud Completion Network

In Figure 4a, we present the architecture of the conditional point cloud completion
network. The network takes incomplete point clouds IN×3 as input. Initially, we utilize
iterative farthest point sampling (IFPS) [22] to identify the center point clouds and employ
an MLP [23] position extractor to obtain positional embeddings for the incomplete point
clouds. Additionally, we extract features from the incomplete point clouds using the
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Dynamic Graph CNN (DGCNN) [24] model as a feature extractor. The combination of
positional embeddings and features constitutes the incomplete point proxies. To accurately
predict the missing point clouds, we introduce an MLP proxies extractor to learn the missing
point proxies. Subsequently, we employ Missing-Transformer to generate predictions for
the complete point cloud proxies. The structure of Missing-Transformer is illustrated in
Figure 4b, where the network receives incomplete point proxies and missing point proxies
as input.
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Then, we utilize TreeGCN [25] to recover complete point clouds. Figure 5a illustrates
its structure, comprising 3 layers. TreeGCN is composed of Up Branching Networks and
Graph Convolutional Networks (as shown in Figure 5b). The Up Branching Network serves
to increase the number of features. Initially, the input features pL is expanded through
linear transformation to increase their quantity by VL+1, followed by matrix multiplication
(@) to obtain the expanded features. The expansion process is defined as

pL+1
0 =

[
VL+1·pL

]
dL

@pL (4)
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Here, dL represents the expansion factor for the L-th tree layer. Subsequently, using
the Graph Convolutional Network, these expanded features pL+1

0 are propagated through
two fully connected (FC) layers to each point in the 3D space until a complete point cloud
is reconstructed. During the reconstruction process, the point cloud features obtained
at this layer are fused with the initial features from all tree layers. Through the Graph
Convolutional Network, all features are thoroughly integrated, thereby achieving effective
prediction of the complete point cloud.

3.4. Training Loss

PCCDiff is trained via variational inference following DDPM [3]. The loss function is
represented as

L(θ) = Et,x0,ϵ

[∥∥∥ϵ − ϵθ

(√
αtx0 +

√
1 − αtϵ, t

)∥∥∥2
]

(5)

where t is uniform between 1 and T. The neural network ϵθ is trained to predict the added
noise ϵ in the complete point clouds x0, enabling effective denoising of noisy point clouds xt.

xt(x0, ϵ) =
√

αtx0 +
√

1 − αtϵ, ϵ ∈ N (0, IN×3) (6)

For the conditional point clouds completion network, we use the symmetric version
of Chamfer Distance [26] as our completion loss.

Lcom = dCD
(

Fpre, Fgt
)

(7)

In detail, dCD calculates the squared distance between the predicted point clouds Fpre
and the ground truth Fgt. The mean Chamfer Distance can measure the average nearest
squared distance between the prediction point cloud Fpre and ground truth Fgt, which is
calculated by

dCD(Fpre, Fgt) =
1

Fpre
∑

x∈Fpre

min
y∈Fgt

∥x − y∥2
2 +

1
Fgt

∑
y∈Fgt

min
x∈Fpre

∥y − x∥2
2 (8)

4. Experiments and Results

We evaluate our method on the widely used benchmark of 3D point cloud completion,
i.e., ModelNet40 [27] and ShapeNet-34/21 [14]. In these datasets, each complete point
clouds consists of 8192 points. During both training and testing, we sample 2048 points
as the ground truth Fgt of the incomplete point cloud, i.e., missing 25% of original data.
The performance of our method is assessed using the mean Chamfer Distance (CD) as the
evaluation metric.

We implement all of our models with PyTorch deep learning framework and use
AdamW [28] optimizer to update the parameters of the network during training. The
learning rate is initially set to 0.0001, and the batch size is set to four.

4.1. Completion Results on ModelNet40

ModelNet40 dataset consists of 12,311 models across 40 categories of man-made
objects. It was divided into 9843 models for training and 2468 models for testing.

