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Abstract: The possible consequence of an infrared (IR) fixed point in QCD for N f = 2, 3 in nuclear
matter is discussed. It is shown in terms of d(ilaton)-χ effective field theory (dχEFT) incorporated
in a generalized effective field theory implemented with hidden local symmetry and hidden scale
symmetry that the superallowed Gamow–Teller transition in the doubly magic-shell nucleus 100Sn
recently measured at RIKEN indicates a large anomaly-induced quenching identified as a fundamental
renormalization of gA from the free-space value of 1.276 to ≈0.8. Combined with the quenching
expected from strong nuclear correlations “snc”, the effective coupling in nuclei geff

A would come
to ∼1/2. If this result were reconfirmed, it would impact drastically not only nuclear structure
and dense compact-star matter—where gA figures in π-N coupling via the Goldberger-Treiman
relation—but also in search for physics Beyond the Standard Model (BSM), e.g., 0νββ decay, where
the fourth power of gA figures.

Keywords: hidden symmetries; IR fixed-point; Landau-Migdal Fermi-liquid fixed-point; GnEFT;
pseudo-conformality; anomaly-induced quenched gA

1. Introduction

Two recent measurements of the superallowed Gamow–Teller transition in the doubly
magic closed-shell (DMCS) nucleus 100Sn, one at GSI [1] and the other at RIKEN [2],
give significantly different GT strengths. Put in the notation used in the two papers,
the measured results are BGSI

GT = 9.1+3.0
−2.6 and BRIKEN

GT = 4.4+0.9
−0.7. In terms of the “extreme

single-particle shell model (ESPM)” considered applicable for the DMCS nucleus 100Sn, the
effective g∗A (throughout this paper, the superscripts “∗” and “eff” both stand for density
dependence, with the latter specifically for gA in medium) in the ESPM gives the ranges

g∗GSI
A ≈ 0.9 − 1.0, (1)

g∗RIKEN
A ≈ 0.6 − 0.7 (2)

to be compared to the free-space value gA = 1.276. In terms of the quenching factor denoted
in the literature as q,

g∗A = qgA (3)

qGSI ≈ 0.71 − 0.78, qRIKEN ≈ 0.47 − 0.54. (4)

We prefer to quote the ranges here rather than the error bars since it is difficult to interpret
them given the theoretical arguments injected in the quoted results, the reliability of which
is hard to quantify in our approach. For the reason explained below, we will take qGSI ≈ 0.78
giving g∗A ≈ 1 for GSI and qRIKEN ≈ 0.5 giving g∗A ≈ 0.6 for RIKEN.
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As argued [3,4] the “quenched geff
A ≈ 1” with the quenching factor q ≡ geff

A /gA ≈ 0.78
observed in Gamow–Teller transitions in light nuclei [5–7] seems to be quite consistent with
the GSI data, but not with the RIKEN result. Now, given that the RIKEN measurement [2],
as claimed, must be improved with much smaller error bars, over the GSI one, this result
taken seriously brings up in nuclear physics a strong tension in weak responses of nuclei to
EW interactions between light and heavy nuclei. Additionally, in particle physics it has a
drastic impact, so far unforeseen, of the quenched gA in nuclear matter in the 0νββ process
in heavy nuclei in search for new physics Beyond the Standard Model (BSM).

The objective of this paper is to expose for the first time the role of infrared fixed point
and dilaton in QCD in nuclear interactions .

1.1. g∗A and Where the Quenching Comes from

Let us briefly discuss the problem of the quenching of gA in the nuclear medium.
The first thing to address is: Does the quenching involve a “fundamental” phe-

nomenon when matching EFT to QCD or just a mundane nuclear effect appearing in finite
density? It turns out, fortunately, that for superallowed Gamow–Teller transitions in doubly
closed magic-shell (DCMS) nuclei one can reasonably—though not rigorously—answer
this question. This is because there is a possibility of closely “mapping” what happens
in DCMS nuclei in shell models to what can be treated in Landau–Fermi-liquid (LFL)
theory [8,9] in the Fermi-liquid fixed-point (FLFP) approximation [10].

