

Article Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals

Antanas Laurinčikas 匝

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; antanas.laurincikas@mif.vu.lt

Abstract: In this study, the approximation of a pair of analytic functions defined on the strip $\{s = \sigma + it \in \mathbb{C} : 1/2 < \sigma < 1\}$ by shifts $(\zeta(s + i\tau), \zeta(s + i\tau, \alpha)), \tau \in \mathbb{R}$, of the Riemann and Hurwitz zetafunctions with transcendental α in the interval [T, T + H] with $T^{27/82} \leq H \leq T^{1/2}$ was considered. It was proven that the set of such shifts has a positive density. The main result was an extension of the Mishou theorem proved for the interval [0, T], and the first theorem on the joint mixed universality in short intervals. For proof, the probability approach was applied.

Keywords: Hurwitz zeta-function; joint universality; Riemann zeta-function; weak convergence of probability measures

MSC: 11M06; 11M35

1. Introduction

Denote by $s = \sigma + it$ is a complex variable and $0 < \alpha \leq 1$ is a fixed parameter. The Riemann and Hurwitz zeta-functions $\zeta(s)$ and $\zeta(s, \alpha)$, for $\sigma > 1$, are defined by the Dirichlet series as follows:

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s}$$
 and $\zeta(s, \alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s}$

The functions have analytic continuations to the whole complex plane, except for point s = 1, which is a simple pole with residues 1. Moreover, the function $\zeta(s)$, for $\sigma > 1$, can be defined by the Euler product as follows:

$$\zeta(s) = \prod_{p \in \mathbb{P}} \left(1 - \frac{1}{p^s}\right)^{-1},$$

where \mathbb{P} is the set of all prime numbers.

The functions $\zeta(s)$ and $\zeta(s, \alpha)$ are important tools for research in the analytic number theory. The function $\zeta(s)$ is the main tool for investigating the distribution of prime numbers in the set \mathbb{N} , while the function $\zeta(s, \alpha)$ with rational parameter α is applied for studying prime numbers in arithmetical progressions. However, the range of applications of the functions $\zeta(s)$ and $\zeta(s, \alpha)$ is significantly wider than the distribution of primes. They are used also in function theory, algebraic number theory, functional analysis, probability theory, and even in quantum mechanics, cosmology, and music [1–5].

One of the most interesting applications of the functions $\zeta(s)$ and $\zeta(s, \alpha)$ is connected to a very important problem of the function theory—the approximation of analytic functions. At present, it is known that analytic functions defined in the strip $D = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$ can be approximated by shifts $\zeta(s + i\tau)$ (the case of non-vanishing analytic functions) or by shifts $\zeta(s + i\tau, \alpha), \tau \in \mathbb{R}$, for some classes of the parameter α . The latter property of zeta-functions is called universality and, for the function $\zeta(s)$, was proved by S. M. Voronin

Citation: Laurinčikas, A. Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals. *Symmetry* **2024**, *16*, 1707. https://doi.org/10.3390/sym16121707

Academic Editor: Junesang Choi

Received: 9 November 2024 Revised: 12 December 2024 Accepted: 16 December 2024 Published: 23 December 2024

Copyright: © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). in [6,7]. The initial form of the Voronin universality theorem was improved by various authors (see [8–14]), but its remains the same in essence: the set $\zeta(s + i\tau)$, $\tau \in \mathbb{R}$, is dense in the space of analytic functions. For the statement of a modern version of Voronin's theorem, the following notation is convenient. The class of compact sets of the strip D with connected complements is denoted by \mathcal{K} , and the class of continuous functions that are analytic in the interior of K by $H_0(K)$ with $K \in \mathcal{K}$. Moreover, let meas A stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and

$$L_T(\ldots) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] : \ldots \},\$$

where in place of dots, a condition satisfied by τ is to be written. Then, we have the following statement [8–14]:

Theorem 1. Let $K \in \mathcal{K}$ and $f(s) \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} L_T\left(\sup_{s\in K} |f(s)-\zeta(s+i\tau)|<\varepsilon\right)>0.$$

Moreover, the limit

$$\lim_{T\to\infty} L_T\left(\sup_{s\in K} |f(s) - \zeta(s+i\tau)| < \varepsilon\right)$$

exists and is positive for all but at most countably many $\varepsilon > 0$.

