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Abstract: Multimodal fusion-based object detection is the foundational sensing task in scene under-
standing. It capitalizes on LiDAR and camera data to boost the robust results. However, there are still
great challenges in establishing an effective fusion mechanism and performing accurate and diverse
feature interaction fusion. In particular, the relationship construction between the two modalities has
not been comprehensively exploited, leading to sensor data utilization deficiencies and redundancies.
In this paper, a novel 3D object-detection framework, namely a symmetry-aware sparse sensor fusion
detection network (2SFNet), is proposed. This framework was designed to leverage point clouds
and RGB images. The 2SFNet consists of three submodules, filtered colored point cloud generation,
pseudo-image generation, and a dilated feature fusion network, to solve these problems. Firstly,
filtered colored point cloud generation constructs non-ground colored point cloud (NCPC) data by
employing an early fusion strategy and a ground-height-filtering module, selectively retaining only
object-related information. Subsequently, 2D grid encoding is used on the reduced colored data.
Finally, the processed colored data are fed into the improved PillarsNet architecture, which now has
expanded receptive fields to enhance the fusion effect. This design optimizes the fusion process by
ensuring a more balanced and effective data representation, aligning with the symmetry concept
that underlies the model’s functionality. Experiments and evaluations were conducted on the KITTI
dataset to present the effectuality, particularly for categories characterized by sparse point clouds.
The results indicate that the symmetry-aware design of the 2SFNet leads to an improved performance
when compared to other multimodal fusion networks, and alleviates the phenomenon caused by
highly obscured and crowded scenes.

Keywords: data fusion; point cloud; object detection; deep learning; symmetry

1. Introduction

In the domains of AI-driven applications, robotics, autonomous driving, etc., object
detection is the most critical and foundational prerequisite. Its purpose is to localize and
classify objects with bounding boxes in 3D space for subsequent path planning.

Autonomously driving cars are typically equipped with a variety of sensors, including
RGB cameras and 3D LiDAR sensors, which can supply information for perceiving the
surrounding environment. RGB images acquired by cameras can offer plentiful color and
dense texture details with pixels in the RGB color space, allowing for enhanced visual fea-
ture extraction. However, they lack in-depth information, which limits their performance.
In contrast, point clouds scanned by LiDAR can seize 3D structures and precise depth
data, presenting a clear outline of object shapes and spatial arrangements. Nevertheless,
owing to their inherent characteristics, these point clouds usually become sparser and more
precarious from the center of the digital scanner outwards. Moreover, the relationship
between the two modalities is not sufficient to fetch geometric features. The sparsity of
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data related to small, distant, and obscured objects may induce the performance collapse of
LiDAR-based methods. By combining their advantages and fusing complementary infor-
mation from these two modalities, the completeness of the description of the surrounding
environment can be increased, and the performance of 3D object-detection tasks can be
further boosted [1,2].

Owing to the inherent nature of point clouds in irregularity and sparsity, LiDAR-only-
based approaches convert 3D data into projected 2D views [3–12] and voxel grids [13–19]
using convolutional neural networks, or directly into pure point clouds by utilizing Point-
Net [20–22]. The common drawback of 2D view projection and voxelization is that they
inevitably result in the loss of crucial 3D information. While PointNet is able to extract
features from 3D data with fewer points, its magnitude for larger data remains uncertain.
Designing a rational spatial convolution network for data processing is a persistent chal-
lenge, unlike the techniques used for 2D image detection. In addition, small objects like
vehicles and pedestrians have no distinct geometric shapes and fewer points, making them
unable to be recognized by LiDAR-only methods. Furthermore, the lack of semantic color
information can result in false detection in the case of similar objects. Therefore, researchers
have greatly focused on multimodal fusion methods that employ multimodal sensors to
supplement the rich semantic surface, supplied by a camera with the precise position
capabilities of LiDAR.

Depending on the fusion processing, different fusion strategies can be divided into
three categories: early-level fusion [23–26], middle-level fusion [27–44], and late-level
fusion [45,46]. As shown in Figure 1, the fusion strategies vary depending on the stage in
which the RGB image participates.
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sion architectures.

The early-level fusion [23–26] strategy involves incorporating raw multimodal data
into a unified coordinate system directly; then, the perception data are imported into the
designed module, e.g., augmenting LiDAR data with appropriate semantic labels [23,24].
This strategy produces redundant information and demands a heavy level of computa-
tion during data storage and processing. Most scholars have primarily focused on the
middle-level fusion [27–44] strategy, which entails extracting features from different 2D
projected maps and RGB images, and then learning fusion representation using a deep
intermediate network, offering a balance between sensitivity and flexibility. These methods
often perform addition or concatenation on different projected views without considering
the varying validity of both modality features. Although this strategy is very popular in
ensuring information consistency, it lacks sensitivity to the point-wise correspondence
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between sensor features, which is relatively coarse. The late-level fusion [45,46] strategy
processes each sensor data point on its independent detection module and joins the 2D
and 3D results based on interrelationships or special models. It ignores the potential infor-
mation generated by the performance of each sensor, involving less interaction between
different modalities. Both the middle- and late-level strategies must apply two independent
networks to extract the features of each modality, making it hard to achieve the optimal
point-wise correspondence. Their performance is limited by 2D mature detectors. As the
early-level strategy records two modes into a consistent coordinate system, which can
realize the fusion of limited perception data, it simplifies the design and improves the
efficiency of convolutional coding. Nevertheless, early-level fusion methods have not been
thoroughly explored yet, and we aimed to fill this gap and expand the current knowledge
in this field.