We compare our point cloud completion method with previous state-of-the-art meth-
ods, including FoldingNet [12], TopNet [29], PCN [10], PMP-Net [30], and PMP-Net++ [31],
using their open-source code on standard metrics. Table 1 shows that our method achieves
a lower average CD (multiplied by 1000) across 40 categories. Although PMP-Net and
PMP-Net++ have lower CD loss than ours for categories such as Bathtub and Person, for
the majority of categories like Desk, Bench, Radio, Chair, Tent, and Door, our CD is smaller
than those of the state-of-the-art methods. These results demonstrate that our network
PCCDiff can reconstruct missing point clouds with higher precision in a multi-class dataset.
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Table 1. Results of comparison between our method and state-of-the-art methods on ModelNet40
dataset using mean Chamfer Distance (CD) computed and multiplied by 103. The best results are
in bold.

Methods Desk Bench Radio Chair Tent Door Person Bathtub Average

FoldingNet 3.442 1.947 2.165 2.500 2.772 0.965 2.825 2.241 2.474
PCN 3.146 1.916 1.794 1.895 2.806 0.715 3.228 1.947 2.543

TopNet 2.626 1.640 2.141 1.714 2.435 0.825 2.362 1.876 2.112
PMP-Net 0.792 0.514 0.942 0.517 0.903 0.376 0.623 0.808 0.762

PMP-Net++ 0.699 0.536 0.684 0.500 0.819 0.373 1.193 0.731 0.726

Ours 0.658 0.494 0.608 0.483 0.799 0.342 0.900 0.811 0.709

Figure 6 illustrates the qualitative results of our method compared to the state-of-the-
art methods on ModelNet40. Our method preserves the original input geometry while
effectively computing and refining the missing parts for the showcased examples.
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4.2. Completion Results on ShapeNet-34/21

To further investigate the performance of our method with unseen categories in the
dataset, we conducted experiments on ShapeNet-34/21. This dataset was derived from
the original ShapeNet [27] dataset and was split into two parts: 21 unseen categories
(with 2305 models for testing) and 34 seen categories (with 46,765 models for training and
3400 models for testing). For the 21 unseen categories, we employed networks trained on
the 34 seen categories to evaluate the performance on novel objects from the remaining
21 categories that were not part of the training phase.

The average CD results for the two classes are presented in Table 2. We selected three
categories from each class as examples to demonstrate the results. It can be seen from
Table 2 that the average CD result of PCCDiff is improved by 7.6% compared to PMP-Net
and 17.3% compared to PMP-Net++ for the 34 seen categories. Our method achieves the
best performance on the listed categories and exhibits the lowest CD regardless of whether
the object is symmetric or not, demonstrating that the objects completed by PCCDiff are
closest to the GT. Among the 21 unseen categories, PCCDiff also achieves the lowest CD,
showcasing the generalization performance of PCCDiff. In Table 2, we can also observe
that average CD errors for the 21 unseen categories for PMP-Net and PMP-Net++ are
higher compared to those for the 34 seen categories. As the difficulty level increases,
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the performance gap between seen categories and unseen categories significantly widens.
However, for our method, there are no significant differences in the average CD errors of
the two classes. Our method also achieves the best performance in this more challenging
setting. In Figure 7, we present qualitative results of four categories on Shapenet-34/21.
As demonstrated by the examples, our method can complete the missing point cloud with
higher accuracy and more details for various seen and unseen categories.

Table 2. Results of comparison between our method and state-of-the-art methods on ShapeNet-34/21
dataset using mean Chamfer Distance (CD) computed and multiplied by 103. The best results are
in bold.

Methods
34 Seen Categories 21 Unseen Categories

Trash Bin Bed Cabinet Average Printer Helmet Washer Average

FoldingNet 1.527 2.220 1.088 1.259 2.441 3.429 1.664 1.985
PCN 1.561 2.473 1.025 1.217 2.487 4.527 1.625 2.203

TopNet 1.413 1.879 1.020 1.089 2.141 3.317 1.494 1.774
PMP-Net 0.782 0.735 0.553 0.520 0.900 1.361 0.854 0.964

PMP-Net++ 0.993 0.811 0.651 0.567 0.945 1.481 0.987 0.877

Ours 0.476 0.560 0.360 0.483 0.527 0.782 0.470 0.522
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and the ground truth (G.T., yellow) as well as the predictions of state-of-the-art methods and our
method (blue).