The problem of the approximation of analytic functions by shifts $\zeta(s + i\tau, \alpha)$ is more complicated and depends on the arithmetic of the parameter α . The simplest case is of transcendental α , i.e., when α is not a root of any polynomial $p(s) \neq 0$ with rational coefficients. In this case, the set {log($m + \alpha$) : $m \in \mathbb{N}_0$ }, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, is linearly independent over \mathbb{Q} , and we have a certain analogy with the function $\zeta(s)$, where the linear independence of the set {log $p : p \in \mathbb{P}$ } is applied. The case of rational parameter $\alpha = a/q$, (a,q) = 1, in virtue of the following representation:

$$\zeta\left(s,\frac{a}{q}\right) = \frac{q^s}{\varphi(q)} \sum_{\chi \pmod{q}} \overline{\chi}(a) L(s,\chi),$$

where a summing runs over all Dirichlet characters modulus q, $L(s, \chi)$ denotes the Dirichlet L-functions, and $\varphi(q)$ is the Euler totient function, is reduced to the simultaneous approximation of a tuple of $\varphi(q)$ analytic functions by shifts $(L(s + i\tau, \chi_1), \dots, L(s + i\tau, \chi_{\varphi(q)}))$. More precisely, the following result by different methods was obtained in [8,9,14] (see also [12,15]). The class of continuous on K functions that are analytic in the interior of K is denoted by H(K) with $K \in \mathcal{K}$.

Theorem 2. Suppose that the parameter α is transcendental, or rational $\neq 1, 1/2$. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} L_T\left(\sup_{s\in K} |f(s)-\zeta(s+i\tau,\alpha)|<\varepsilon\right)>0.$$

Moreover, the limit

$$\lim_{T\to\infty} L_T\left(\sup_{s\in K} |f(s)-\zeta(s+i\tau,\alpha)|<\varepsilon\right)$$

exists and is positive for all but at most countably many $\varepsilon > 0$.

The cases $\alpha = 1$ and $\alpha = 1/2$ are excluded in Theorem 2 because $\zeta(s, 1) = \zeta(s)$ and

$$\zeta\left(s,\frac{1}{2}\right) = (2^s - 1)\zeta(s),$$

and, for them, the statement of Theorem 1 with class $H_0(K)$ is valid.

The most complicated case is of algebraic irrational parameter α . This case was studied in [16]. The degree of α is denoted by d. Let $\theta = 4(27(4.45)^2)^{-1}$ and $\beta = \theta d^{-2}$. Then, in [16], the following statement was proven to be true.

Theorem 3. Suppose that the parameter α is algebraic irrational. Let $\gamma \in (0, \beta)$, $1 - \beta + \gamma \leq \sigma_0 \leq 1$, $s_0 = \sigma_0 + it_0$, and f(s) be continuous functions on $|s - s_0| \leq r$, r > 0 and analytic in the interior of that disc. Moreover, let 0 < a < 1 and $\varepsilon \in (0, |f(s_0)|)$. Then, for all but finitely many $\alpha \in [a, 1]$, of degree at most $d_0 - 2\theta_1/d_0^2 + \gamma$ with

$$d_0 \leqslant \left(\frac{\theta}{1-\sigma_0+\gamma}\right)^{1/2},$$

there exist $\tau \in [T, 2T]$ and $\delta = \delta(\varepsilon, f, T) > 0$ such that

$$\max_{|s-s_0|\leqslant \delta r} |f(s) - \zeta(s+i\tau,\alpha)| < 3\varepsilon,$$

where $T = T(\varepsilon, f, \alpha)$ is explicitly given, the set of exceptional α is effectively described, and δ is also effectively computable.

Theorems 1–3 are devoted to the approximation of one function from a wide class of analytic functions. Also, there are the so-called joint universality theorems in which a tuple of analytic functions is approximated simultaneously by shifts of zeta-functions. The first joint universality result can also be found in Voronin [17] and deals with Dirichlet *L*-functions with pairwise non-equivalent characters (see also [9,18,19]). A joint universality theorem for a pair of Hurwitz zeta-functions was given in [20]. The joint approximation of analytic functions by shifts of Hurwitz zeta- functions involving imaginary parts of non-trivial zeros of the Riemann zeta-function was discussed in [21]. However, later, many joint universality theorems were obtained for functions of the same name (for more results, see [12]). For illustration purposes, we present one example. For j = 1, ..., r, let $0 < \alpha_j \leq 1$, and

$$L(\alpha_1,\ldots,\alpha_r) = \{\log(m+\alpha_j) : m \in \mathbb{N}_0, j = 1,\ldots,r\}$$

Theorem 4 ([15]). Suppose that the set $L(\alpha_1, ..., \alpha_r)$ is linearly independent over \mathbb{Q} . For j = 1, ..., r, let $K_j \in \mathcal{K}$ and $f_j(s) \in H(K_j)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} L_T\left(\sup_{1\leqslant j\leqslant r}\sup_{s\in K_j} |f_j(s)-\zeta(s+i\tau,\alpha_j)|<\varepsilon\right)>0$$

Also, some problems of joint universality for Hurwitz zeta-functions can be found in [22].

