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Abstract: The fusion of multi-polarized petrographic images of rock thin sections involves the
fusion of feature information from microscopic images of rock thin sections illuminated under both
plane-polarized and orthogonal-polarized light. During the fusion process of rock thin section
images, the inherent high resolution and abundant feature information of the images pose substantial
challenges in terms of computational complexity when dealing with massive datasets. In engineering
applications, to ensure the quality of image fusion while meeting the practical requirements for
high-speed processing, this paper proposes a novel fast fusion Transformer. The model leverages
a soft matching algorithm based on intuitionistic fuzzy sets to merge redundant tokens, effectively
mitigating the negative effects of asymmetric dependencies between tokens. The newly generated
artificial tokens serve as brokers for the Query (Q), forming a novel lightweight fusion strategy. Both
subjective visual observations and quantitative analyses demonstrate that the Transformer proposed
in this paper is comparable to existing fusion methods in terms of performance while achieving a
notable enhancement in its inference efficiency. This is made possible by the attention paradigm,
which is equivalent to a generalized form of linear attention, and the newly designed loss function.
The model has been experimented on with multiple datasets of different rock types and has exhibited
robust generalization capabilities. It provides potential for future research in diverse geological
conditions and broader application scenarios.

Keywords: image fusion; intuitionistic fuzzy set; asymmetric dependency; rock thin section; token
merging

1. Introduction

The analysis of rock thin section imagery represents an indispensable geological
exploration [1] tool for understanding and recognizing the composition of the Earth. Fur-
thermore, it serves as a significant evaluation method in oil and gas exploration and
development [2]. This technique can be employed to identify petrological properties of
reservoir rocks [3], ascertain genetic types [4], and differentiate the characteristics of reser-
voir space and pore structure [5]. Traditional analysis of rock thin section imagery primarily
relies on manual methods, which are not only time-consuming and labor-intensive but
also susceptible to subjective influences, making it difficult to guarantee the accuracy and
consistency of analysis results. With the rapid development of artificial intelligence and
computer vision technologies, research into feature fusion for rock thin section imagery has
become an urgent necessity.

Image fusion [6] based on multiple light sources can integrate feature information
from rock thin sections under different illumination conditions (such as plane-polarized
light and orthogonal polarization [7]). Figure 1 illustrates the inclusion of multi-polarized
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image data for three distinct rock types: sedimentary, metamorphic, and igneous [8]. The
incorporation of such multidimensional information serves to enhance the precision of
image analysis and mitigate errors that may arise from reliance on a single information
source. Moreover, image fusion techniques provide a more abundant and accurate data
foundation for automated rock classification and identification [9], thereby offering novel
insights and directions for the interdisciplinary integration of geology with computer vision
and artificial intelligence.

Plane-polarised images Multi-angle orthogonal polarization images

Sedimentary
Rocks

Metamorphic
Rocks

Igneous
Rocks

Figure 1. Thin section images of rocks of different species and polarization modes with a scaling
dimension of 500 micrometer.

This task is also confronted with many challenges. Rock thin section images exhibit
both local micro-features and global composite features. It is essential to strike a balance
between these two aspects during the fusion process, ensuring that the fused images
can reflect both local details and global structures. In this regard, Transformer [10] has
demonstrated excellent global feature capture capability in the image fusion, due to its
advantage of global attention. Unlike traditional sequential models such as RNN [11]
or LSTM [12], the Transformer can process information within images in parallel, which
significantly enhances computational efficiency. However, when dealing with the vast
array of high-resolution and highly feature-complex rock thin section images, a formidable
challenge lies in improving computational efficiency and reducing resource consumption
while ensuring fusion effectiveness. For the processing of rock thin section image fusion,
the model compression of models and the guarantee of computational speed are urgent
issues to be addressed.

In light of the above, this paper introduces a compressed and rapid image feature
fusion Transformer. The experimental results, based on diverse categories of rock data,
indicate that this fusion model exhibits comparable accuracy to other fusion methods. The
key contributions of the proposed method are as follows:

1. This paper presents a Transformer for fast fusion of rock thin section imagery. By amal-
gamating multi-scale features from both orthogonal polarization and plane-polarized
images, it effectively preserves and enhances critical characteristic information in rock
thin section imagery, including color, texture, shape, and mineral composition.

2. Based on the theory of intuitionistic fuzzy sets, a new merging strategy for the
asymmetric dependence characteristics among tokens is proposed. The attention
paradigm constructed by generating artificial tokens (broker) ensures the robustness
of feature fusion and improves the processing speed of the model.

3. A new loss function has been designed for the fusion Transformer proposed in this pa-
per. By optimizing the loss related to attention weights, it ensures that the Transformer
focuses on crucial feature areas, such as mineral grains and texture.
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2. Related Work

Recently, various techniques have been introduced to combine consistent features
extracted from different polarized images. Shen et al. [13] suggested a fusion method
for visible-light polarization images aimed at detecting mines during nighttime. They
implemented a hybrid attention mechanism to improve the network’s ability to extract
important information from the feature tensor, ensuring the fused image retained significant
details from the prominent pixel regions in the original images, ultimately producing an
end-to-end output. Li et al. [14] proposed the Polarized Prior Guided Fusion Network for
infrared polarization images. This approach employs a learned low-rank decomposition
model to extract a low-rank representation that captures background details in infrared
intensity, along with sparse features of key targets within the Degree of Linear Polarization
(DoLP) images. Their fusion model effectively maintains prominent polarized targets while
minimizing background interference with fewer parameters. Xu et al. [15] introduced an
innovative unsupervised fusion network, PAPIF, which merges polarization and intensity
images through pixel-based guidance and attention mechanisms. In this model, fusion
targets include high-polarization elements from polarization images and detailed textures
from intensity images. Both channel and spatial attention mechanisms are utilized to
combine essential features while filtering out irrelevant information. Considering long-
range dependencies between the fused and source images, Li et al. [16] developed the
DFENet model. This model includes a Global Semantic Information Aggregation Module
that efficiently gathers multi-scale features. Additionally, it integrates a fusion strategy
that combines both local and gradient information to enhance performance. Liu et al. [17],
in an effort to optimize modality discrepancies in multimodal images, introduced the
Multimodal Feature Self-Adaptive Transformer model. This model integrates multimodal
features via a self-adaptive fusion strategy during training. Yi et al. [18] proposed the
TCPMFNet, which is based on an autoencoder network architecture. A hybrid fusion
strategy, parallelly combining CNN and Transformer components, is also incorporated in
their design. Li et al. [19] presented the CGTF model, which introduces skip connections
within a hybrid CNN–Transformer framework. This model is engineered to extract both
local and global features from images simultaneously. Tang et al. [20] put forward the
MATR model for multimodal medical image fusion. This model incorporates an adaptive
convolution mechanism that adjusts the convolution kernel based on the global background
context. The adaptive Transformer component enhances the extraction of global semantic
features and captures information across multiple scales. Wang et al. [21] introduced
Res2Fusion, which utilizes a non-local fusion module.