Shell-model analyses reviewed in [5–7] (and many other reviews that we will skip)
rather persuasively suggested that for light nuclei, if the nuclear correlation is fully consid-
ered with proper wave function and effective operator, no further quenching seems to be
needed in the sense defined in [11]. An interesting, very recent, development quotes the sd
shell-model result in the mass range A = 18–39 in terms of the quenching factor for two
effective shell-model interactions q = 0.79 ± 0.05 and q = 0.82 ± 0.04, giving g∗A ≈ 1 [7].
However in heavier nuclei, higher-order correlations involving large configuration space
were difficult to put under control, making it difficult to reliably address the ab initio
EFT calculation. There are two major issues raised in this conundrum, one in the nuclear
many-body problem touching on the structure of dense (neutron-star) matter and the
other hidden symmetries in QCD that become un-hidden in nuclear strong correlations.
In addressing the problem involved, one cannot avoid an inherent fuzziness in what is
“fundamental” and what is not in the observable quantities. In this article, we will try to
give as precise a definition as feasible of what is meant to be fundamental. This issue arises
because we are bound to work in the framework of an effective field theory (EFT).

The nuclear EFT we will be adopting is defined with the energy–momentum scale set
by the chiral scale Λχ ∼ 4π fπ ∼ 1 GeV at which the QCD degrees of freedom are to be
integrated out. For the processes concerned in nuclear physics, the scale can in practice
be brought down to the mass scale of the lowest-lying vector mesons (ρ, ω). We further
implement the scalar dilaton σ (not to be confused with the σ in linear sigma model) as the
pseudo-Goldstone boson for broken scale symmetry. Although the existence of an IR fixed
point in QCD with the flavor number N f = 2, 3 involved in nuclear processes remains still
in controversy that began in 1970s, we will be arguing it should equally figure in dense
nuclear interactions [12] as well as in particle physics involving scalar degrees of freedom in
QCD [13,14]. One of the early roles of the dilaton in nuclear phenomena was recognized in
the BR scaling [15]. It has figured importantly in our nuclear many-body approaches in the
form of a generalized nuclear effective field theory that has been referred to as GnEFT by
one of the authors for some time [12,16] involving both hidden local symmetry (HLS) [17]
and hidden scale symmetry (HSS). By raising the relevant scale to capture the degrees
freedom involved in those hidden symmetries, the GnEFT encompasses, at the mean-field
order, the phenomena that are properly captured at higher chiral orders in perturbation in
nuclear effective field theory, χ EFT, anchored on Weinberg’s “Folk Theorem” on quantum
effective field theory [18–20].
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1.2. New Results

We start with a brief summary of the principal (new) results of this paper. From a
recent, drastically new argument put forward by Zwicky [21–23] that there can exist an
IR fixed point for two- or three-flavor QCD with the derivative of the β function with
respect to the QCD coupling constant αs (at the leading scale symmetry order) at the IR
fixed point, β′

∗, going to zero, resembling N = 1 SUSY [24], we find from the most recent
RIKEN experiment that the anomaly-induced quenching (AIQ) of gA can be surprisingly
big, making the value of gA drop from the free-space value of 1.276 to ∼0.8. If the RIKEN
result were reconfirmed by new measurements with accurately controlled theoretical inputs,
then it would bring a totally new development not only in nuclear theory and nuclear
astrophysics but also in searches for BSM. Since the axial coupling gA is connected to the
pion–nucleon coupling in nuclear medium via the Goldberger–Treiman relation, the strong
AIQ would also basically revamp nuclear dynamics that is controlled by pion–nuclear
interactions, that is, the nuclear physics anchored on chiral dynamics, which is the currently
widely accepted paradigm in the nuclear physics community.

On the other hand, if the RIKEN data were shown to be unreliable or defective, then
one could arrive at an understanding of why gA is quenched to g∗A = 1 in terms of strongly
correlated nuclear dynamics with local and scale symmetries of QCD hidden in the nuclear
matter. It would also clarify the role of the IR fixed point in nuclear physics. This suggests
that settling the issue of the superallowed GT transition in 100Sn is urgently needed.