Most multimodal fusion-based works [27–32,39–44] have generated projected maps or
established connections between 3D points and 2D pixels by means of projecting the 3D
points onto the image plane to locate the appropriate pixels. These methods are limited by
spatial information in the encoding process; merely a small number of points will complete
the matching fusion. In contrast to the aforementioned methods, this method lifts image
pixels into a 3D space and chooses to encode the 3D sparse data with a colored texture.

In this paper, we proposed a symmetry-aware sparse sensor fusion network (2SFNet)
detection method that addresses the problems mentioned above. This 2SFNet consists of
three submodules: filtered colored point cloud generation, pseudo-image generation, and a
dilated feature fusion network. In the filtered colored point-cloud-generation module, the
early fusion strategy and the height-filtering module are utilized to construct a 7D colored
sparse point cloud. In the former, the point clouds and RGB images are jointly calibrated
and fused based on their transformation relationships. This constrains the detection range
through joint calibration, whereby the RGB pixels are projected into 3D space to augment
the point cloud (XYZr). The latter module was adopted to eliminate invalid ground data,
accelerate the subsequent network encoding speed, further refine the point cloud, and align
with the symmetry of the scene by selectively retaining only object-related information.
Then, in the pseudo-image-generation module, 2D grid encoding is applied to reduce the
generated colored data. Finally, in the dilated feature fusion network module, the processed
colored data are fed into the improved PillarsNet architecture with expanded receptive
fields to enhance the fusion effect. The main contributions can be categorized as follows:

(1) In this paper, a novel 3D object-detection framework, namely a symmetry-aware
sparse sensor fusion detection network (2SFNet), is proposed. It was designed to take
advantage of point clouds and RGB images.

(2) To the best of our knowledge, this is the first method that lifts pixels into 3D space,
enhances the representation of 3D point data by incorporating image pixels point-to-
point, and employs a height-filtered module to filter ground points, thereby construct-
ing a new 7D colored point dataset.

(3) This paper proposes an improved PillarsNet with an increased receptive field network
to deeply encode the processed colored data for multiscale feature fusion learning,
aligning with the symmetry of feature extraction and further reinforcing the symmetry
in feature representation.

The rest of this paper is organized as follows: Section 2 briefly reviews the related
works on LiDAR-based and multimodal data-fusion-based object detection. An overview
of the proposed 2SFNet model and its methodology (filtered colored point clouds, pseudo-
image generation, the dilated feature fusion network, and the loss function) are introduced
in Section 3. Section 4 presents an evaluation of the 2SFNet on a public dataset, including the
implementation details and experimental results. Section 5 summarizes the current model.

2. Related Work

LiDAR sensors provide highly accurate depth information, excel at distance measure-
ments and structure recognition, and enable detailed 3D mapping of the environment.
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Meanwhile, RGB data offer rich color and texture details. This paper integrates
multimodal data fusion to enhance the object-detection performance by providing com-
plementary information, particularly in complex scenes where occlusion and ambiguity
may arise.

This section investigates recent approaches to the use of deep learning models for 3D
point cloud object detection, especially focusing on LiDAR-only-based and multimodal
data-fusion-based detection tasks.

2.1. LiDAR-Only-Based Detection

Conventional deep learning networks struggle to directly transfer to point clouds
because the structure of point clouds is irregular. According to point cloud representations,
LiDAR-only-based methods commonly involve partitioning the irregular point clouds
into 2D views [3–12], voxel grids [13–19], and directly using pure point clouds as the
input [20–22].

Projected 2D-view-based methods: To reduce the computational burden, some al-
gorithms refer to the projection of 3D data into 2D images, such as front view formats
like VeloFCN [3], LMNet [4], and FVNet [5] and bird’s-eye-view (BEV) formats like Bird-
Net [6], BirdNet+ [7], Complex-YOLO [8], RT3D [9], PIXOR [10], and HDNet [12]. After
the conversion, a proven 2D convolution technique can be directly implemented. The front
view is resemblant of the RGB image and comprises coordinates in space. The BEV format
is typically utilized for autopilots, since objects do not superimpose on the height axis,
making it easier to obtain the position and appearance of objects.

Voxel-grid-based approaches discretize 3D spaces into voxel structures with a uniform
size and utilize a formal 3D CNN [14] to obtain a high-dimensional representation. Notably,
PointPillars [11] proposes a pseudo-image manner that divides voxels only on the plane.
PVRCNN [13] leverages the key point features with the output of 3D space convolution to
improve proposal generation. The voxel feature extractor [15] expands the receptive field
and enhances the context of the extracted features. Based on VoxelNet [15], SECOND [16]
enhances the efficiency of 3D convolution by utilizing sparse convolution modules to
erase null voxels. For the special case of occluded vehicles, SegVoxelNet [17] designs a
depth-aware head with different kernel sizes and convolutional layer expansion rates. The
recent works on PVRCNN++ [18] and Lidar RCNN [19] employed the attention mechanism
to extract and detect features within voxels.