3. Methodology
3.1. IFS Token Merging

Existing token merging methods are often constrained by the issue of asymmetric
dependencies, which stem from the sequential and spatial nature of data. In such scenarios,
a token may exert substantial influence on other tokens, while the reverse influence is
often weaker or negligible. This imbalance can lead to suboptimal merging decisions,
as strategies that rely solely on proximity principles risk introducing varying degrees of
feature loss. For example, in rock imagery, the structural features of crystals serve as the
core information transmitters, influencing surrounding textural features. However, the
feedback from these peripheral features to the crystal core is typically minimal, further
exacerbating the effects of asymmetric dependencies. Consequently, such approaches may
fail to preserve critical features in tasks requiring fine-grained semantic understanding.

To address these challenges, this study proposes a token merging strategy based on
intuitionistic fuzzy sets, which are particularly well suited for this task due to their ability
to model complex dependencies and manage uncertainty. Unlike conventional methods,
IFS introduces a richer representational framework by simultaneously quantifying mem-
bership, non-membership, and hesitation degrees. In the context of token merging, the
membership degree measures the semantic similarity between a target token and a can-
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didate token for merging, the non-membership degree assesses whether the candidate
token might be better suited for an alternative match, and the hesitation degree reflects
uncertainty in the merging decision, especially when multiple tokens exhibit comparable
similarity. By leveraging this tripartite representation, the IFS-based method mitigates the
adverse effects of asymmetric dependencies through a bidirectional evaluation process.
Traditional merging algorithms, such as greedy soft matching, primarily focus on the per-
spective of the target token, identifying the most similar token to merge while neglecting
the preferences or optimality from the candidate token’s perspective. The inclusion of
the non-membership degree explicitly addresses this limitation by ensuring that merging
decisions account for both the target and candidate tokens, thereby balancing their mutual
compatibility. Moreover, the IFS framework offers a robust mechanism for handling seman-
tic conflicts and redundancies, which frequently arise in token merging tasks. For instance,
when multiple tokens exhibit similar degrees of proximity to a target token, the hesitation
degree allows the algorithm to dynamically identify ambiguous regions and adjust the
merging strategy accordingly. This feature is particularly critical for applications like rock
imagery analysis, where the preservation of fine-grained structural details is essential. By
jointly considering membership, non-membership, and hesitancy, the proposed method
systematically evaluates and resolves conflicting information, thereby minimizing semantic
loss during the merging process.

Assuming we have a set of tokens T, it is evenly divided into sets A and B, A∪ B = T,
and A∩ B = ∅. For each token ai in set A, the token most similar to it (or tokens Bj1 , Bj2 , . . . , Bjn)
is found in Set B. Membership µ(ai, bj) can be calculated as follows:

µ(ai, bj) =
∑k∈{j1,j2,...,jn} cosine_sim(ai, bk) · δ(ai, bk)

∑k∈{j1,j2,...,jn} cosine_sim(ai, bk)
(1)

where cosine_sim represents the cosine similarity [22]. δ(ai, bj) is an indicator function that
takes the value 1 when bj is the most similar match of ai and 0 otherwise. However, since
we only take the most similar one, the equation can be simplified to

µ(ai, bj∗) =
cosine_sim(ai, bj∗)

∑n∗
k=1 cosine_sim(ai, bk)

(2)

cosine_sim(ai, bj) =
ai ·bj
∥ai∥∥bj∥

(3)

where bj∗ is the most similar match of ai in B and n∗ is the number of most similar matches
actually found. The hesitancy [23] indicates the difference in similarity for given matching
token pairs. It can be obtained by calculating the standard deviation of all similarity
matching memberships:

H(ai, B∗) =

√√√√ 1
|B∗| ∑

bj∈B∗

(
µ(ai, bj)− µ̄(ai, B∗)

)2 (4)

where B∗ represents the set of all tokens for which there is at least one directionally most
similar case. It is important to note that, as only the most similar bj is taken, the computation
of all possible memberships is not necessary, especially when B is large. µ̄(ai, B∗) is the
average of the membership of all elements in ai and set B∗:

µ̄(ai, B∗) =
1
|B∗| ∑

bj∈B∗
µ(ai, bj) (5)

Non-membership can be defined as 1 minus membership and an adjustment for
hesitancy (which may not fall within the range [0, 1]):

ν(ai, B) = 1− (µ(ai, bj∗) + α · H(ai, B∗)) (6)
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where α is an adjustment factor to control the effect of hesitancy on non-membership. The
degree of similarity between ai and bj is proportional to the membership. When multiple
tokens are similar, it can be inferred that the optimal match is significantly superior to the
other options. A hasty merging would be disadvantageous for the remaining tokens, which
would be compelled to merge with a second-best option. This may result in the loss of
specific features. Low non-membership is more beneficial for matching and merging of
tokens. A simplified Algorithm 1 is listed below.

Algorithm 1 Token soft merging algorithm with intuitionistic fuzzy set.

Require: T: Input tokens set
Ensure: Matched pairs and associated membership, non-membership and hesitancy

A, B← Split(T) ▷ Split T into A and B such that A ∪ B = T and A ∩ B = ∅
for all ai ∈ A do

Bsimilar ← FindMostSimilar(ai, B) ▷ Find most similar token(s) in B for ai
µ(ai, B)← 0 ▷ Initialize membership
for all bj∗ ∈ Bsimilar do

sim← CosineSimilarity(ai, bj∗)
µ(ai, B)← µ(ai, B) + sim ▷ Assuming single or aggregated similarity

end for
if |Bsimilar| = 1 then

µ(ai, bj∗)← sim

∑
|Bsimilar |
k=1 sim

▷ Simplified to µ(ai, bj∗) = sim if only one

else

µ(ai, bj∗)←
∑
|Bsimilar |
k=1 sim

∑
|Bsimilar |
k=1 sim

▷ Aggregate if multiple, but simplified denominator may

apply
end if
H(ai, B)← StdDev(µ(ai, bj1), µ(ai, bj2), . . .) ▷ Hesitancy, but may be 0 if single match
ν(ai, B)← 1− µ(ai, bj∗) ▷ Non-membership, simplified

end for

The proposed IFS-based token merging strategy directly addresses the challenges
posed by asymmetric dependencies and the inherent uncertainties of token merging tasks.
Its ability to model bidirectional compatibility, resolve conflicts, and adaptively manage un-
certainty makes it particularly well suited for applications requiring fine-grained semantic
preservation, such as in rock imagery or other tasks involving complex data structures.