2. The GnEFT

Here is a brief outline of the EFT framework we are working in. The implementation
to chiral Lagrangian of hidden local symmetry fields is well established [17]. What we
need to address then is how to implement hidden scale symmetry. The dilaton, the Nambu–
Goldstone boson of spontaneously broken scale symmetry, has appeared in various different
contexts in the literature with different definitions including going beyond the SM. We
are interested in scale symmetry in QCD with the flavor numbers N f ≤ 3 relevant to
nuclear dynamics. The scheme we adopt is the “genuine dilaton (GD)” proposed by
Crewther [13,14], the characteristic feature of which is shared with the “conformal dilaton”
phase in QCD (CD-QCD) developed more recently by Zwicky [21,23]. There may be other
approaches but we find them best applicable to our problem. There are some differences
in details between the two, but they do not affect in our scheme that exploits the notion
of emergence of the scale symmetry. Briefly stated, the phase CD-QCD is different from
the conformal window [25–28] in the Nc—N f phase diagrams in that the quark condensate
⟨q̄q⟩ exists in the CD-QCD phase, thus it can cause spontaneous breaking of scale symmetry
in the chiral limit and give a large decay constant to the dilaton. This gives mass to other
hadrons through the Goldberger–Treiman type relation. The scale symmetry that figures in
GD (and also in CD-QCD) is hidden in the sense that it emerges only in the deep IR region.
The process we are concerned with, as our work indicates, takes place not far from the IR
fixed point, so the strong controversy in the field does not appear to seriously affect our
reasoning that figures in nuclear dynamics.

The model we use, GnEFT, is a coarse-grained macroscopic approach formulated
to address high-density phenomena taking place in massive compact-star matter at a
density of ∼(5–10)n0 (where n0 is the nuclear equilibrium density ∼0.16 fm−3). It has
fared surprisingly well with no serious tension with the recent gravity-wave astrophysical
data. It turns out that the formulation briefly explained below, anchored on Landau–
Fermi-liquid structure of strongly correlated fermions (since the pion field is extremely
important in nuclear dynamics, one should properly call it Landau–Migdal–Fermi-liquid,
but although we omit Migdal, it should be understood as such), applies from ∼n0 to the core
density of neutron stars. How this is accomplished is described in detail invoking “pseudo-
conformality (PC)” in [12,29]. We skip the details here but mention that the formulation
involving “PC” applies very well to the present problem we are concerned with, namely
heavy nuclei.
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The chiral-scale Lagrangian from which we start, constructed by Crewther and Tun-
stall [14] including the leading anomalous dimension terms via the Callan–Symanzik
renormalization group equation, is of the form (this formula essentially applies to the
CD-QCD scheme [21] with, however, a crucially significant impact on the anomalous terms
with d ̸= 4 in the gA problem that we will come to in Section 3.2):

LdχEFT =: Ld=4
inv + Ld>4

anom + Ld<4
mass, (5)

where d is the scaling dimension. For Ld>4
anom, d = 4 + γG2(αs) with αs the QCD coupling

constant and γG2(αs) the anomalous dimension of the gluonic operator GµνGµν. For Ld<4
mass,

d = 3− γm(αs) where γm(αs) is the anomalous dimension of the bilinear quark operator q̄q.
It is assumed that we are near the IR fixed point in the low-energy and density regime of
QCD, αs ≲ αIR with αIR the QCD coupling constant at the IR fixed point, so the anomalous
dimension has the expansion with respect to δαs ≡ O(αs − αIR).

γG2(αs) ≡ β′(αs)− β(αs)/αs = β′
∗ + O(δαs) (6)

with the anomalous dimension β′
∗, the derivative of β function at the IR fixed point.

Ignoring higher order terms in δαs, we have

Ld=4
inv = {c1K+ c2Kσ + c3(χ/ fσ)

2}(χ/ fσ)
2,

Ld>4
anom = {(1 − c1)K+ (1 − c2)Kσ + c4(χ/ fσ)

2}(χ/ fσ)
2+β′∗ ,

Ld<4
mass = Tr(MU† + UM†)(χ/ fσ)

3−γm . (7)

Here,

K =
1
4

f 2
πTr(∂µU∂µU†) and Kσ =

1
2

∂µσ∂µσ (8)

and U = exp(iπ/ fπ) is the nonlinear realization of pion field, χ/ fσ = exp(σ/ fσ) is the
conformal compensator field for the dilaton σ, ci for i = 1, 2, 3, 4 are parameters and M
is quark mass matrix. Two counting schemes are involved: the scale and chiral power
counting in the Lagrangian. Near the IR fixed point, c1,2 = 1 + O(M), c3,4 = O(M) where
O(M) ∼ O(m2

π) ∼ O(p2) in the chiral power counting. When approaching the IR fixed
point, M → 0, c1,2 → 1, c3,4 → 0 such that only the d = 4 term survives.