Pure point-cloud-based methods are dedicated to analyzing pure points directly. With
the advent of PointNet [20], it is possible to perform convolution operations on 3D points.
PointFormer [21] applies the transformer model to a 3D object-detection network. The
advantages of PointNet in translation invariance, local connections, and shared parameters
have spawned some specialized versions [21,22]. However, both the computation and
memory consumption of computing 3D models increase cubically.

2.2. Multimodal Data-Fusion-Based Detection

Existing sensor fusion-based approaches are broadly categorized into three groups:
early-level [23–26], middle-level [27–44], and late-level fusion [45,46].

Early-level fusion-based methods directly overlay the two types of modal sensing data
at the data level, e.g., PointPainting [23] utilizes DeeplabV3+ to acquire per-pixel labels
and then projects these labels back to the 3D space and constructs the augmented data
by superposition. Dense sequential fusion [24] utilizes the foreground mask to selectively
enhance the point clouds, focusing on relevant objects and ignoring background noise. This
type of method does not merge the high-level features of different modalities. PointAug-
menting [26] applies the deep features extracted from 2D images to augment LiDAR data.
Middle-level fusion-based methods [27–44] extract and combine features into a single
feature vector, e.g., MV3D [27] and AVOD [28] take different 2D projected perspectives
as inputs for different pipelines and generate 3D proposals to predict bounding boxes.
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BEVfusion [33,34] employs LSS [33] operations to project image features into BEV space,
and then integrates the two modality features by concatenation.

MENet [35] introduces a mapping pyramid that leverages the semantic representation
of image features at various stages and incorporates an attention-mechanism-based fusion
module to refine point cloud features with auxiliary image features. To address the imbal-
ance between foreground instances and background samples in BEV space, IS fusion [36]
comprises a hierarchical scene fusion (HSF) module and an instance-guided fusion (IGF)
module; the former captures the multimodal scene context at different granularities, while
the latter aggregates the local multimodal context for each instance. MMAF-Net [37] com-
bines data-level fusion with feature-level fusion to fully exploit the strengths of multimodal
information, and it designs a region attention adaptive fusion module by utilizing an
attention mechanism to guide the network.

Moreover, based on dense feature representations, some methods [38,39] utilize a
view transformation module to construct 3D features of multi-view perspectives, which
are then fused with point-level elements. However, the switching module incurs extra
computing costs due to the sparsity of redundant spatial information. As the perceived
distance rises, the computational load and memory requirements of the model increase
dramatically, limiting its practical application. Late-level fusion-based methods [45,46]
combine 2D and 3D modality results from different detectors, and then decide the final
accurate 3D prediction. The frustrum-based methods, F-PointNet [45] and F-ConvNet [46],
yield 2D proposals from the image first, which are reprojected into 3D space, and then they
utilize PointNet as a basic feature extractor within the 3D space, viewing the frustrum from
2D region proposals to yield highly accurate trajectories.

The above methods need to transform 3D data into a specific perspective or voxel,
which may involve the loss of information. Although multimodal fusion methods have
been extensively studied, there is a lack of research on mapping relationship optimization.

In conclusion, compared with existing methods that utilize either a complex model to
deal with different types of modal data or specific late fusion modules, this paper designed
a simple, yet effective, fusion strategy to reduce the amount of data computations in the
early stage and achieve interactions between modal features.

3. 2SFNet Method for LiDAR–Camera Fusion

To achieve satisfactory LiDAR–camera fusion, the proposed 2SFNet and its entire
model for colored data detection are presented in Figure 2. This model consists of two
modalities: RGB images captured by the camera and sparse point clouds by Velodyne
64E LiDAR from Karlsruhe Institute of Technology and Toyota Technological Institute
(KITTI) [47]. The Klein’s Institute of Technology in the Information (KITTI) Vision Bench-
mark Suite is a widely used dataset in the field of autonomous driving research. It encom-
passes a rich collection of driving scenarios captured in urban, rural, and highway settings,
including synchronized stereo vision and LiDAR data. This dataset enables comprehensive
evaluations of various algorithms for tasks such as 3D object detection, visual odometry,
and semantic segmentation.

This model restricts the search space through joint calibration, adds color and texture
information to corresponding point clouds through a fusion module in 3D space, and
removes a lot of inefficient data through a ground-height-filtering module. Subsequently,
based on high-quality corresponding features between neighborhood points, the improved
PillarsNet with increased receptive fields was introduced.
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3.1. Filtered Colored Point Cloud Generation

It is commonly evident that the amount of information for pixels is considerably larger
than the points in all categories, and a single instance of LiDAR data contains more than
one million points. This model recognizes the disparity in the information density between
pixels and points and aims to maintain symmetry in the processing of both modes. For
real-time detection, this model constrains the effective relevant search regions and reduces
the amount of data processing.