3.2. Broker Transformer

This paper presents an improved linear attention [24] broker, which is designed and
applied to a trained Swin Transformer [25] module to construct a novel fusion network for
multi-polarized rock thin section images. In order to more accurately represent the global
context and spatial relationships, an encoding vector related to the relative positions of
neighboring elements is initially generated for each image element. These encoding vectors
can be combined with the embedding vectors of the image elements to form the input to the
Transformer. It is necessary to transform the 2D embedding vector arrays using a reshape
operation in order to satisfy the requirements of the Transformer input. The entire structure
of the model is depicted in Figure 2. The feature extractor module underwent a process
of pre-training, whereby each block of the three Swin Transformer modules contained
six Swin Transformer layers. Each layer is composed of two consecutive components:
Window Multihead Self-Attention (WMSA) and Moving Window Multihead Self-Attention
(SW-MSA) [26]. The convolutional layers are employed to extract the shallow features of
the image and map them to a high-dimensional space, thereby ensuring the extraction and
fusion of features. The convolutional network encoder consists of a convolutional layer
with a convolutional kernel of 3× 3, as well as three convolutional modules with a step size
of 1. The multiple layers of Swin Transformer are employed to extract deep features that
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encompass global information. Within each layer, they execute self-attention computations
within the windows and shifting operations between windows. The dimensions of the
input images are uniformly set to 1280 × 1024, and subsequently these images are split
into fixed patch blocks of size 32 × 32. Each image produces 1280 patch blocks, and the
length of the input sequence becomes 1280. Consequently, the total number of tokens and
the dimension of each token are determined to be 1280.

Global Feature 
Extraction

Feature 
Fusion Module

Residual Swin Transformer Block Feature 
Reconstruction

©

ConcatenationLayer 
Normalization

⊕

Summation

Swin Transformer Layer

Plane Polarized

Orthogonal 
Polarization

Fused Result

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕
Window-based Multi-head 

Self-Attention
Shifted Window-based Multi-

head Self-Attention

©⊕

Input Image Output Image

Figure 2. Structure of the proposed fast rock thin sections image fusion broker Transformer.

In the feature fusion module, the plane-polarized feature (P) is the primary feature,
whereas the orthogonal polarization feature (C) serves as the auxiliary feature. The input
features have been disassembled and mapped, with the main feature P mapped as Query
and Value and the auxiliary feature C mapped as Key. The calculation of fusion attention is
expressed in the following equation:

Qp = Xp ·WQ (7)

Kc = Xc ·WK (8)

Vp = Xp ·WV (9)

Attention1
(
Qp, Kc, Vp

)
= So f tmax

(
QsKT

c√
dK

+ B
)
·Vp (10)

where Xp and Xc represent plane-polarized and orthogonal polarization features, and W
represents the corresponding feature mapping operation. The aforementioned attention
calculation mechanism enables the auxiliary features to collaborate with the main features,
thereby allowing the network to concentrate on the salient region of the auxiliary features
and enhance the fusion effect. The process of fusing polarization information is essentially
one of providing potential adaptations for another modality. Similarly, it is feasible to
calculate the fusion attention (Attention2) after the interchanging of modalities between the
primary and auxiliary features. Following the acquisition of the two polarization features
(Attention1 and Attention2), the fused features are output following channel-level splicing
and serve as input to the decoder.

AttentionFused = concat(Attention1, Attention2) (11)

The decoder network comprises four cascaded convolutional layers with integrated
3 × 3 convolutional kernels, and BatchNorm is applied for normalization. The nonlinear
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activation function is selected as LeakyReLU [27]. The decoder network receives the fused
features as input and generates a fused image with identical spatial dimensions to the
source image.

Both the broker attention designed in this paper and the linear attention that has
been proposed attempt to reduce the computational complexity while maintaining the
performance of the model. The construction of the two attention modules is shown in
Figure 3. The linear attention employs a kernel-based self-attention mechanism and the
associative property inherent in matrix products to reduce the complexity from quadratic
to linear. Broker attention aims to measure the similarity between tokens using cosine dis-
tance and employs an intuitionistic fuzzy set-based soft matching algorithm to merge
redundant tokens. In order to reduce the quadratic to linear complexity of Softmax
attention [28], self-defined tokens are introduced as brokers between Query and Key.
In contrast to the traditional token pruning technique, each amalgamated token encapsu-
lates the information contained within the original tokens. Consequently, the model is able
to reduce computational load effectively while experiencing minimal information loss.

WVWKWQ

Matrix Product

X

Softmax

Z

Softmax

Matrix Product

IFS Token Merging

Weight 
Regularization

Broker KeyTransposition

N×d N×d N×d

n×d

N×n

Transposition

n×N n×d

N×d

Broker Query

Broker Value

d×n

d×N

WVWKWQ

X

N×d N×d N×d

Mapping 
Function

Mapping 
Function

Matrix Product

Matrix Product

Z

N×d d×N

Transposition

N×d

d×d

Broker Attention Linear Attention

Figure 3. The diagrams on the left and right are respectively the schematic representations of the
broker attention module and the linear attention module.

3.3. Design of Loss Function

The image fusion model is designed with the aim of maintaining the complementary
information present in both the plane-polarized and orthogonal polarization images. At
the pixel level, this paper employs the mean square error to quantify the pixel intensity dis-
crepancy between the fusion outcome and the input. With regard to texture, the structural
similarity loss serves to constrain the detailed information present in the fused image. The
consolidation of tokens within the proposed novel attention paradigm may result in the
expansion of some attention weights, as the merged token aggregates information from
multiple original tokens. Conversely, a proportion of the weight may be reduced as a con-
sequence of the original token information being either discarded or weakened during the
merging process. In addition, in order to maintain the smoothness of tokens after merging,
neighboring or similar tokens should have comparable attention weights after merging.
Therefore, this paper encourages the attention weights to become sparser by Lasso sparsity
regularization term [29]. The total variation smoothness regularization term encourages
related tokens to maintain a smooth distribution of attention weights by calculating the
differences between neighboring weight values and penalizing these differences.
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The mean square error (MSE) [30] is employed as a metric for quantifying the discrep-
ancy between the fused image and the reference at the pixel level. Where I f used is the fused
image, Ire f is the reference image, N is the total number of pixels, and i is the pixel index.

Lpixel =
1
N

N

∑
i=1

∥∥∥I f used, i − Ire f , i
∥∥∥2

(12)

A negative value of structural similarity (SSIM) is employed as a loss term to promote
the fused image to exhibit a structural resemblance to the reference image.