In GnEFT [16], the many-body problem in nuclear matter is handled by a renormalization-
group (RG) approach to interacting fermions on the Fermi sphere [10]. It has been shown
that implemented with the hidden local symmetric and hidden scale-invariant fields,
the mean field approximation of the (hidden local and scale symmetric) chiral Lagrangian
with its parameters BR-scaling becomes equal to what corresponds to the Landau–Fermi-
liquid fixed point theory of many-nucleon systems [8,12,29].

Now applying the same Callan–Symanzik RG manipulation to the nucleon axial-
current J5µ coupling to the weak external field Wµ, one obtains the weak Lagrangian that
we need. To the leading chiral-order and leading-order anomalous dimension, it is of
the form

Lweak = Ja
5µW aµ (9)

with

J±5µ = Qssb(χ)gAψ̄τ±γµγ5ψ (10)

where

Qssb(χ) = cA + (1 − cA)(
χ

fσ
)β′∗ (11)
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stands for the anomaly-induced effect inherited from QCD. Here, cA is an undetermined
parameter as ci with i = 1, 2, 3, 4. Apart from Qssb in (10), Lweak is scale-invariant. The devi-
ation from possible scale-invariance resides in (11). In GnEFT with the “vacuum” given by
the medium with the baryon density n, we expand

χ = ⟨χ⟩∗ + χ′ (12)

with χ′ representing the fluctuation dilaton field, the ∗ the density dependenc and fσ = ⟨χ⟩n=0
in the medium-free space. If we ignore the fluctuating dilaton-field contributions that enter
at higher loop orders, we have Qssb(⟨χ⟩n=0) = 1, so there is no scale symmetry breaking
effect at the leading order on gA in the matter-free vacuum. One can therefore say that the
anomaly-induced effect, hidden in the matter-free vacuum, can be revealed primarily by
the presence of baryonic matter.

Going into finite density,

⟨χ⟩∗/ fσ = f ∗σ / fσ = Φ(n) (13)

can be considered to be an “order parameter” that characterizes the vacuum structure
modified by medium, the uppercase ∗ standing for in-medium quantity. The quantity Φ(n)
is referred to in the literature as the “BR scaling factor.” It governs how parameters in the
dχEFT scale with density.

In the order we are considering, the axial current we are dealing with is given by

J±5µ = qssbgAψ̄τ±γµγ5ψ (14)

with

qssb = cA + (1 − cA)Φβ′∗ . (15)

We replaced the Φ(n) with Φ. qssb multiplies the coupling constant gA in nuclear axial
processes, hence represents a “fundamental renormalization” of the coupling constant
gA → ginherit

A ≡ qssbgA inherited from QCD which becomes manifested importantly in
the medium, to be distinguished from what is given in standard many-body nuclear
correlations. It is worth noting that the effect of β′

∗, which is hidden in the vacuum, is “exposed”
in finite density in the axial current for Φ ̸= 1. The physical transition matrix element of the
current (14) in nuclei will then be the full nuclear matrix element Mnucl of the operator
jnucl
5 = ψ̄τ±γµγ5ψ multiplied by the axial constant ginherit

A . These two quantities are not
entirely separate from each other because the BR scaling Φ must figure in both Mnucl and
the effective axial constant. Now the question raised is how it figures in geff

A and Mnucl,
such as does it depend on density interplaying in both etc.? It turns out, fortunately, that
there is very little interplay between the two.

There are two quantities to be considered. The first is the full nuclear correlations that
we refer to as “mundane nuclear effect” (MNE in short) and the second, the main issue
in this paper, is the “fundamental quenching factor” qssb − 1 ̸= 0 referred to as “AIQ” for
anomaly-induced quenching. Now, in order to minimize the possible overlap between
MNE and AIQ we focus on the superallowed Gamow–Teller transition involving zero
momentum transfer q = 0 and zero energy transfer ω = 0. The strategy adopted [4] is to
map the “Extreme Single Particle (shell) Model” (ESPM for short) in doubly magic closed
shell nuclei to “Fermi-liquid fixed-point” (FLFP) approximation [10] at (q, ω) → (0, 0) with
q/ω → 0 on the Fermi surface. The FLFP approximation is best applicable for a quasi-
particle making the superallowed transition on the Fermi surface with loop contributions
suppressed in nuclear matter. The resulting full GT matrix element is then given by

ML =
1
2

qL
sncgA⟨στ⟩ (16)
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where ⟨στ⟩ is the single quasi-nucleon matrix element of the GT operator. The superscript
L represents, from here on, the Landau–Fermi-liquid fixed-point quantity. The factor qL

snc
given in (22) below, with the subscript snc representing strong nuclear correlation, is the
factor that captures the total matrix element in the EFT adopted. The product

gL
A = qL

sncgA (17)

is then the LFL fixed-point prediction for the single-quasi-particle coupling constant
that captures the complete nuclear correlation. It is related to the geff

A mentioned in
the Introduction.