Our method consistently demonstrates superior performance in both quantitative
comparisons and qualitative analyses across diverse datasets, significantly enhancing
the quality of completed point clouds. These results underscore the effectiveness of our
approach in tackling the point cloud completion task.

4.3. Ablation Study

To validate the effectiveness and necessity of the proposed conditional point cloud
completion network and Missing-Transformer, we tested and compared our method PC-
CDiff with its variants on ShapeNet-34/21. The results of the ablation study are presented
in Table 3. Model A is the variant of the PCCDiff without both the conditional point cloud
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completion network and Missing-Transformer, which aims to demonstrate the effectiveness
of introducing condition features into the network design. The CD increases markedly upon
removal, indicating that condition features significantly improve performance. Figure 8
visually demonstrates the intermediate steps of the diffusion reverse process. It can be seen
that Model C generates more complete point clouds than Model A. The condition features
provide multi-level information during the diffusion process, including local and global
features. The reverse diffusion process can effectively utilize condition features to manipu-
late the noisy input point cloud to form a clean and complete point cloud. When removing
Missing-Transformer from the conditional point cloud completion network (Model B), the
CD is higher, as expected. It clearly shows that Missing-Transformer can bring performance
improvement. Notably, our method, PCCDiff (Model C), achieves the best performance
compared to its variants, confirming the effectiveness of its design.

Table 3. Ablation study on different components of our proposed network framework, including
conditional point cloud completion network and Missing-Transformer on ShapeNet-34/21 dataset
using mean Chamfer Distance (CD) computed and multiplied by 103. The best results are in bold.

Model
34 Seen Categories 21 Unseen Categories

Trash Bin Bed Average Helmet Washer Average

A Without condition network (without
Missing-Transformer) 0.598 0.819 0.534 0.757 0.549 0.579

B With condition network (without
Missing-Transformer) 0.572 0.607 0.514 0.772 0.525 0.547

C (ours) With condition network
(with Missing-Transformer) 0.476 0.560 0.483 0.782 0.470 0.522
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the reverse diffusion process. The first and last columns show incomplete point clouds (gray) and
ground truth (G.T., yellow), while the subsequent five columns show the evolution of the point cloud
from a randomly sampled Gaussian to a final shape over the course of the diffusion process (blue).

4.4. Noise Variance Schedule

Table 4 presents the results of our model with different variance schedule βt on
ShapeNet-34/21. As can be seen, the CD increases as βt enlarges. During the diffusion
process, the variance schedule is important for controlling the noise intensity in each step.
The smaller βt produces higher-quality results.

Table 4. Analysis of the variance schedule βt on ShapeNet-34/21 dataset using mean Chamfer
Distance (CD) computed and multiplied by 103. The best results are in bold.

34 Seen Categories 21 Unseen Categories

βt ∈ [0.0001, 0.02] 0.483 0.522
βt ∈ [0.0002, 0.04] 0.508 0.557
βt ∈ [0.0005, 0.10] 0.554 0.618
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5. Conclusions

In this paper, we introduce a novel conditional denoising diffusion probabilistic
model (PCCDiff) for point cloud completion. Our method generates complete point
clouds through the diffusion process. The conditional point cloud completion network
incorporates Missing-Transformer and TreeGCN, which extract detailed object features. The
Diffusion ResUNet utilizes these features along with incomplete point clouds to predict the
complete point clouds. This approach enables PCCDiff to localize and calibrate completions.
Our method can not only efficiently extract multi-level features from partial point clouds
to guide the completion process but also precisely predict fine and complete point clouds.
Experimental results on ModelNet40 and ShapeNet-34/21 demonstrate the effectiveness
and efficiency of our proposed method compared to alternative approaches. The limitation
of our model is the need for point cloud ground truth for training with low efficiency. With
regard to future work, it would be interesting to accelerate the generation process and
generate more dense complete point clouds. Moreover, our method has a broad application
prospect, so we are convinced that it can be applied in other point cloud generation tasks,
such as point cloud UpSampling.
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