Lssim = 1− SSIM(I f used, Ire f ) (13)

The total loss of attention weights combines sparsity regularization and smoothness
regularization in order to constrain and optimize the distribution of attention weights.
Where Lsparse and Lsmooth represent the sparsity and smoothness regularization terms,
respectively. A is the attention weight matrix, h denotes the index of the attention head,
i and j denote the index of the sequence position, and λ1 and λ2 are the weight coefficients
of the sparsity and smoothness regularization, respectively.

Lsparse = λ1 ∑
h,i,j
|Ahij| (14)

Lsmooth = λ2

(
∑
h,i,j

(Ah,i+1,j − Ahij)
2 + ∑

h,i,j
(Ah,i,j+1 − Ahij)

2

)
(15)

Lattention = Lsparse + Lsmooth (16)

The total loss function is obtained by combining the aforementioned three loss terms,
where α, β, and γ represent the weighting coefficients.

Ltotal = αLpixel + βLssim + γLattention (17)

4. Experiments
4.1. Experiment Settings

In the multi-polarized image fusion task addressed in this paper, the dataset employed
for model training and testing is derived from the ‘Nanjing University Rock Teaching Thin
Section Micrographic Image Dataset’, provided by the Rock and Mining Department of the
School of Earth Science and Engineering, Nanjing University. The rock thin section data
have undergone a process of long-term loss, depletion, supplementation, and updating,
resulting in the formation of a comprehensive and accurate thin section system. Concur-
rently, the dataset has been assembled through the application of electronic information
processing techniques.

The dataset provides comprehensive coverage of the three principal categories of
sedimentary, metamorphic, and igneous rocks. Each category contains detailed thin section
images and micrograph datasets. The detailed information is shown in Table 1. The sedi-
mentary rock dataset comprises 84 thin sections of 28 rock types, with a total of 699 images,
including those of volcaniclastic rock, sandstone, mudstone, siltstone, greywacke, dolomite,
siliceous rock, and evaporite. The igneous rocks comprise 120 thin sections of 40 rocks,
with 963 images, and encompass a diverse range of rock types, including plutonic and
extrusive rocks. The Metamorphic Rocks section also contains 120 thin sections of 40 rocks,
comprising 972 images illustrating 17 fundamental categories of metamorphic rocks and
their structures.
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Table 1. Overview of the rock thin section dataset.

Rock Name Categories Sample Size Sum of Micrographs

Sedimentary Rock 28 84 699
Igneous Rock 40 120 963
Metamorphic Rock 40 120 972

All rock thin section samples were prepared in accordance with the international
standard thickness of 0.03 mm. The interference colors of the quartz grains observed
in the same batch of rock flakes during micrographing and flake identification were all
the primary interference color type. In order to ensure consistency between the colors
observed visually and those captured by the system, the micrographs have been taken with
automatic exposure and automatic white balance. The resolution of the micrographs is
1280 × 1024 pixels, and the images are uniformly saved in JPG format to ensure optimal
quality and clarity.

The research was executed within a Windows 10 operating system environment,
utilizing a desktop computer with 32 GB RAM, a Core i7-10700K CPU, and an NVIDIA RTX
3090 GPU. The experimental setup selected TensorFlow version 2.12.0, CUDA version 12.1,
Python version 3.11, and cuDNN version 11.2.

4.2. Evaluation Metrics

Fusion assessment metrics are objective criteria responsible for evaluating the quality
of the fused images. Multi-polarized image fusion requires multiple objective metrics for a
comprehensive assessment of image fusion quality because of the lack of a reference image.
The image quality evaluation metrics addressed in this paper can be broadly classified into
two categories: one is the evaluation metrics based on the fused image for processing, and
the other is the evaluation metrics based on the specific relationship between the fused
image and the source image for processing.

The Cross Entropy (CE) [31] measure quantifies the information divergence between
the fused image and the source. A lower CE value indicates greater consistency between
the fused image and the source.

CE(Ia, Ib, I f ) =
CE

(Ia, I f ) + CE(Ib, I f )2 (18)

CE(Ia, Ir f ) =
n

∑
i=0

hIa(i) log2
hIa(i)
hI f (i)

(19)

CE(Ib, I f ) =
n

∑
i=0

hIb(i) log2
hIb(i)
hI f (i)

(20)

The mutual information (MI) [32] is a measure of the similarity between the pixel
distribution of the fused image and the source image. A larger value indicates a greater
similarity between the two images.

I(X, Y) = ∑
x,y

pXY(x, y) log2
pXY(x, y)

PX(x)PY(y)
(21)

MI(Ia, Ib, I f ) = I(Ia, I f ) + I(Ib, I f ) (22)

Peak signal-to-noise ratio (PSNR) [33], which measures the difference between the
fused image and the source and the degree of detail preservation. A higher PSNR value
indicates a superior quality of the fusion result.
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PSNR(I, K) = 10 log10(
L2

MSE(I, K)
) (23)

MSE(I, K) =
1

mn

m

∑
i=0

n

∑
i=0
∥I(i, j)− K(i, j)∥2 (24)

PSNR(Ia, Ib, I f ) =
PSNR

(Ia, I f ) + PSNR(Ib, I f )2
(25)

The root mean squared error (RMSE) [34] is a statistical measure that quantifies the
similarity of the detailed information between the fused image and the source. A lower
RMSE value indicates a smaller discrepancy between the two images, as well as a higher
level of detail retention in the fused image.

RMSE(Ia, Ib, I f ) =
RMSE

(Ia, I f ) + RMSE(Ib, I f )2
(26)

RMSE(Ia, I f ) =

√√√√ 1
H ∗W

H

∑
i=1

W

∑
j=1

(Ia(i, j)− I f (i, j))2 (27)

RMSE(Ib, I f ) =

√√√√ 1
H ∗W

H

∑
i=1

W

∑
j=1

(Ib(i, j)− I f (i, j))2 (28)

The spatial frequency (SF) [35] is employed for the assessment of the fused image
sharpness. The value of SF is positively correlated with the image quality, and the reference
to the numerical results of the source map is unnecessary.

SF =
√

RF2 + CF2 (29)

RF =

√√√√ 1
HW

H

∑
i=1

W

∑
j=2

(I(i, j)− I(i, j− 1))2 (30)

CF =

√√√√ 1
HW

H

∑
i=2

W

∑
j=1

(I(i, j)− I(i− 1, j))2 (31)

The commonly appearing H and W in the above equation represent the width and
height of the image, respectively. I(i, j) denotes the pixel of the image at (i, j). Ia and Ib
denote the source images of two modalities, and I f implies the fused image.