In [23], H. Mishou initiated a new type of joint mixed universality theorems; he proved a joint universality theorem for two functions of different types, for the Riemann zeta-function and Hurwitz zeta-function. Here, it is important to stress that $\zeta(s)$ has the Euler product, while $\zeta(s, \alpha)$ has no such a product for $\alpha \neq 1$ and $\alpha \neq 1/2$. Moreover, the function $\zeta(s)$ satisfies the symmetric functional equation

$$\xi(s) = \xi(1-s), \ s \in \mathbb{C}, \qquad \xi(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s),$$

where $\Gamma(s)$ is the Euler gamma-function, while, for $\zeta(s, \alpha)$, the following non-symmetric equations connecting *s* and 1 - s are true:

$$\zeta(1-s,\alpha) = \frac{\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} \sum_{m=1}^{\infty} \frac{e^{2\pi i m \alpha}}{m^s} + e^{\pi i s/2} \sum_{m=1}^{\infty} \frac{e^{-2\pi i m \alpha}}{m^s} \right), \quad \sigma > 1,$$

or

$$\zeta(s,\alpha) = \frac{2\Gamma(1-s)}{(2\pi)^{1-s}} \left(\sin\frac{\pi s}{2} \sum_{m=1}^{\infty} \frac{\cos(2\pi m\alpha)}{m^{1-s}} + \cos\frac{\pi s}{2} \sum_{m=1}^{\infty} \frac{\sin(2\pi m\alpha)}{m^{1-s}} \right), \quad \sigma < 0.$$

This is one of the causes of differences in the value distribution of $\zeta(s)$ and $\zeta(s, \alpha)$ and also reflects the approximate functional equation for $\zeta(s, \alpha)$, which is the main ingredient for the proof of the mean square estimate in short intervals [24].

Theorem 5 ([23]). Suppose that the parameter α is transcendental. Let $K_1, K_2 \in \mathcal{K}$ and $f_1(s) \in H_0(K_1)$, $f_2(s) \in H(K_2)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} L_T\left(\sup_{s\in K_1} |f_1(s)-\zeta(s+i\tau)|<\varepsilon, \sup_{s\in K_2} |f_2(s)-\zeta(s+i\tau,\alpha)|<\varepsilon\right)>0.$$

The thesis [25] is devoted to joint discrete universality for the Riemann and Hurwitz zeta-functions. Mixed joint universality is studied also for more general zeta-functions. We mention the works [26–31]. The weighted versions of the Mishou theorem are proven in [32]. Theorems 1, 2, 4, and 5 have one common shortcoming: they imply that the set of approximating shifts is infinite; however, they do not provide any algorithm to find at least one approximating shift. In this sense, these theorems are ineffective. Of course, it is difficult to discuss concrete approximation shifts; however, some additional information on the efficacy of universality theorems is always useful. In Theorem 3, the efficacy of approximation is described by indication of explicitly given interval [T, 2T] containing τ such that $\zeta(s + i\tau, \alpha)$ is an approximating shift. This is a very good step in the effectivization direction.

In contrast to Theorem 3, the proofs of Theorems 1, 2, 4, and 5 are based on measure theory; thus, it is impossible to find an explicitly given interval containing τ with the approximation property. Therefore, there is another method to consider approximating shifts with τ in the interval of lengths shorter than *T* or, more precisely, o(T) as $T \to \infty$. This method leads to universality theorems in short intervals. For the function $\zeta(s)$, the first universality theorem of such a type was obtained in [33]. Let

$$L_{T,H}(\ldots) = \frac{1}{H} \operatorname{meas} \{ \tau \in [T, T+H] : \ldots \},\$$

where in place of dots, a condition satisfied by τ is to be written.

Theorem 6 ([33]). Suppose that $T^{1/3}(\log T)^{26/15} \leq H \leq T$. Let $K \in \mathcal{K}$, $f(s) \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} L_{T,H}\left(\sup_{s\in K} |f(s)-\zeta(s+i\tau)|<\varepsilon\right)>0$$

Moreover, "lim inf" can be replaced by "lim" for all but at most countably many $\varepsilon > 0$ *.*

Recently, improvements in Theorem 6 were given in [34]. An analog of Theorem 6 for the Hurwitz zeta-function is given in [35]. **Theorem 7** ([35]). Suppose that $T^{27/82} \leq H \leq T^{1/2}$, and the parameter α is transcendental. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} L_{T,H}\left(\sup_{s\in K} |f(s)-\zeta(s+i\tau,\alpha)|<\varepsilon\right)>0.$$

Moreover, the lower limit can be replaced by a limit for all but at most countably many $\varepsilon > 0$.

The aim of this study is to obtain a version of Theorem 5 in short intervals.