2.1. qL
snc as Landau–Fermi-Liquid Fixed-Point Quantity

To proceed, we review first how the FLFP quantity qsnc is derived. This was derived
a long time ago [8]. It comes from the combination of chiral symmetry with the hidden
symmetries for highly correlated fermions on Fermi sphere treated in renormalization-
group approach [10]. The basic idea is to arrive at Landau– Fermi-liquid theory at the
Fermi-liquid fixed point for the process of a quasi-proton on the Fermi surface, making
the q/ω → 0 β+ transition to a quasi-neutron corresponding to the 100Sn superallowed GT
transition arriving at Equation (16). This result obtained in [8] has an extremely simple form

qL
snc = (1 − 1

3
ΦF̃π

1 )−2 (18)

where Φ = f ∗χ / fχ and F̃π
1 = (mN/mL

N)Fπ
1 with the Landau mass mL

N is the Landau
interaction parameter for the pion exchange. This simple structure encodes low-energy
theorems, Ward identities, etc., in the large Nc limits that are satisfied in the skyrmion
model for baryons. Now, in the GD (and most likely also in Zwicky’s CD-QCD) scheme,
Φ satisfies

Φ = f ∗σ / fσ ≈ f ∗χ / fχ ≃ f ∗π/ fπ (19)

so Φ is available from deeply bound pionic nuclei up to near n0 [30], hence it is a known
quantity. (It should be mentioned that for large number of flavors, say, N f ∼> 10 as in the
conformal window scenario for dilatonic Higgs model, the ratio fχ/ fπ << 1 [31], whereas
in GD and CD-QCD fχ ≈ fπ . The dilatons could have different properties between the two
regimes.) It turns out that qsnc as given in (18) is highly insensitive to density near n0. It
comes out to be

qL
snc ≈ 0.78 for n = n0. (20)

This leads to

gL
A ≈ 1. (21)

It is predicted that this result holds for densities n ≈ (0.8 − 1.1)n0, hence in light nuclei as
well as in heavy nuclei.

This prediction in the Landau–Fermi-liquid fixed point for the axial current is in
the same class as the nuclear response in the EM currents. Here, the situation is even
more straightforward. An illustrative case is the EM orbital current in the mean-field
treatment of GnEFT, which reproduces precisely Migdal’s finite Fermi-liquid formula [32]
J⃗ = k⃗

mN

( 1+τ3
2 + δgl

)
with δgl =

1
6 (F̃′

1 − F̃1)τ3 where F̃1 and F̃′
1 are Landau–Migdal interac-

tion parameters expressed in terms of the parameters of the Lagrangian involved in GnEFT.
There are two remarkable results in this formula. First, the orbital current is given in
terms of the vacuum nucleon mass—instead of the Landau mass mL—satisfying the Kohn
theorem [33]. The other is that the prediction for the nuclear anomalous gyromagnetic
ratio [8]—with the soft-pion theorems playing the crucial role—δgp

l (n0) ≃ 0.21 agrees with
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what is measured in the Pb region, δgproton
l = 0.23 ± 0.03 [34]. This quantity fails to be

explained by standard χEFT which gives ∼0.07, far short of the experimental value.

2.2. qsnc in ESPM

We now turn to the ESPM. For this we take the superallowed GT transition in 100Sn
nucleus, which has the proton and neutron shells completely filled at 50/50 magic shells.
The transition involved in the ESPM is the pure superallowed transition of a proton
(denoted π) πg9/2 in the completely filled orbital to a neutron (ν) in the empty spin-orbit
partner νg7/2 orbital of 100In. This offers the simplest possible structure of the daughter
state that is of a pure νg7/2 particle-πg9/2 hole state to which the ESPM can be applied.
Now, if one assumes that the final (daughter) state reached in the GT process has ignorable
mixing with other particle-hole states, which is more or less the case [35], then the mapping
from the FLFP approximation in the Fermi-liquid to the ESPM would be as exact as
feasible. In reality, one cannot expect a total non-mixing even in this double magic-shell
configurations. The same is the case in the Landau–Fermi-liquid fixed-point approximation
based on N̄ going to ∞. The question then remains how exactly the transition from the
100Sn ground state to the pure (νg7/2) particle-(πg9/2) hole state in 100In can be extracted
from experiments. This would require as accurate an account as possible of the theoretical
mixing in the daughter state.