The gradient-based fusion performance (QAB/F) [36] employs the Sobel operator to
delineate local regions and assess the preservation of salient information and detail within
these regions. A higher QAB/F value indicates a superior fused image. Similarly, the
Structural Similarity Index Measure (SSIM) [37], a metric based on structural similarity, is
also employed as an evaluation metric. The derivation process of some of the functions is
too cumbersome to be described in detail here.

In the evaluation of model lightweighting, the parameters encompass weights of
convolutional kernels, scaling factors and shift parameters of batch normalization, biases,
and so forth. The parameters serve as a pivotal metric for assessing model complexity,
as they have a significant impact on the computational resources required and further
influence the generalization and robustness of the model. Floating Point Operations Per
Second (FLOPs) [38] is a metric used to quantify the number of floating-point operations
required to be executed during a single forward pass of a model. A higher FLOPs value
indicates that a greater number of floating-point operations need to be performed during
a single forward pass, which consequently may result in lower computational efficiency.
Memory footprint is one of the most important indicators of the effectiveness of model
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lightweighting. Inference time refers to the time required for a model to complete a single
forward pass given a specific input. A faster inference time implies that the model can
accomplish the inference task in a shorter duration.

4.3. Visual Analysis

The training sets prepared in this paper have undergone precise registration and have
been subjected to fusion testing on a variety of rock thin section images. Figure 4 presents
the fusion results for mylonite, scapolite skarn, glaucophane schist, gneissic migmatite,
and wollastonite skarn [39]. The two middle columns display the feature detection results
derived from these two polarized light images. Each red circle represents a detected
feature. For plane-polarized images, the features are uniformly distributed across the
image. In contrast, due to the inherent optical characteristics of orthogonal polarization,
the feature distribution exhibits a significant clustering pattern. The fifth column presents
the checkerboard [40] diagrams of both, which aids in observing any discrepancies or shifts
between the two types of images prior to their fusion and in assessing the continuity of
structural lines by alternately displaying image patches within a gridded format. Precise
fusion can only be achieved when the two images are perfectly aligned. The final column
presents the ultimate outcome of the fused imagery. Regarding the fusion effectiveness,
the model proposed in this paper successfully retains the respective feature information of
both polarized light images within various types of rock data.

Plane-polarised Orthogonal polarization Features of Pp Features of Op Checkerboard Fusion

Figure 4. The demonstration of the fusion process of various types of rock thin section images. Each
row represents a set of rock data, while each column corresponds to an image category. “Pp” and
“Op” are abbreviations for “plane-polarized” and “orthogonal polarization”, respectively. The small
red circles represent feature markers that have been detected.
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Following an analysis of the current research landscape on multi-polarization im-
age fusion, this paper selects seven advanced algorithms (Nestfuse [41], SEDRFuse [42],
DDcGAN [43], DenseFuse [44], DIDFuse [45], U2Fusion [46], and STDFusion [47]) pub-
lished in various international journals and conferences for comparison with the proposed
model. Figure 5 showcases a subjective comparison of the results obtained by the proposed
model against those of the other comparative methods on the same test set. Furthermore,
significant objects are annotated with red bounding boxes to facilitate a more intuitive
analysis of the subjective outcomes. The contents of the larger box are a magnified view of
the smaller box.

                (a)                                         (b)                                         (c)                                        (d)

                (e)                                         (f)                                         (g)                                        (h)

Figure 5. The fusion results of images of dacitic crystal–lithic–vitric welded tuff by different models.
(a) Nestfuse. (b) SEDRFuse. (c) DDcGAN. (d) DenseFuse. (e) DIDFuse. (f) U2Fusion. (g) STDFusion.
(h) Our proposed model. The small red boxes are areas of significant difference that have been
selected. The larger box is a zoomed-in display of the area, for a clearer comparison of the
fusion effect.

Apart from determining the accuracy of the edge structural information in the images,
it can also be observed in Figure 6 whether the fine textures in the rock images can be com-
pletely retained after fusion. Based on the fusion results obtained from multi-polarized rock
thin section images, the fusion method proposed in this paper is found to profoundly retain
textural and detailed features while simultaneously achieving a more natural and clearer
fusion effect. The fusion accuracy of this method is comparable to that of other superior
fusion models trained using Transformer architectures. In the outcomes of multi-polarizing
light rock thin section image fusion, it was found that the fusion method proposed in this
paper not only preserves the textural details with emphasis but also achieves a more natural
and clearer fusion effect. The fusion accuracy is comparable to that of other outstanding
fusion models.

To evaluate the performance of the proposed fast fusion Transformer model on datasets
with different resolutions, experiments were conducted on high-resolution (1280 × 1024)
and low-resolution (480 × 384) petrographic thin section images. The low-resolution images
were generated by artificially downscaling the high-resolution images, and multi-polarized
image fusion was performed on both resolutions. As shown in Figure 7, the proposed model
achieves effective feature fusion for both high-resolution and low-resolution data. The fused
images retain critical information from petrographic thin sections under plane-polarized
and orthogonal polarization light, with reconstructed texture details and characteristic
features. However, a comparison of the fusion results indicates the presence of noise in the
outputs for low-resolution images.

During the compression process, low-resolution images inevitably lose some mi-
crostructural textures and edge details, which hinders the model’s ability to accurately
capture the complete information of petrographic thin sections during feature extraction
and matching. Furthermore, as the proposed model employs a soft matching mechanism
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based on intuitionistic fuzzy sets, the reduced information redundancy in low-resolution
images increases the likelihood of asymmetric dependencies between generated artifi-
cial tokens and original tokens. This asymmetry decreases the stability of the feature
fusion process between high-resolution and low-resolution images, introducing noise into
the results.

                 (a)                                         (b)                                        (c)                                        (d)

                  (e)                                        (f)                                         (g)                                        (h)

Figure 6. The fusion results of granite images by different models. (a) Nestfuse. (b) SEDRFuse.
(c) DDcGAN. (d) DenseFuse. (e) DIDFuse. (f) U2Fusion. (g) STDFusion. (h) Our proposed model.
The small red boxes are areas of significant difference that have been selected. The larger box is a
zoomed-in display of the area, for a clearer comparison of the fusion effect.

         (a)                        (b)                        (c)                        (d)

(e)        
   
  

       
(g)         

(f)        
   
  

       
(h)         

Figure 7. Fusion results for high- and low-resolution images: (a–d) show fused images with a
resolution of 480 × 384, while (e–h) show fused images with a resolution of 1280 × 1024.