Theorem 8. Suppose that $T^{27/82} \leq H \leq T^{1/2}$, and the parameter α is transcendental. Let $K_1, K_2 \in \mathcal{K}$ and $f_1(s) \in H_0(K_1), f_2(s) \in H(K_2)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} L_{T,H}\left(\sup_{s\in K_1} |f_1(s)-\zeta(s+i\tau)|<\varepsilon, \sup_{s\in K_2} |f_2(s)-\zeta(s+i\tau,\alpha)|<\varepsilon\right)>0.$$

Moreover, the lower limit can be replaced by a limit for all but at most countably many $\varepsilon > 0$ *.*

Using short intervals extends and improves the Mishou theorem on joint mixed universality for the functions $\zeta(s)$ and $\zeta(s, \alpha)$ and is the novel approach presented in this article.

For effectivization aims of approximation, the quantity of *H* must be as small as possible. On the other hand, *H* is closely connected to a very important but complicated problem of analytic number theory on the mean square estimates of the functions $\zeta(s)$ and $\zeta(s, \alpha)$ in short intervals. Unfortunately, at present, we only have a result of $H \ge T^{27/82}$ in the latter problem (see Lemmas 2 and 3 below).

Mean square estimates together with a joint probabilistic limit theorem for the pair $(\zeta(s), \zeta(s, \alpha))$ in the space of analytic functions occupy a central place in the proof of Theorem 8 in short intervals for the functions $\zeta(s)$ and $\zeta(s, \alpha)$.

2. Mean Square Estimates

The first results for the Riemann zeta-function in short intervals were obtained by D. R. Heath-Brown, J.-M. Deshouillers, A. Ivič, H. Iwaniec, M. Jutila, A. A. Karatsuba, G. Kolesnik (for references, see [36]). We recall one mean square estimate from [36].

Lemma 1. Let (κ, λ) be an exponential pair and $1/2 < \sigma < 1$ fixed. Then, for $T^{(\kappa+\lambda+1-2\sigma)/2(\kappa+1)} \times (\log T)^{(2+\kappa)/(\kappa+1)} \leq H \leq T$, $1 + \lambda - \kappa \geq 2\sigma$, we have uniformly in H

$$\int_{T-H}^{T+H} |\zeta(\sigma+it)|^2 \, \mathrm{d}t \ll H$$

Lemma 2. Suppose that $\alpha \neq 1/2, 1$, and $1/2 < \sigma \leq 7/12$ is fixed. Then, for $T^{27/82} \leq H \leq T$, uniformly in H

$$\int_{T-H}^{T+H} |\zeta(\sigma+it)|^2 \, \mathrm{d}t \ll_{\sigma} H.$$

Proof. The lemma follows from Lemma 1 by taking the exponential pair (11/30, 16/30).

Lemma 3. Suppose that $\alpha \neq 1/2, 1$, and $1/2 < \sigma \leq 7/12$ is fixed. Then, for $T^{27/82} \leq H \leq T^{\sigma}$, uniformly in H

$$\int_{T-H}^{T+H} |\zeta(\sigma+it,\alpha)|^2 \, \mathrm{d}t \ll_{\sigma,\alpha} H.$$

Proof. The lemma is Theorem 2 from [24], where its proof is presented. \Box

Let $\theta > 1/2$ be fixed, and, for $n \in \mathbb{N}$,

$$v_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\theta}\right\}.$$

Define the series

$$\zeta_n(s) = \sum_{m=1}^{\infty} \frac{v_n(m)}{m^s}$$

which absolutely converges in any half-plane $\sigma > \sigma_0$ with finite σ_0 .

Lemma 4. Suppose that $K \subset D$ is a compact set and $T^{27/82} \leq H \leq T$. Then

$$\lim_{n\to\infty}\limsup_{T\to\infty}\frac{1}{H}\int_{T}^{T+H}\sup_{s\in K}|\zeta(s+i\tau)-\zeta_n(s+i\tau)|\,\mathrm{d}\tau=0.$$

Proof. Let

$$l_n(s) = \frac{1}{\theta} \Gamma\left(\frac{s}{\theta}\right) n^s$$

We use the following integral representation [10]:

$$\zeta_n(s) = \frac{1}{2\pi i} \int_{\theta - i\infty}^{\theta + i\infty} \zeta(s + z) l_n(z) \,\mathrm{d}z \tag{1}$$

which is a result of the classical Mellin formula that yields

$$v_n(m) = rac{1}{2\pi i} \int_{ heta - i\infty}^{ heta + i\infty} rac{1}{ heta} \Gamma\Big(rac{s}{ heta}\Big) \Big(rac{m}{n}\Big)^{-s} \,\mathrm{d}s.$$