The filtered colored point cloud model consists of an early fusion strategy and height-
filtering module. In the former, informed by the symmetry concept, the detection range is
constrained through joint calibration, whereby the image pixels (RGB) are cast into 3D space
so as to augment the point cloud (XYZr). The latter module is utilized to filter out invalid
ground data, and then the new colored data, referred to as the non-ground colored point
cloud (NCPC), are generated. The primary advantage of a 7D colored point cloud over the
traditional 3D point cloud lies in the enhanced information. The additional dimensions
(color and intensity) provide significant contextual clues and detailed appearance features,
which improve the accuracy and robustness of object detection, especially in complex
environments. The multiplication process is exemplified in Figure 3.
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3.1.1. Early Fusion Strategy

An early-level fusion strategy plays a crucial role in our module by integrating LiDAR
and camera data into a unified coordinate system before the model is processed. This
enables a simplified designed model to leverage both modalities’ strengths simultaneously,
allowing for a more comprehensive understanding of the scene and improving the model’s
ability to perform convolutional coding.

Despite the sparsity of point clouds, an early fusion strategy can achieve fusion with
limited image pixels. These finite pixels can still provide rough texture information, espe-
cially for nearby objects, forming rich texture features. Therefore, an early fusion strategy
is designed to assign color texture information to the point cloud. Two types of modal
data are calibrated by synchronizing and calibrating the parameters. The transformation
equations are as follows:

Pcam = R0
rect·Tcam

velo ·Plidar (1)

pcam = Tproj·Pcam (2)

Tcam
velo =

[
Rcam

velo tcam
velo

0 1

]
(3)

where R0
rect is the rotation matrix, tcam

velo is the transformation matrix from the LiDAR to the camera co-
ordinate system, and Tproj is the projection matrix from the camera coordinate systems. To be more

specific, the object-detection space is set to
{
[x, y, z]T

∣∣∣x ∈ [0, 70]m, y ∈ [−40, 40]m, z ∈ [−3, 3]m
}

.
By leveraging the projection matrix, pixels are projected onto equivalent points in 3D

space, and the remaining pixels are discarded. The color features of the image pixels are
then associated with the corresponding 3D data, generating a 7D colored point cloud. Thus,
each generated 7D colored data point not only comprises 3D coordinates and the reflection
intensities, but also the surface color of the corresponding pixel points on the image plane,
maintaining symmetry in the data representation. The 7D colored point cloud is generated
by augmenting a traditional 3D point cloud with additional features, providing richer
information and enhancing the object-detection capacities. Each colored point cloud feature
represents pi = (xi, yi, zi, ri, Ri, Gi, Bi). Specifically, the xi, yi, zi dimensions represent 3D
spatial coordinates; ri represents the reflectance value from the LiDAR data; and Ri, Gi, Bi
represent the color information from the camera image.
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3.1.2. Ground-Height-Filtering Module

Typically, a single frame of LiDAR data contains more than one million point clouds;
therefore, it is difficult to meet real-time requirements using point-wise coding. The
ground filter was adopted in our model to eliminate invalid point clouds and accelerate
the subsequent network encoding speed.

The ground-height-filtering module in the 2SFNet model effectively distinguishes
between ground and non-ground points in the frame. By filtering out ground points, the
quality of detected objects is enhanced by focusing on relevant features in the frame data
above the ground level, which improves the accuracy of object-detection tasks.

The module leverages the height difference relationships in the point cloud to cate-
gorize the data. For any given point cloud P, the module calculates the height difference
between p and its corresponding reference point Pr within the neighborhood. Ensuring
symmetry in the specific classification criteria is achieved as follows:

Filtered Points(r, p) =
{

0, i f ∥ zi − zj ∥> th
1, otherwise

(4)

where zi represents the height value of point P, zj represents the height value of reference
point Pr, and th is the height difference threshold. By calculating the height difference
relationships between points, this model can determine the category of each point. When
the result of Equation (4) is 0, point p is classified as an object and will be retained; otherwise,
it is classified as a road point and will be filtered. A visualization of the 7D color sparse
data within the image field of view is shown in Figure 4.
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As demonstrated in Figure 4, the RGB image provides the color and texture of the
road environment, while the 3D point cloud presents spatial information about the scanned
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object and its surrounding environment. The multi-dimensional colored data significantly
heighten the color and texture of the 3D point cloud. It can be observed that the amount of
information for pixels is considerably larger than the points in all categories. The seven-
dimensional colored data established not only preserve the spatial sparsity, but they also
enrich the surface color and texture of the points. By limiting the detection region, the
computational cost of data processing is greatly reduced.

3.2. Pseudo-Image Generation

To enhance the visualization of LiDAR points, this module utilizes prior knowledge
and spatial ensemble constraints to filter the generated 7D colored data. The 7D colored
point cloud data are uniformly split into 2D grids with a shape of (H, W) and a resolution r.
The non-empty grids are resampled into N pillar grids, and after attaching the color texture
features, each pillar grid is represented as (xv, yv, zv, rv, Rv, Gv, Bv) with additional color
texture features. Therefore, in this paper, we took (Cin, N) as the input to the underlying
PointNet network, where Cin = 7 and the output is (N, Cout), from which a 2D pseudo-
image with a size of (H, W, Cout) was created.