Feature matching experiments were conducted on high- and low-resolution datasets,
with correctly matched features indicated by red lines in the images. As shown in Figure 8,
the model achieves a higher number of correct feature matches in the high-resolution
scenario. This improvement stems from the model’s design. The soft matching algorithm
based on intuitionistic fuzzy sets effectively preserves critical feature relationships, which
is more pronounced in high-resolution images where fine-grained details are abundant.
Additionally, the lightweight fusion strategy utilizing artificial tokens enhances feature
alignment, particularly in high-resolution data, where richer texture and edge information
are available. These design elements enable the model to achieve better feature matching
accuracy in high-resolution settings.
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                                       (a)                                                                                                             (b)

                                       (c)                                                                                                             (d)

                      (e)                                                     (f)                                                    (g)                                                     (h)

Figure 8. Feature matching results: (a–d) show images with a resolution of 1280 × 1024, while
(e–h) represent images with a resolution of 480 × 384. Red lines indicate correctly matched
feature pairs.

4.4. Quantitative Assessments

In the assessment of model compression, both size and time complexity are pivotal
considerations. However, in terms of memory and inference time, additional attention
must be given to the impact of GPU acceleration. The design of GPUs is inclined to
provide optimal memory bandwidth, which is particularly crucial when dealing with
Transformer models, as these types of models typically occupy large contiguous blocks
of memory space. GPUs are capable of efficiently utilizing memory resources, thereby
reducing memory footprint to a certain extent. Furthermore, through GPU acceleration,
inference times can be significantly enhanced, with reductions from seconds to milliseconds.
We selected 29 groups of images from the dataset as the test set and made comparisons on
the four aforementioned model compression evaluation metrics, respectively. The average
results of each group of metrics on the 29 test images are presented in Table 2.

In comparison with other state-of-the-art models, the model proposed in this paper
attains optimality in FLOPs and inference time. This implies that, under the same hardware
conditions, the model can accomplish the forward-propagation process more quickly,
thus reducing the consumption of computational resources. A faster inference speed is
conducive to shortening the overall processing time.

Table 2. The parameters, FLOPs, model sizes, and inference times of eight fusion methods are
presented. Among them, the best results are indicated in red font, while the second-best results are
denoted in blue.

Model Parameters FLOPs (G) Memory (M) Inference Time (S)

GPU-Acc Indep GPU-Acc Indep

Nestfuse 2,732,761 706.027 8.981 10.931 1.838 2.272
SEDRFuse 40,153 22.028 0.127 0.159 0.141 0.159
DDcGAN 1,096,257 820.201 4.278 5.284 0.861 1.122
DenseFuse 74,193 45.475 0.226 0.297 0.135 0.247
DIDFuse 44,547 26.085 0.152 0.179 0.228 0.257
U2Fusion 659,217 404.722 1.846 2.637 0.875 1.163

STDFusion 886,901 538.102 2.648 3.311 0.773 1.079
Our 6,771,824 4.525 13.448 18.051 0.018 0.026



Symmetry 2024, 16, 1705 15 of 23

In Table 3, we have compared the accuracies of different models. During the model
training process, due to the multi-angular nature of the orthogonal polarization image
data, the training results of 0-degree deflection and multiple deflection angles are tested
separately. Among the seven evaluation metrics, MI and SF achieve the best results in the
single-angle case. This indicates that there is a high degree of pixel distribution similarity
between the fused image and the source images. RMSE and QAB/F achieve the second-best
results, meaning that the fused image well preserves the detailed features and structural
information of the source images and minimizes information distortion as much as possible.
Concurrently, although the results for CE, PSNR, and SSIM have reached commendable
levels, they still do not match the exceptional performance demonstrated by traditional
fusion networks. This is attributed to the fact that Transformer models tend to focus more
on global information and relatively significant regions within the source images while
giving insufficient attention to all local areas of the entire image. Consequently, when the
training set is relatively small, Transformers may exhibit deficiencies in capturing local or
regional features. However, it can be seen that these deficiencies have been significantly
improved when the data are expanded with multi-angle images.

Table 3. Comparison of the mean values of the algorithm’s objective metrics in single-angle and
multi-angle orthogonal polarization training sets. The numbers in red font represent the best fusion
performance, while blue represents the next best.

Model (Single-angle) CE MI PSNR RMSE SF SSIM QAB/F

Nestfuse 1.648 2.280 58.287 0.099 9.695 1.479 0.404
SEDRFuse 1.215 1.519 58.135 0.088 10.248 1.425 0.432
DDcGAN 0.963 1.456 54.742 0.219 13.109 1.118 0.343
DenseFuse 1.652 2.392 57.972 0.092 6.763 1.357 0.497
DIDFuse 1.538 2.245 58.517 0.098 15.821 1.482 0.328
U2Fusion 1.494 1.678 55.368 0.177 11.394 1.519 0.465

STDFusion 2.227 1.432 59.859 0.081 11.612 1.474 0.579
Our 1.571 2.665 58.438 0.085 17.278 1.431 0.506

Model (Multi-angle) CE MI PSNR RMSE SF SSIM QAB/F

Nestfuse 1.481 2.813 62.357 0.089 16.693 1.536 0.485
SEDRFuse 1.196 1.976 61.682 0.083 18.271 1.447 0.449
DDcGAN 0.924 1.542 57.194 0.175 13.835 1.285 0.482
DenseFuse 1.385 2.981 59.528 0.081 14.516 1.401 0.557
DIDFuse 1.259 2.405 65.741 0.088 25.729 1.592 0.368
U2Fusion 1.263 1.864 58.903 0.117 22.347 1.554 0.509

STDFusion 1.827 1.412 59.265 0.076 19.652 1.538 0.612
Our 1.108 3.158 63.479 0.081 22.174 1.569 0.673

To verify the impact of data types on the model during the training process, three
groups of datasets, namely Sedimentary, Metamorphic, and Igneous, are selected in this
paper to train the same model. The objective average execution time results are presented
in Table 4. Due to the advantage in the order of magnitude, the models trained under
Metamorphic and Igneous have an edge in inference speed. However, whether it is a
classified or a mixed training set, the model proposed in this paper can achieve the shortest
inference time.

To evaluate the proposed model, Table 5 shows the differences in fusion quality be-
tween high- and low-resolution scenarios, calculated as the subtraction of their performance
metrics, highlighting the model’s superiority in high-resolution data handling. Values in
red are the minimum difference, and in blue are suboptimal. In the task of image fusion
across high- and low-resolution scenarios, metrics that rely on fine details and texture
information (e.g., MI, PSNR, SF, and QAB/F) tend to exhibit significant differences between
the two resolutions. In contrast, metrics that assess global consistency and structural sim-
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ilarity (e.g., CE and SSIM) show relatively smaller variations. High-resolution scenarios
place greater demands on detail preservation and local feature extraction, requiring models
to possess stronger capabilities for feature capture and reconstruction. Accordingly, the
proposed model demonstrates robust performance when applied to petrographic thin
section images at varying resolutions.