Let $K \subset D$ be a fixed compact set. Then, K is closed and bounded; hence, there exists a positive number $\delta < 1/12$ such that $1/2 + 2\delta \leq \sigma \leq 1 - \delta$ for all $s = \sigma + it \in K$. We take $\theta = 1/2 + \delta$ and $\hat{\theta} = 1/2 + \delta - \sigma$. Then, $\hat{\theta} < 0$ and $\hat{\theta} \geq 1/2 + \delta - 1 + \delta = 2\delta - 1/2 > -1/2 - \delta = -\theta$. The integrand in (1) has only two simple poles in the strip $\hat{\theta} < \text{Re}z < \theta$, i.e., a pole at the point z = 0 of the function $\Gamma(s/\theta)$ and a pole at the point z = 1 - s of the function $\zeta(s + z)$. Therefore, using the well-known estimate

$$\Gamma(\sigma + it) \ll \exp\{-c|t|\}, \quad c > 0, \tag{2}$$

which is uniform in $\sigma \in (\sigma_1, \sigma_2)$ with every $\sigma_1 < \sigma_2$, and replacing θ by $\hat{\theta}$ in the line of integration in (1), via the residue theorem, we obtain, for $s \in K$,

$$\zeta_n(s) - \zeta(s) = \frac{1}{2\pi i} \int_{\widehat{\theta} - i\infty}^{\widehat{\theta} + i\infty} \zeta(s+z) l_n(z) \, \mathrm{d}z + l_n(1-s)$$

This gives, for $s \in K$,

$$\zeta_n(s) - \zeta(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \zeta \left(\sigma + it + \frac{1}{2} + \delta - \sigma + iu \right) l_n \left(\frac{1}{2} + \delta - \sigma + iu \right) \mathrm{d}u + l_n(1-s).$$

Hence, for $s \in K$,

$$\begin{aligned} \zeta_n(s+i\tau) - \zeta(s+i\tau) \ll & \int_{-\infty}^{\infty} \left| \zeta \left(\frac{1}{2} + \delta + it + i\tau + iu \right) \right| \left| l_n \left(\frac{1}{2} + \delta - \sigma + iu \right) \right| \, \mathrm{d}u \\ & + \sup_{s \in K} |l_n(1-s-i\tau)|, \end{aligned}$$

and, after change t + u by u, we obtain

$$\sup_{s \in K} |\zeta_n(s+i\tau) - \zeta(s+i\tau)| \ll \int_{-\infty}^{\infty} \left| \zeta \left(\frac{1}{2} + \delta + i\tau + iu \right) \right| \sup_{s \in K} \left| l_n \left(\frac{1}{2} + \delta - s + iu \right) \right| du + \sup_{s \in K} |l_n(1-s-i\tau)|.$$
(3)

In view of (2), we have, for $s \in K$,

$$l_n\left(\frac{1}{2}+\delta-s+iu\right) \ll_{\delta} n^{1/2+\delta-\sigma} \exp\left\{-\frac{c}{\theta}|u-t|\right\} \ll_{\delta,K} n^{-\delta} \exp\{-c_1|u|\}$$
(4)

with $c_1 > 0$. Moreover, it is well known that, for $\sigma \ge 1/2$,

$$\zeta(\sigma+it)\ll t^{1-\sigma},\quad t\geqslant 2.$$

This and (4) imply that

$$\begin{split} \left(\int_{-\infty}^{-\log^2 T} + \int_{\log^2 T}^{\infty}\right) \left| \zeta \left(\frac{1}{2} + \delta + i\tau + iu\right) \right| \sup_{s \in K} \left| l_n \left(\frac{1}{2} + \delta - s + iu\right) \right| \mathrm{d}u \\ \ll_{\delta,K} n^{-\delta} \left(\int_{-\infty}^{-\log^2 T} + \int_{\log^2 T}^{\infty} \right) (|\tau| + |u|)^{1/2} \exp\{-c_1 |u|\} \mathrm{d}u \\ \ll_{\delta,K} n^{-\delta} (|\tau| + 1)^{1/2} \exp\{-c_2 \log^2 T\}, \quad c_2 > 0. \end{split}$$

Therefore, via (3), we find

$$\frac{1}{H} \int_{T}^{T+H} \sup_{s \in K} |\zeta(s+i\tau) - \zeta_{n}(s+i\tau)| d\tau
\ll_{\delta,K} \int_{-\log^{2} T}^{\log^{2} T} \left(\frac{1}{H} \int_{T}^{T+H} \left| \zeta \left(\frac{1}{2} + \delta + i\tau + iu\right) \right| d\tau \right) \sup_{s \in K} \left| l_{n} \left(\frac{1}{2} + \delta - s + iu\right) \right| du
+ \frac{1}{H} \int_{T}^{T+H} \sup_{s \in K} \left| l_{n} (1 - s - i\tau) \right| d\tau + \frac{n^{-\delta} \exp\{-c_{2} \log^{2} T\}}{H} \int_{T}^{T+H} (|\tau| + 1)^{1/2} d\tau
\stackrel{\text{def}}{=} J_{1} + J_{2} + J_{3}.$$
(5)