3.3. Dilated Feature Fusion Network

CNN models can learn features by several convolutional and pooling layers. Directly
handling the extracted features may not be efficient for a complex environment. The
previous method directly used bottom-up convolutional layers. Some valid features may
be ignored during multiple layers. Inspired by atrous convolution [48], a novel dilated
feature fusion network based on a pyramid [49,50] with the receptive field network was
designed; the overall architecture is illustrated in Figure 5.

Symmetry 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

amount of information for pixels is considerably larger than the points in all categories. 
The seven-dimensional colored data established not only preserve the spatial sparsity, but 
they also enrich the surface color and texture of the points. By limiting the detection re-
gion, the computational cost of data processing is greatly reduced. 

3.2. Pseudo-Image Generation 
To enhance the visualization of LiDAR points, this module utilizes prior knowledge 

and spatial ensemble constraints to filter the generated 7D colored data. The 7D colored 
point cloud data are uniformly split into 2D grids with a shape of ሺ𝐻,𝑊ሻ and a resolution 𝑟. The non-empty grids are resampled into 𝑁 pillar grids, and after attaching the color 
texture features, each pillar grid is represented as ሺ𝑥௩,𝑦௩, 𝑧௩, 𝑟௩ ,𝑅௩,𝐺௩,𝐵௩ሻ with additional 
color texture features. Therefore, in this paper, we took ሺ𝐶,𝑁ሻ as the input to the under-
lying PointNet network, where 𝐶  = 7 and the output is ሺ𝑁,𝐶௨௧ሻ , from which a 2D 
pseudo-image with a size of ሺ𝐻,𝑊,𝐶௨௧ሻ was created. 

3.3. Dilated Feature Fusion Network 
CNN models can learn features by several convolutional and pooling layers. Directly 

handling the extracted features may not be efficient for a complex environment. The pre-
vious method directly used bottom-up convolutional layers. Some valid features may be 
ignored during multiple layers. Inspired by atrous convolution [48], a novel dilated fea-
ture fusion network based on a pyramid [49,50] with the receptive field network was de-
signed; the overall architecture is illustrated in Figure 5. 

 
Figure 5. 1-Dilated Convolution, 2-Dilated Convolution and Framework of atrous convolution. 

The feature fusion network consists of an encoder, receptive field expansion, and a 
decoder. The encoder is a pyramid feature extractor based on ResNet-50 and is used to 
acquire high-level features with multiple perceptual layers. Figure 6 shows a conception 
of how the receptive field changes according to the dilatation rate. 

Figure 5. 1-Dilated Convolution, 2-Dilated Convolution and Framework of atrous convolution.



Symmetry 2024, 16, 1690 10 of 19

The feature fusion network consists of an encoder, receptive field expansion, and a
decoder. The encoder is a pyramid feature extractor based on ResNet-50 and is used to
acquire high-level features with multiple perceptual layers. Figure 6 shows a conception of
how the receptive field changes according to the dilatation rate.
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In the pyramid feature module, atrous convolutional layers with dilation rates of
1, 2, and 3 and 1 × 1 information are used; the output feature maps of all the layers are
fused through addition. That is, the high-level features further fuse pyramid features
with rich multiscale features for each level. For low and high levels, a dilated feature
fusion network is used to obtain fused features. At this stage, different scale features with
different receptive information are combined. Finally, a point-wise convolution is applied
to the fused feature map. The term “conv” indicates a convolutional layer; “+” shows
the concatenation of features. The simple decoder consists of ResBlock and up-sampling.
Finally, the module reconstructs the fused features with more detailed information. The
framework of the receptive field network is illustrated in Figure 6.

The skip connection operation is applied in the receptive field module due to the
different dilated convolutions in each level. When the skip connection is denoted as T, the
dilation size can be represented as (t, t = 1, 2, 3), expanding the receptive field.

To attain an accurate object position and semantics, it is necessary to acquire the
semantic texture of the object through a continuous down-sampling operation, and then
concatenate high- and low-level feature maps to achieve multi-level fusion. This module
heavily reduces the input by means of a ground-filtering module and removes certain
critical points in the vicinity of the ground.

3.4. Loss Function

The overall loss function is designed to maintain symmetry in the evaluation of the
model’s performance, similar to PointPillars [11] and SECOND [16]. It is composed of three
parts: smooth l1 loss for position regression, Lcls loss for object classification, and Ldir loss
for direction (yaw angle), ensuring the symmetry in the criteria.