Table 4. The average inference timetable (in seconds) of the other seven fusion methods and the
model proposed in this paper on the dataset composed of sedimentary rocks, metamorphic rocks,
and igneous rocks are presented. The numbers in red font represent the shortest reasoning time, and
blue represents the next best.

Model Sedimentary Metamorphic Igneous Mixed

Nestfuse 2.953 2.045 1.791 2.272
SEDRFuse 0.288 0.175 0.157 0.159
DDcGAN 1.683 1.010 0.898 1.122
DenseFuse 0.371 0.272 0.148 0.247
DIDFuse 0.285 0.283 0.256 0.257
U2Fusion 1.745 1.047 0.930 1.163

STDFusion 1.618 0.971 0.863 1.079
Our 0.039 0.029 0.021 0.026

Table 5. High–low resolution fusion quality differences (high-resolution–low-resolution). Numbers
in red font represent the smallest difference in fusion performance of the model between the two
resolutions of data, and blue represents sub-optimal.

Method CE MI PSNR RMSE SF SSIM QAB/F

NestFuse 0.262 0.425 −6.065 0.004 5.054 −0.132 −0.249
SEDRFuse 0.217 0.588 −5.024 0.014 7.483 −0.112 −0.052
DDcGAN 0.147 0.295 −3.507 0.008 9.283 −0.224 −0.044
DenseFuse 0.003 1.120 −1.274 0.006 15.956 −0.025 −0.025
DIDFuse 0.004 1.110 −1.167 0.007 14.795 −0.028 −0.048
U2Fusion 0.195 0.757 −2.304 0.045 7.476 −0.035 −0.086

STDFusion 0.005 1.125 −1.159 0.016 9.874 −0.030 −0.037
Our 0.006 0.325 −0.875 0.002 2.264 −0.024 −0.029

4.5. Ablation Study

In this section, a series of ablation experiments were conducted on several key modules
of the fusion model, with the objective of verifying the significance of the employed mod-
ules and their associated settings. In the design of the attention module, we compared our
broker attention with the Softmax and linear attention methods using the Swin Transformer.
In model compression, linear attention has been widely recognized for its effectiveness in
application as it improves the processing speed by reducing the computational complex-
ity. The traditional Softmax attention can capture the dependency relationships between
elements more precisely. To verify the potential of broker attention, this paper explores
the correlation between the model output and the Dice coefficient. Based on the joint area
of the fused image and the target, the average value of the model output is calculated.
Subsequently, the average absolute value is subtracted from 1 to obtain the normalized
value. Figure 9 provides evidence of whether there is a positive correlation between each
mechanism and Dice. Softmax attention shows a significant positive correlation due to
its powerful global performance. The broker attention proposed in this paper achieves a
performance improvement over linear attention by enhancing the model’s ability to capture
global context information.
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(a) (b) (c)

Figure 9. Correlation between the estimated spatial error and the Dice coefficient in three attention
mechanisms: (a) Softmax, (b) Linear, and (c) Broker.

Capturing global information as much as possible is a common challenge that most
lightweight models have to face. In terms of the selection of the Transformer backbone, ab-
lation experiments on different backbone networks have also been conducted in this paper.
In Table 6, the Swin Transformer adopted in this paper exhibits the highest performance
in the metrics of CE, MI, RMSE, SSIM, and QAB/F. It also achieves the second-best results
in PSNR and SF. This is attributed to the fact that the Swin Transformer further optimizes
the attention by introducing the shift mechanism (introducing cyclic shift-rearrangement
across spatial positions in the Swin Block) and masking operations, enabling it to capture
the relationships between long-distance dependencies more effectively. The local window
attention maintains computational efficiency and can effectively capture both local and
global information in the image.

Table 6. The ablation experiments on applying broker Attention to different backbones. The numbers
in red font represent the best fusion performance, while blue represents the next best.

Backbone CE MI PSNR RMSE SF SSIM QAB/F

DeiT 2.072 1.346 59.198 0.192 20.413 1.562 0.535
PiT 2.253 1.707 51.815 0.154 10.258 1.489 0.648
ViL 1.519 2.182 55.276 0.227 32.739 1.445 0.479

CrossFormer 1.595 2.031 64.963 0.098 16.384 1.214 0.421
DW-ViT 1.628 2.474 61.351 0.085 21.506 1.429 0.603
Swin-T 1.108 3.158 63.479 0.081 22.174 1.569 0.673

Ablation experiments were also conducted on the impact of replacing Softmax atten-
tion with broker attention at different stages since the computational complexity of the
model can be adjusted by changing the number of broker tokens. The evaluation metrics
involved in Table 7 include NFM (number of feature matches), NBT (number of broker
tokens), as well as parameters and FLOPs. In order, the four stages are Emb (embedding),
DownS (down-sampling), Enh (enhancement), and Int (integration). In Stage 1, the input
image is partitioned into patches, and a linear embedding operation is performed on these
patches. In Stage 2, adjacent patch features are merged through the Patch Merging layer,
thereby reducing the resolution and increasing the number of channels. Stage 3 continues
to use the combination of Patch Merging and the Swin Transformer Block, but at this time,
the size of the feature map being processed has decreased and the number of channels has
increased. Stage 4 conducts feature integration and output generation operations.
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Table 7. The ablation experiments on applying the broker attention module to the Swin Transformer
at different stages.

Broker Attention NFM NBT Parameters FLOPs

Emb-1 DownS-2 Enh-3 Int-4

• ◦ ◦ ◦ 426.978 44.492 6,771,824 4.525
• • ◦ ◦ 309.216 188.954 6,771,824 4.525
• • • ◦ 251.597 297.109 6,771,824 4.525
• • • • 230.638 318.765 6,771,824 4.525

It can be observed that an increased number of substitutions leads to a diminution in
the number of detected features, accompanied by a concurrent reduction in the quantity
of broker tokens. However, the subsequent impact of these changes is less significant
than those observed in the initial stages. Furthermore, the decrease in the number of
broker tokens within the model does not adversely affect its compression performance.
Conversely, a higher number of broker tokens corresponds to a lesser quantity of feature
matches, indicating an inverse proportional relationship between the two. Consequently,
to ensure the quality of image fusion, the present study confines the application of token
merging to the first three stages only.