Using the Cauchy-Schwarz inequality gives

$$\int_{T}^{T+H} \left| \zeta \left(\frac{1}{2} + \delta + i\tau + iu \right) \right| d\tau \ll \left(\int_{T}^{T+H} \left| \zeta \left(\frac{1}{2} + \delta + i\tau + iu \right) \right|^{2} d\tau \right)^{1/2} \\ \ll \left(\frac{1}{H} \int_{T-H-|u|}^{T+H+|u|} \left| \zeta \left(\frac{1}{2} + \delta + i\tau \right) \right|^{2} d\tau \right)^{1/2}.$$
(6)

For $|u| \leq \log^2 T$ and large *T*,

$$H+|u|\leqslant T^{1/2}+\log^2 T\leqslant T.$$

Therefore, (6) and Lemma 2 show that, for $|u| \leq \log^2 T$,

$$\frac{1}{H}\int_{T}^{T+H} \left| \zeta \left(\frac{1}{2} + \delta + i\tau + iu \right) \right| \mathrm{d}\tau \ll_{\delta} \left(\frac{1}{H} (H + |u|) \right)^{1/2} \ll_{\delta} (1 + |u|)^{1/2}.$$

This and (4) give the estimate

$$J_1 \ll_{\delta,K} n^{-\delta} \int_{-\log^2 T}^{\log^2 T} \exp\{-c_1 |u|\} (1+|u|)^{1/2} \, \mathrm{d}u \ll_{\delta,K} u^{-\delta}.$$
 (7)

Similarly to (4), we obtain that, for $s \in K$,

$$l_n(1-s-i\tau) \ll n^{1-\sigma} \exp\{-c_1|t+\tau|\} \ll_K n^{1/2-2\delta} \exp\{-c_3|\tau|\}, \quad c_3 > 0.$$

Thus,

$$J_2 \ll_K n^{1/2 - 2\delta} \frac{1}{H} \int_T^{T+H} \exp\{-c_3|\tau|\} \, \mathrm{d}\tau \ll_K \frac{n^{1/2 - 2\delta}}{H}.$$
(8)

It is easily seen that

$$J_3 \ll n^{-\delta} \exp\{-c_2 \log^2 T\} T^{1/2}.$$

This, (5), (7), and (8) lead to the following estimate:

$$\frac{1}{H} \int_{T}^{T+H} \sup_{s \in K} |\zeta(s+i\tau) - \zeta_n(s+i\tau)| \, \mathrm{d}\tau \ll_{\delta,K} n^{-\delta} + n^{1/2 - 2\delta} H^{-1} + n^{-\delta} \exp\{-c_2 \log^2 T\} T^{1/2}.$$

Taking *T* $\rightarrow \infty$, and then *n* $\rightarrow \infty$, gives the equality of the lemma. \Box

Recall a metric in H(D), inducing its topology [37]. There exists a sequence $\{K_l\}$ of embedded compact sets lying in D such that

$$\bigcup_{l=1}^{\infty} K_l = D,$$

and every compact set $K \subset D$ lies in some set K_l . Then, for $g_1, g_2 \in H(D)$, denoting

$$\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K} |g_1(s) - g_2(s)|}$$

we have the metric ρ that induces the topology of H(D).

The latter formula with Lemma 4 yields the following statement.

Lemma 5. Suppose that $T^{27/82} \leq H \leq T$. Then the equality

$$\lim_{n\to\infty}\limsup_{T\to\infty}\frac{1}{H}\int_{T}^{T+H}\rho(\zeta(s+i\tau),\zeta_n(s+i\tau))\,\mathrm{d}\tau=0$$

holds.

A similar lemma for the Hurwitz zeta-function was obtained in [35]. For the same θ as above, define

$$v_n(m,\alpha) = \exp\left\{-\left(\frac{m+\alpha}{n}\right)^{\theta}\right\}.$$

and

$$\zeta_n(s,\alpha) = \sum_{m=0}^{\infty} \frac{v_n(m,\alpha)}{(m+\alpha)^s}$$

Then, the latter series, as $\zeta_n(s)$, is absolutely convergent for $\sigma > \sigma_0$, with arbitrary finite σ_0 .

Lemma 6. Suppose that $T^{27/82} \leq H \leq T^{1/2}$, and $\alpha \neq 1/2$ or 1. Then

$$\lim_{n\to\infty}\limsup_{T\to\infty}\frac{1}{H}\int_T^{T+H}\rho(\zeta(s+i\tau,\alpha),\zeta_n(s+i\tau,\alpha))\,\mathrm{d}\tau=0.$$