3. Observation and Prediction
3.1. Experiments

Here, we look at what Nature says in the 100Sn transition. Equation (15) for qssb
involves two unknowns, cA and β′

∗. Neither is available by lattice QCD or experiments.
Therefore, we cannot make an unambiguous (theoretical) prediction with the formula (15).

To proceed, we need to resort to experimental decay rates to extract the nuclear matrix
element Mnucl from experiments so as to obtain qsnc. For this, an ab initio no-core shell-
model calculation that takes into as full an account of nuclear correlations as feasible could
provide the necessary information. Up to date, however, one crucially important theoretical
ingredient has been missing for that feat. For accurately calculating superallowed GT
transitions in heavy nuclei, one must take into account the nuclear tensor force with its
strength decreasing with increasing density. This decrease is caused by the tendency of
cancellation between the tensor forces given by the exchange of the pion and the isovector
meson ρ subject to the BR scaling. This mechanism makes the Gamow–Teller response
strength change from low density to higher density. This feature is associated with Migdal’s
g′0 interaction associated with what’s called the “Ericson–Ericson–Lorentz–Lorenz (E2-L2)
effect” in condensed matter physics applied to the ∆-hole effect in pion–nuclear processes.
However, up to date no such calculations have been performed. Since there seems to be
prevalent disagreements from aficionados of ab initio chiral EFT many-body approaches to
nuclear interactions, it might be worth making a comment on what is mentioned above
that was made elsewhere. There is what is heralded as “first-principles” resolution of the
quenched gA problem in the 100Sn GT transition [36]. As pointed out in [3], the authors
of [36] fit the GSI data, not the more “improved” RIKEN, which is not even cited therein.
As for the strategy of “ab initio first principles approach” adopted in [36], it has two defects
shared by all other “first-principles” calculations so far published: First, the nuclear tensor
forces in GnEFT controlled by the BR scaling as a function of density are not properly
taken into account. Second, the many-body currents in the Gamow–Teller channel are not
“protected by chiral symmetry” and hence cannot be controlled at a low order of chiral
expansion; this in stark contrast to the axial-charge transition mentioned in Sect. III C.
The first point is the main point of G.E. Brown, reproduced in [37].

The ESPM-Landau FLFP mapping applicable for the doubly magic closed-shell struc-
ture can allow one to bypass this stumbling block. The mapping is given by the Landau
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fixed-point pionic interaction F̃π
1 multiplied by the in-medium scaling of the dilaton decay

constant Φ

qL
snc = (1 − 1

3
ΦF̃π

1 )−2 ≃ 1/gA ≃ 0.78. (22)

As remarked, it is applicable to heavy nuclei as well as to nuclear matter. It was first
obtained numerically in [3,8]. As in standard chiral EFT, one would have to make correc-
tions to the Landau’s FLFP approximation result (22). How to perform such corrections in
this Fermi-liquid approach has been recently formulated in condensed matter physics in
terms of the nonlinear bosonization approach with the coadjoint orbit method [38]. Our
problem is much more involved than in condensed matter systems because there are the
pion and the hidden symmetry bosons (both HLS and HSS) coupled to Fermi surface
fluctuations. The first attempt to include such corrections indicate, however, the correction
to the FLFP approximation to (22) is quite small, coming at O(10−4) in a wide range of
matter densities [39]. Further effort needs to be made but this is more or less what is found
in light nuclei for geff

A , which indicates that with no AIQ effect there is little dependence
on density [5–7]. As noted below, this also hints at the approach to the dilaton-limit fixed
point [40] at some high density at which gA must go to 1.

Let us now look at the experiments available in 100Sn where the mapping between
the shell model and Landau–Fermi-liquid model could be made. As mentioned at the
beginning of this paper, there are two experiments, one from GSI [1] and another from
RIKEN [2].