The 3D object is surrounded by a rectangle detection box whose parameters are defined
by (x, y, z, w, l, h, θ), where x, y, z are the center coordinates of the rectangle box and w, l, h
are the width, length, and height. In the current autopilot field, objects are on the ground, so
only the yaw angle θ needs to be considered. The relevant parameters are listed as follows:

∆x =
xg−xa

da
, ∆y =

yg−ya
da

, ∆z =
zg−za

da
(5)

∆l = log
(

lg
la

)
, ∆h = log

(
hg
ha

)
, ∆w = log

(
wg
wa

)
, ∆θ = θg − θa (6)

where ∆x, ∆y, ∆z represent the offsets between the ground truth value xg, yg, zg and the
predicted values xa, ya, za; lg, hg, wg represent the length, height, and width of the ground
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truth value; la, ha, wa represent the length, height, and width of the predicted values; and
da represents the diagonal length. These offsets are normalized by the diagonal length da of
the detection box to ensure consistent scaling and measurements across different sizes of

boxes: da =
√
(la)

2 − (wa)
2.

(a) The regression position loss (Lloc) is calculated alongside the classification predictions,
which are supervised using the cross-entropy (CE) loss.

smooth − l1(x) =
{

0.5x2|x| < 1
|x| − 0.5, others

(7)

(b) To address the issue of sample imbalance in traffic scenes, our model employed a
focal loss function (object classification focal loss (Lcls)). This function places greater
emphasis on hard-to-classify examples and helps to alleviate the influence of abundant
easy-to-classify samples, promoting a better performance across all object classes. The
significant disparity between positive and negative sample ratios critically impacts the
vehicle detection performance. Typically, the network generates around 7000 boxes
and there are only a limited number of ground truths, with each instance yielding
just 4 to 6 positives samples. This leads to an extreme imbalance between vehicle
and background classes. To mitigate the challenge, focal loss is utilized, effectively
focusing on hard-to-classify negative samples, thereby improving the performance.

Lcls = −α(1 − p)γlog(p) (8)

where p represents the classification probability of the predicted box, α is a weighted factor
used to balance the significance of positive and negative examples, and γ serves as a
focusing parameter that adjusts the rate at which easy examples are down-weighted. For
this implementation, α and γ were set to 0.25 and 2, respectively.

(c) Directional loss (Ldir) addresses the challenge of angle regression, as the orientation
between two possible directions {+,−} cannot be inherently distinguished. To over-
come this limitation, a softmax function was employed to calculate the discretized
orientation loss. Specifically, if the heading angle around the Z-axis of the ground
truth is greater than 0, it is classified as positive; otherwise, the orientation is negative.

By combining the losses discussed above, the overall loss function can be formulated
as follows:

L =
1

Npos
(Llocβloc + Lclsβcls + Ldirβdir) (9)

where Npos represents the number of accurately detected boxes and the weights βloc, βcls,
and βdir correspond to the contributions of the regression loss, classification loss, and
direction loss, which were assigned the values of 2.0, 1.0, and 0.2, respectively.

4. Experiments
4.1. Dataset and Metrics

The KITTI [47] object dataset has become a widely recognized benchmark for eval-
uating the performance in autonomous driving. The dataset is divided into two parts: a
training dataset containing ground truths, with a total of 7481 samples, and a test dataset
without ground truths, comprising 7581 samples.

In addition to each dataset, KITTI contains sensor calibration and the corresponding
point cloud for each image. It contains three annotated category labels, including vehicles,
pedestrians, and cyclists, which are officially provided for evaluation. For the quantitative
evaluation of each category, the data are classified into three difficulty levels: easy, moderate,
and hard. These classifications are based on factors such as the size, visibility range, and
truncation level, with a bounding box overlap (IOU threshold) of 70% for vehicles and
50% for the other categories. Furthermore, the most commonly used evaluation metrics
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are the AP (average precision) and the mAP (mean average precision); the former reflects
the precision for a specific category across the entire dataset, while the latter provides an
overall average precision across all categories.

4.2. Implementation Details

This method used common settings and a limited range. For validation purposes,
the training set was divided into two non-overlapping subsets: one for the training split,
consisting of 3712 examples, and another for the validation split, comprising 3769 examples.

In the training phase, the model adopted the adaptive moment estimation (Adam)
optimizer to train the 2SFNet with 300 epochs, and the batch size was 12. The momentum
was adjusted within the range of 0.85 to 0.95, while the initial learning rate was established
at 0.001 and the fixed-weight decay coefficient was 0.001 to assist in regularizing the module
during training. For the receptive field module, the basic dilation rate was set to (1, 3, 5) to
maintain symmetry in the feature extraction process. The model training and evaluation
were executed with the Pytorch 1.6 DL framework on the local hardware platform with an
NVIDIA RTX3090 GPU. And the detection visualization was achieved using the Mayavi
tool, which can show the detection results in 2D and 3D space. Furthermore, several
artificial intelligence software tools are suitable for 3D object detection with symmetry-
aware colored point clouds, including TensorFlow and Open3D. These platforms can
facilitate the development and implementation of advanced 3D object-detection algorithms.
During model evaluation, this method uniquely utilizes a 7D colored point cloud as the
input, while the others rely on the original 3D point cloud. Consequently, this approach
requires minimal adjustments to the network, primarily involving modifications to the
number of channels dedicated to processing the input.