Proof. The lemma is Lemma 10 from [35], where its proof is given. \Box

For

$$\underline{g}_{k} = (g_{k1}, g_{k2}) \in H^{2}(D), \quad k = 1, 2,$$

set

$$\rho_2(g_1,g_2) = \max(\rho(g_{11},g_{12}),\rho(g_{21},g_{22})).$$

Then ρ_2 is a metric that induces the topology of $H^2(D)$. This definition of ρ_2 and Lemmas 5 and 6 imply the following lemma. For brevity, let

$$\zeta(s,\alpha) = (\zeta(s),\zeta(s,\alpha))$$

and

$$\zeta_n(s,\alpha) = (\zeta_n(s), \zeta_n(s,\alpha)).$$

Lemma 7. Suppose that $T^{27/82} \leq H \leq T^{1/2}$, and $\alpha \neq 1/2$ or 1. Then

$$\lim_{n\to\infty}\limsup_{T\to\infty}\frac{1}{H}\int_T^{T+H}\rho_2\Big(\underline{\zeta}(s+i\tau,\alpha),\underline{\zeta}_n(s+i\tau,\alpha)\Big)\,\mathrm{d}\tau=0.$$

3. Limit Theorem

In this section, we will consider the weak convergence for

$$P_{T,H,\alpha}(A) = L_{T,H}(\underline{\zeta}(s+i\tau,\alpha) \in A), \quad A \in \mathcal{B}(H^2(D)),$$

as $T \to \infty$, with *H* restricted in Lemma 7, and $\mathcal{B}(\mathbb{X})$ denotes the Borel σ -field of the space \mathbb{X} .

We start with the weak convergence of probability measures on a certain topological group. Let

$$\Omega_1 = \prod_{p \in \mathbb{P}} \{s \in \mathbb{C} : |s| = 1\}, \quad \Omega_2 = \prod_{m \in \mathbb{N}_0} \{s \in \mathbb{C} : |s| = 1\}, \quad \text{and} \quad \Omega = \Omega_1 \times \Omega_2.$$

Since Ω_1 and Ω_2 with the product topology and pointwise multiplication are compact topological groups, the Tikhonov theorem implies that Ω is again a compact topological group. Thus, on $(\Omega_1, \mathcal{B}(\Omega_1)), (\Omega_2, \mathcal{B}(\Omega_2))$, and $(\Omega, \mathcal{B}(\Omega))$, the probability Haar measures m_{1H}, m_{2H} , and m_H , respectively, can be defined. We notice that $m_H = m_{1H} \times m_{2H}$, i. e., if $A = A_1 \times A_2, A_1 \in \mathcal{B}(\Omega_1), A_2 \in \mathcal{B}(\Omega_2)$, then

$$m_H(A) = m_{1H}(A_1)m_{2H}(A_2).$$

For $\omega \in \Omega$, we have $\omega = (\omega_1, \omega_2)$ with $\omega_1 = (\omega_1(p) : p \in \mathbb{P})$ and $\omega_2 = (\omega_2(m) : m \in \mathbb{N}_0)$. For $A \in \mathcal{B}(\Omega)$, set

$$P_{T,H,\alpha}^{\Omega}(A) = L_{T,H}\Big(\Big(\Big(p^{-i\tau}: p \in \mathbb{P}\Big), \Big((m+\alpha)^{-i\tau}: m \in \mathbb{N}_0\Big)\Big) \in A\Big).$$

Lemma 8. Suppose that $T^{27/82} \leq H \leq T^{1/2}$, and α is transcendental. Then, $P^{\Omega}_{T,H,\alpha}$ converges weakly to the Haar measure m_H as $T \to \infty$.

Proof. We use similar arguments as in the case $\tau \in [0, T]$. Let $F_{T,H,\alpha}(\underline{k}_1, \underline{k}_2), \underline{k}_1 = (k_{1p} : k_{1p} \in \mathbb{Z}, p \in \mathbb{P}), \underline{k}_2 = (k_{2m} : k_{2m} \in \mathbb{Z}, m \in \mathbb{N}_0)$, be the Fourier transform of $P_{T,H,\alpha}^{\Omega}$, i. e.,

$$F_{T,H,\alpha}(\underline{k}_1,\underline{k}_2) = \int_{\Omega} \prod_{p \in \mathbb{P}}^* \omega^{k_{1p}}(p) \prod_{m \in \mathbb{N}_0}^* \omega^{k_{2m}}(m) \, \mathrm{d}P^{\Omega}_{T,H,\alpha},$$

where the star * shows that only a finite number of integers k_{1p} and k_{2m} are not zeroes. Thus, taking into account the definition of the measure $P_{T,H,\alpha}^{\Omega}$, we have

$$F_{T,H,\alpha}(\underline{k}_{1},\underline{k}_{2}) = \frac{1}{H} \int_{T}^{T+H} \prod_{p \in \mathbb{P}}^{*} p^{-i\tau k_{1p}} \prod_{m \in \mathbb{N}_{0}}^{*} (m+\alpha)^{-i\tau k_{2m}} d\tau$$
$$= \frac{1}{H} \int_{T}^{T+H} \exp\left\{-i\tau \left(\sum_{p \in \mathbb{P}}^{*} k_{1p} \log p + \sum_{m \in \mathbb{N}_{0}}^{*} k_{2m} \log(m+\alpha)\right)\right\} d\tau.$$
(9)