There are multiple approaches for obtaining broker tokens. The commonly used ones
include D-Points (deformed points) [48], pooling, and token merging. We have selected
BSM (Bipartite Soft Matching) [49], K-means [50], Greedy-M [51] (Greedy matching based
on attention weights), and P-Sampling [52] (Progressive Sampling) to participate in the
ablation experiments for comparison with the IFS token merging proposed in this paper.
The results of the ablation experiments are shown in Table 8. The IFS token merging
approach demonstrates superior performance in terms of both FLOPs and inference time
while also exhibiting a comparable algorithmic footprint relative to other methodologies.
This superiority is primarily attributed to the necessity of computing global cosine distances
during the token matching process within IFS. However, this computational burden is
mitigated by the multidimensional decision-making advantages of the IFS, thereby not
imparting undue adverse effects on the overall performance.

Table 8. The ablation experiments on the impact of broker token acquisition methods on the com-
pression of Transformer. Numbers in red font represent the optimal modeling efficiency, and blue
represents the sub-optimal.

Access Parameters FLOPs Memory Inference Time

BSM 6,515,781 7.941 12.714 0.174
K-means 6,798,011 15.275 22.803 0.859

Greedy-M 6,530,109 12.639 12.598 0.268
Pooling 6,525,065 37.157 8.923 0.123
D-Points 6,886,841 347.482 52.287 1.972

P-Sampling 6,502,259 15.386 11.135 0.517
IFS 6,771,824 4.525 13.448 0.018

To assess the influence of loss functions on image fusion performance, an ablation
study was conducted on Lpixel , Lssim, Lpixel + Lssim, and the Ltotal loss employed in this
paper. The outcomes of this analysis are depicted in Figure 10. On the vertical axis, y
represents the specific numerical value corresponding to the cumulative probability on
the horizontal axis. When the cumulative probability on the horizontal axis reaches x%,
the y-value on the vertical axis indicates the maximum value that satisfies this cumulative
condition. The x% on the horizontal axis denotes the proportion of observed values that are
less than or equal to the metric value among all observed values. The legends within the
figure explain the loss functions represented by the lines of different colors and markers.
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From the ablation results, the fusion model achieved the highest average values
in all metrics with the loss function proposed in this paper. In particular, significant
improvements were shown in PSNR, CE, and RMSE. This indicates that our fusion results
contain richer information, exhibiting high resolution and abundant feature details.

(a) (b) (c)

(d) (e) (f)

(g)

↑: MI, PSNR, SF,

SSIM, QAB/F

↓: CE, RMSE

Figure 10. Comparison of cumulative probability distributions for different loss functions on image
fusion performance. The metrics represented by each graph are: (a) MI, (b) PSNR, (c) SF, (d) SSIM,
(e) QAB/F, (f) CE, and (g) RMSE.

5. Discussion

In addition to its application in the fusion of multi-polarized petrographic images,
we have also explored the use of the proposed fast fusion Transformer in the field of
medical imaging, specifically for mouse chemical exchange saturation transfer (CEST) MRI.
CEST MRI is a non-invasive imaging technique that provides valuable information about
tissue composition and metabolism, which is crucial for biomedical research and clinical
applications. In CEST MRI, a primary challenge lies in the fusion of images acquired at
different time points. As the water saturation within lesions changes over time, CEST
MRI images obtained at different time intervals often exhibit variations in contrast and
water saturation characteristics. This temporal variability complicates image fusion, as
traditional fusion methods typically struggle to handle lesion features that evolve over
time. To address this challenge, we have attempted to apply the model proposed in this
study to fuse CEST MRI sequences acquired at different time points, with the aim of better
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capturing the dynamic changes in lesions over time, thereby enhancing the extraction of
relevant tissue features.

Our experimental results demonstrate that the proposed fusion algorithm significantly
improves the representation of tissue features in mouse CEST MRI scans. Figure 11 presents
the fusion results of the CEST MRI series. As identifying the optimal imaging results heavily
relies on expert knowledge, the fusion of all image features helps to mitigate this limitation.
The algorithm effectively combines high-contrast regions of interest from different time
points, preserving important features that change over time while reducing unnecessary
noise and background interference. By leveraging intuitionistic fuzzy set-guided fusion,
we are able to more accurately capture the dynamic changes in water saturation within
lesions, which is crucial for studying metabolic activity and tissue composition. Therefore,
the work presented in this study not only shows promise for rock thin section image fusion
but also has broad potential applications in biomedical imaging.

       (a)                    (b)                   (c)                   (d)

       (e)                    (f)                   (g)                   (h)                                     (i)  

Figure 11. Panels (a–h) represent the CEST MRI images acquired at saturation durations of 17, 25, 33,
52, 60, 68, 76, and 84 min, respectively. Panel (i) shows the output result obtained by fusing this series
of images.

The technology of image fusion plays a significant role in various application domains,
including mineral resource exploration, geological structural analysis, medical imaging,
and computer vision research, which undoubtedly constitute integral components of the
development of intelligent manufacturing. However, this work still faces several issues and
challenges that necessitate further research. In the fast process of feature fusion, a critical
consideration is how to minimize the information loss incurred during the token merging.
When dealing with numerous tokens, controlling the complexity of the matching algorithm
remains a challenge. How should we address the variability in multi-polarized images and
devise corresponding cross-polarization fusion strategies? Additionally, proposing more
efficient approaches for model training and enhancing the creation of petrographic thin
section datasets are imperative. These are the focal points that must be considered and
resolved in future tasks related to multi-polarized petrographic thin section image fusion.

6. Conclusions

This paper presents a fast fusion Transformer guided by intuitionistic fuzzy set for
multi-polarized petrographic images of rock thin sections. In this approach, we employ
intuitionistic fuzzy set-based soft matching to merge tokens and generate novel interme-
diary tokens, addressing the limitations of asymmetric dependencies between tokens in
petrographic features. The integration of plane-polarized and orthogonal polarization
rock thin section images is achieved by replacing the traditional softmax function with
a broker-attention in the Transformer. Based on this framework, a new loss function is
designed to effectively integrate the deep features of both image types. The rationality
of the proposed method is verified through ablation experiments, while its effectiveness
is demonstrated through comparative tests. The image fusion results exhibit notable ad-
vantages in preserving the morphological, color, and edge features of plane-polarized
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images, as well as the deep-level features such as interference colors, relief, and cleavage in
orthogonal polarization images. Extensive fusion experiments conducted on datasets of
various rock types have confirmed that the proposed image fusion method is comparable to
current state-of-the-art methods in terms of both subjective visual evaluation and objective
metrics. Moreover, it demonstrates a significant advantage in fusion speed. The lightweight
model design of the proposed method provides the potential for its deployment on
mobile devices.
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