• GSI: In this experiment, the transition zeroing-in on ∼95% of the final daughter state
of the pure (νg7/2)particle-(πg9/2)hole configuration has been reported. The resulting
qGSI

snc comes out close to qL
snc [4], leading to

qGSI
ssb ≈ (0.9 − 1.0). (23)

A detailed account of the mixing in the final state involving theoretical inputs seems
to give a somewhat smaller qssb but it is not clear how reliable the mixing can
be estimated. We choose not to rely on this analysis. Modulo the ∼5% uncer-
tainty, however, it seems safe to conclude qGSI

ssb given by (23) indicates there is no
appreciable AIQ. This gives then what one might call “pure quasi-nucleon con-
stant” gpqn

A = qsnc × gA = 0.78 × 1.276 = 1. This is equal to gL
A (17) predicted by FLFP.

As noted, this is consistent with the DLFP result [40] but at a much higher density in
GnEFT where an intricate interplay between the attraction due to the dilaton exchange
and the ω repulsion plays a crucial role [12,29,41].

• RIKEN: The more recent measurement at RIKEN for the same transition, improved
over the GSI result with smaller error bars, comes out to be drastically different and
points to a major AIQ effect. As it stands, this experimental result is the most clear-cut,
if not in error, indication for the possible evidence for the AIQ. It is difficult to assess
the accuracy with which the nuclear correlations between the neighboring states near
the pure (νg7/2)particle-(πg9/2)hole configuration are taken into account in arriving at
the experimental result of qsnc. It would require highly accurate theoretical inputs to
qsnc, which we are unable to assess whether the RIKEN analysis provides. Assuming
the qL

snc given by the mapping for qsnc, the RIKEN result implies a significant effect
that deviates from qL

ssb = 1,

qRIKEN
ssb ≈ (0.6 − 0.7). (24)

This result is saying that the “fundamental” gA inherited from QCD is ∼0.8–0.9,
which is considerably renormalized from 1.276. Now, given that this is an intrinsic
QCD effect, it should apply to ALL weak processes at all kinematics in the nuclear
medium, not just superallowed Gamow–Teller transitions at (q, ω) → (0, 0). Even
more significantly, in the process 0νββ transitions in nuclei where the momentum
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transfer can be of order ∼100 MeV, the axial coupling constant appears at fourth power
in the cross-section.

So the big question is: Which one is correct?

3.2. Prediction by CD-QCD

Up to this point, there was no answer. What is new is that one may be able to answer
the question with the coming experimental facilities and the new theoretical development.
The recent development on the IR fixed point in the CD-QCD scheme anchored on soft
dilaton theorems in dχEFT of Zwicky [21] predicts, analogously to the N = 1 SUSY
case [24], the anomalous dimension

β′
∗ = 0. (25)

This prediction eliminates the gluonic trace anomaly term with d > 4 in Equation (7),
attributing the QCD trace anomaly to the quark mass term. This would come about if the
gluonic trace anomaly in some sense were integrated out, with the QCD gauge coupling
running logarithmically near the IR fixed point [21]. Given that the would-be dilaton,
if identified with the f0(500), has a mass ≫ mπ , it could be that the correction to the β′

∗ in
the exponent of (χ/σ) may not be negligible.

What this means is that Qssb in (10) in the leading chiral and scale order becomes

Qssb(χ) = cA + (1 − cA)(
χ

fσ
)β′∗ → qssb = 1. (26)

Hence, the quenching of gA would be entirely due to the mundane nuclear effect. But this
prediction is clearly at odds with the RIKEN result (24). This would apply not just to
the axial current but also to other channels in the GnEFT Lagrangian. Here, the higher
scale-order term O(αs − αIR) is taken to be negligible. But it is not obvious that the system
lies very near the IR fixed point, so that O(αs − αIR) may not be ignorable. In fact the
would-be free-space dilaton mass, if identified with f0(500) in the CD-QCD scheme, must
be higher than the pion mass, so the correction to β′

∗ in the exponent to Φ may not be
ignorable unless the system is driven close to the IR fixed point by external disturbance, say,
baryon density. We cannot give a convincing simple argument at the moment, but the fact
that the phenomenology in GnEFT with the topology change as hadron–quark crossover
gives the precocious pseudo-conformal sound velocity v2

s /c2 ≈ 1/3 in compact stars at a
density as low as n ∼> 3n0 is consistent with β′

∗ ≈ 0.