4.3. Experimental Results
4.3.1. Experimental Comparison Between 7D Colored Point Cloud and 3D Point Cloud

To verify the effectiveness of the proposed method, this section further evaluates the
2SFNet with different combinations of processing, i.e., 3D point clouds and 7D colored
point clouds, as shown in Table 1. Table 1 presents a comparison of the detection results
from various input data types for the KITTI validation dataset. The first row indicates
the results obtained using a 3D point cloud as the network input, while the second row
corresponds to the results from the 7D colored point cloud. Notably, when employing a 3D
point cloud, the input channel of the network was adjusted to three.

Table 1. Comparison results under different inputs for validation dataset (AP, /%).

Input Data
Vehicles (IoU = 0.7) Pedestrians (IoU = 0.7) Cyclists (IoU = 0.7)

E M H E M H E M H

3D Point Cloud 86.37 76.87 74.45 58.03 56.71 52.31 63.65 57.42 54.09
7D Colored Point Cloud 88.71 77.10 75.17 59.31 58.08 53.19 64.98 59.17 55.15

The difficulty levels of “easy (E)”, “medium (M)”, and “hard (H)” are established
by the official KITTI website and pertain to the three categories of vehicles, pedestrians,
and cyclists. As illustrated in Table 1, the detection results using the 7D color point cloud
as the input surpassed those obtained with the 3D data in all three categories: vehicles,
pedestrians, and cyclists. Especially in the categories of pedestrians and cyclists, the
accuracy improvement from using the 7D color point cloud was more obvious, with
improvements of 1.37% and 1.75% at the difficulty level of “medium”, respectively. The
reason for this is that color information enriches the semantic content. Additionally, the
feature fusion network, which incorporates an expanded respective field, exhibited distinct
advantages in detecting objects over long distances. To gain an intuitive understanding
of the detection performance, this paper compared the predicted results with the ground
truth by using a 3D bounding box, and the visualization results are presented in Figure 7.
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The purple indicates the visualization result of the real label (ground truth), while the blue
represents the visualization of the network’s predictions.
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As can be seen in Figure 7, the accuracy of the center point and the length, width, and
aspect of the 3D bounding box were infinitely close to the ground truth. This approach
could generate accurate predictions for challenging scenes, such as those involving partial
occlusion and distant objects. This demonstrates that the detection network leveraging
multimodal data fusion attained a high accuracy and can alleviate the common leakage of
missed detections and false positives in traffic scenarios.

It can easily be observed that the dilated mapping range contains more information
regarding the object and its surrounding environment, which can assist the network in mak-
ing better predictions when the sparse point clouds are insufficient for the detection task.

4.3.2. Evaluation of KITTI Object Benchmark Test Dataset

The 2SFNet was evaluated using the KITTI test set and compared with other ap-
proaches. For the test with no labels, the predictions were obtained by submitting them
to the official KITTI test server. This section evaluates the detection performance of the
2SF (with colored 7D data) in comparison with recently published 3D object-detection
models, including LiDAR-based methods (BirdNet+ [7], PointPillars [11], PVRCNN [13],
VoxelNet [15], SECOND [16], and SegVoxelNet [17]) and multimodal sensor fusion-based
methods (MV3D [27], AVOD [28], MVAF-Net [31], MMF [32], MEnet [35], Contfuse [38],
and F-PointNet [45]). The evaluation results (average precision, mAP) for the KITTI testing
set of several 3D object detectors from the official KITTI leaderboard are reported in Table 2.
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The difficulty levels of easy, moderate, and hard are based on definitions provided by the
KITTI official website. The best results in each category are highlighted in bold.

The 3D detection results of the 2SFNet for the KITTI testing set are presented in Table 2.
The proposed method achieved AP values of 88.31% and 77.85% for vehicles at the easy and
moderate levels, respectively. Compared with our baseline of PointPillars [11], the 2SFNet
exhibited a considerable improvement. In particular, the 2SFNet improved PillarsNet for
vehicles by 5.73% and cyclists by 0.13%, which proved the effectiveness of the early-level
fusion strategy. In comparison to LiDAR-only methods, the 2SFNet achieved the best
results for these levels across all three categories, demonstrating effectiveness. Furthermore,
the performance of the 2SFNet surpassed that of VoxelNet [15] by 10.84% and SECOND [16]
by 3.02%, highlighting the superiority of our LiDAR–camera fusion module in delivering
improved results.

In comparison to multi-sensor fusion-based methods, for the vehicle category, the
2SFNet outperformed existing techniques, with the exception of MMF [32] and MENet [35]
at the easy level and MVAF-Net [31] at the moderate and hard levels. Specifically, the
proposed method surpassed MV3D [27] by 13.34%, AVOD [28] by 5.28%, and MVAF-
Net [31] by 0.44% at the easy level. For the pedestrian and cyclist categories, the 2SFNet
drastically narrowed the performance gap between fusion approaches, with the exception
of a marginal difference in the easy level for pedestrians. In the vehicle category, this
method may not be the top performer, likely because objects at this level are relatively easy
to detect with sufficient point clouds. In such cases, LiDAR–camera fusion may not be the
best choice for enhancing the performance.