3.3. Evidence For and Against qRIKEN
ssb ≈ (0.6 − 0.7)

The dilaton-limit fixed point in GnEFT is expected to appear at a much higher den-
sity than normal n0, encompassing what is expected in massive compact stars. How the
effect relevant to normal nuclear matter persists from n0, where the gA problem lies to
∼(5 − 7)n0 probed in compact stars cannot be given a simple description. But as de-
fined, the AIQ should apply to the axial coupling constant gA figuring in ALL processes
involving the nucleon axial current independently of the kinematics. Furthermore, this
applies to ALL processes where the pion–nucleon coupling figures as expected from the
Goldberger–Treiman relation between gA and gπNN . One may then ask how the currently
successful χEFT in nuclear physics that is anchored on soft pions—which includes nuclear
astrophysical observations—escapes “torpedos” of the fundamentally quenched gA?

Among numerous processes in nuclear dynamics, there is one case that seems to be
strongly against qRIKEN

ssb . It is the first-forbidden beta decay in nuclei dominated by the
axial-charge operator J±05. For this process, what was dubbed as “chiral filtering mechanism”
was postulated in formulating the meson-exchange axial currents in χEFT [42]. There it
was shown that the nuclear axial current had drastically different power expansion for
the time-component of the axial current from the space component. The former was seen
dominated by the soft-pion exchange while the latter was suppressed, in particular for
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the Gamow–Teller transitions. Indeed, this soft-pion mechanism led to an enhanced axial-
charge transition where qssb = 1 [43] was well confirmed by an experiment in Pb nuclei [44].
This result has been further supported with A = 12 nuclei [45], indicating relatively weak
dependence on density. Note that the AIQ factor for the axial current controlled by soft-
dilaton effects [21] should apply exactly as in the superallowed GT transition and the axial
charge operator that enters in the first-forbidden process is primarily controlled by soft-pion
effects. The precise agreement between theory and experiment would surely be destroyed
by the AIQ of the size given by the RHIC. This interplay of soft-dilaton and soft-pion
involved in providing nuclear model independence could be given a “first-principle” test.

There are, however, certain axial processes being discussed in the literature that
may be indicative of an appreciable quenching of qssb. As stressed by Suhonen (private
communication from J. Suhonen), there is a suggestion that measuring β-decay spectral
shape instead of superallowed GT transitions would allow the AIQ to be better extracted.
Indeed, there seems to be a signal [46] for the (1 − qssb) ∼ (0.3 − 0.4) comparable to what
is indicated by the RIKEN data. Here, the nucleon wavefunction involved probes different
kinematics from the superallowed GT transition, so the LFL fixed-point-to-ESPM mapping
where the nuclear tensor forces play a key role for determining qL

snc cannot be applied.
In fact, the spectral shape involves nuclear matrix elements with the structure of the

current operator (i.e., many-body meson-exchange currents) and the BR-scaled tensor forces
are appreciably different from what enters in the superallowed GT transitions, so sorting
out the nuclear effect to handle the intricacy between “fundamental” and “mundane”
nuclear effects would seem to require a drastically different approach.

4. Conclusions

In this paper, we provided what we consider to be a solution to the long-standing
mystery of the quenched gA in nuclear GT transitions. What turns out to play a key role
here is the presence of an IR fixed-point in QCD with two or three flavors, so far unobserved,
at which hidden scale symmetry with GD [13] or CD-QCD [21] intervenes. Combined with
hidden local symmetry [17,47], implemented with a hadron–quark continuity in terms of a
topology change, this GD/CD-QCD scheme has so far met with no tension with modern
developments with compact-star observables.

A most striking observation in the scheme with the IR fixed point is that the anomalous
dimension at the fixed point, β′

∗, comes out to be zero [21]. As shown in this paper, if higher-
order scale-chiral contributions cannot be ignored as assumed so far, this would imply
that there can be an important renormalization of the axial-current coupling constant from
the free-space value 1.276 to ∼1/2 in nuclear matter leading to a dramatic quenching of
gA in nuclear medium—which has not been seen so far in nuclear processes where pion-
nuclear coupling is involved. This would also lead to a ∼(1/2)4 quenching in 2νββ and
0νββ processes, which is highly relevant for the ongoing BSM search. The culprit for this
possibility of a “humongous” effect is the recent RIKEN experiment in the superallowed
Gamow–Teller transition in the doubly closed magic-shell nucleus 100Sn. An unambiguous
reconfirmation or invalidation of this result is called for. If it turned out to be either
definitively reconfirmed or invalidated, then it would either support or rule out the possible
IR fixed point with GD/QCD-CD, with this coming from nuclear physics.
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