To visually compare the detection effects of the proposed method, the 2SFNet, and
PointPillars, Figures 8 and 9 further provide a qualitative analysis by visualizing the
detection results in the case of partial occlusion and distant objects. The left column is the
visualization result of PointPillars, and the right is the visualization result of the 2SFNet.
Red and pink highlights the critical regions in images space and 3D space. The purple
indicates the vehicles, while blue represents the orientation.
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from point clouds. Re-projecting to image space is for illustrative purposes only.

These figures include some qualitative visualizations for comparison between both
the image view and a bird’s-eye view on the KITTI object-detection test set.

The left columns and right columns display the detection performance of the 2SFNet
and PointPillars for the vehicle class, respectively. The selected frames contain distant
and partially occluded objects, which illustrates that, when an object is far away from an
autonomous vehicle, the number of scanned point clouds is also extremely small and sparse.
It can be observed that the LiDAR-only-based PillarsNet misidentified the orientation of
the vehicle due to the similar geometric shapes and failed to detect the farthest vehicle.
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This 2SFNet can clearly generate complete predictions under challenging scenes like those
with crowded and faraway objects; the reason is that it has a superior capability regarding
the effective use of image information and the fusion of sensors.

Table 2. Quantitative comparison of LIDAR-based and multimodal sensor fusion-based methods
using the KITTI testing set. The results were evaluated by the mean average precision with the
40 recall position. L and C represent the LiDAR sensor and camera sensor, respectively (/%).

Methods Sensor
Modality Time (s)

3D AP (%)

Vehicles Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BirdNet+ [7] L (BEV) 0.1 70.14 51.85 50.03 37.99 31.46 29.46 67.38 47.72 42.89
Pointpillars [11] L (BEV) 0.016 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92
PVRCNN [13] L (Point) - 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
VoxelNet [15] L (Voxel) 0.23 77.47 65.11 57.73 - - - - - -
SECOND [16] L (Voxel) 0.01 85.29 76.60 71.77 43.04 35.92 33.56 71.05 55.64 49.83
MVAFNet [31] L + C 0.06 87.87 78.71 75.48 - - - - - -

MMF [32] L + C 0.05 88.40 77.43 70.22 - - - - - -
MV3D [27] L +C 0.36 74.97 63.63 54.00 - - - - - -
AVOD [28] L + C 0.08 83.07 71.76 65.73 50.46 42.27 39.04 63.76 50.55 44.93

F-PointNet [45] L + C 0.17 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01
MENet [35] L + C - 89.41 78.82 78.36 74.79 66.23 59.80 85.04 66.27 62.73

2SFNet (ours) L + C 0.01 88.31 77.85 75.13 50.74 43.36 40.71 77.23 66.07 53.01

In these circumstances, it can be concluded that, in a complex and crowded environ-
ment, a LiDAR-only-based method has a tendency to miss objects owing to the absence
of color information, while the 2SFNet ensures a higher detection accuracy by taking
advantage of color and texture.

There are several improvements to be considered for the future. First, advanced deep
learning techniques should be explored, such as attention mechanisms and generative
models, to further enhance the performance of the 2SFNet model. Second, although the
early fusion strategy has been taken into consideration, the combination of various fusion
strategies should be considered in future research. Finally, an expanded dataset that
includes more diverse scenes and object classes should be considered; this could improve
the model’s applicability in real-world situations.

5. Conclusions

This paper proposed a LiDAR–camera fusion-based detection network, the 2SFNet,
and explored the use of symmetry-aware colored point clouds for 3D object detection. It
has significant practical applications in fields such as autonomous driving, robotics, and
augmented reality. A symmetry-aware 2SFNet mode consists of a filtered colored point-
cloud-generation module, a pseudo-image-generation module, and a dilated feature fusion
network. In the former, the 2SFNet utilizes an early fusion module and a ground-height-
filtering module to construct non-ground colored point cloud data. The early fusion module
leverages the symmetry in the spatial relationship between image pixels and points, while
the ground-height-filtering module maintains the symmetry of the relevant points, focusing
on object-centric information. Subsequently, the colored point cloud data are uniformly
divided into 2D grids, allowing the dilated feature fusion network to find corresponding
features with a matched scale and a receptive field. Experiments and evaluations were
conducted using the KITTI dataset to demonstrate the effectiveness of the 2SFNet.

The 2SFNet can effectively operate across various driving scenarios, including urban,
highway, and rural environments, by utilizing LiDAR and camera data. However, its
performance may fluctuate based on the driving conditions, and adverse weather such as
heavy rain, snow, and fog can impact the sensor reliability.

To maximize the potential of symmetry-aware detection methods, several areas war-
rant further investigation. For instance, these areas include developing more sophisticated
algorithms that can identify and exploit different types of symmetry (e.g., reflective, rota-
tional) within complex point clouds, which may improve the detection rates in cluttered
environments. Second, investigating various fusion strategies can be integrated with other
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data modalities, such as 2D images or depth maps, to create a more holistic detection
framework that benefits from the strengths of multiple data sources. Finally, extensive
experiments should be conducted across various datasets and real-world scenarios to
evaluate the generalizability of symmetry-aware detection methods.
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