We have to show that

$$\lim_{T \to \infty} F_{T,H,\alpha}(\underline{k}_1, \underline{k}_2) = \begin{cases} 1 & \text{if } (\underline{k}_1, \underline{k}_2) = (\underline{0}, \underline{0}), \\ 0 & \text{if } (\underline{k}_1, \underline{k}_2) \neq (\underline{0}, \underline{0}), \end{cases}$$
(10)

where $\underline{0} = (0, 0, ...)$. Obviously, by (9),

$$F_{T,H,\alpha}(\underline{0},\underline{0}) = 1.$$
(11)

Therefore, only the case $(\underline{k}_1, \underline{k}_2) \neq (\underline{0}, \underline{0})$ remains for consideration. Since α is transcendental, the set $L(\alpha) = \{\log(m + \alpha) : m \in \mathbb{N}_0\}$ is linearly independent over \mathbb{Q} . The set $\{\log p : p \in \mathbb{P}\}$ is also linearly independent over \mathbb{Q} . The linear independence over \mathbb{Q} for the set $L(\mathbb{P}, \alpha) \stackrel{\text{def}}{=} \{(\log p : p \in \mathbb{P}), (\log(m + \alpha) : m \in \mathbb{N}_0)\}$ is easily seen. Actually, if, for some non-zeroes $k_{1p_1}, \ldots, k_{1p_r}, k_{2m_1}, \ldots, k_{2m_v}$,

$$k_{1p_1}\log p_1 + \cdots + k_{1p_r}\log p_r + k_{2m_1}\log(m_1 + \alpha) + \cdots + k_{2m_v}\log(m_v + \alpha) = 0,$$

then

$$(m_1 + \alpha)^{k_{21}} \cdots (m_v + \alpha)^{k_{2v}} = p_1^{-k_{11}} \cdots p_r^{-k_{1r}}$$

From this, it follows that there exists a polynomial p(s) with rational coefficients such that $p(\alpha) = 0$, and this contradicts the transcendence of α .

The linear independence of the set $L(\mathbb{P}, \alpha)$ shows that, in the case $(\underline{k}_1, \underline{k}_2) \neq (\underline{0}, \underline{0})$,

$$A(\underline{k}_1, \underline{k}_2) \stackrel{\text{def}}{=} \sum_{p \in \mathbb{P}}^* k_{1p} \log p + \sum_{m \in \mathbb{N}_0}^* k_{2m} \log(m + \alpha) \neq 0.$$

Hence, in view of (9),

$$F_{T,H,\alpha}(\underline{k}_1,\underline{k}_2) = \frac{\exp\{-iTA(\underline{k}_1,\underline{k}_2)\} - \exp\{-i(T+H)A(\underline{k}_1,\underline{k}_2)\}}{iHA(\underline{k}_1,\underline{k}_2)}$$

Thus, for $(\underline{k}_1, \underline{k}_2) \neq (\underline{0}, \underline{0})$,

$$\lim_{T\to\infty}F_{T,H,\alpha}(\underline{k}_1,\underline{k}_2)=0,$$

and with (11), we obtain (10). The lemma is proven to be true. \Box

Now, we are in position to consider the weak convergence for

$$P_{T,H,n,\alpha}(A) \stackrel{\text{def}}{=} L_{T,H}\left(\underline{\zeta}_n(s+i\tau,\alpha) \in A\right), \quad A \in \mathcal{B}(H^2(D)).$$

For this, define $u_{n,\alpha}$: $\Omega \in H^2(D)$ by

$$u_{n,\alpha}(\omega) = \underline{\zeta}_n(s,\omega,\alpha), \quad \omega \in \Omega,$$

where

$$\zeta_n(s,\omega,\alpha) = (\zeta_n(s,\omega_1),\zeta_n(s,\omega_2,\alpha)),$$

$$\zeta_n(s,\omega_1) = \sum_{m=1}^{\infty} \frac{\omega_1(m), v_n(m)}{m^s}, \quad \omega_1(m) = \prod_{\substack{p^l \mid m \\ p^{l+1} \nmid m}} \omega_1^l(p),$$

and

$$\zeta_n(s,\omega_2,\alpha) = \sum_{m=0}^{\infty} \frac{\omega_2(m)v_n(m,\alpha)}{(m+\alpha)^s}$$

Since the series for $\zeta_n(s, \omega_1)$ and $\zeta_n(s, \omega_2, \alpha)$ are absolutely convergent in every half-plane $\sigma > \sigma_0$, the mapping $u_{n,\alpha}$ is continuous; hence, $(\mathcal{B}(\Omega), \mathcal{B}(H^2(D)))$ -measurable. Therefore, the measure m_H defines, on $(H^2(D), \mathcal{B}(H^2(D)))$, the probability measure $m_H u_{n,\alpha}^{-1}$ by

$$m_H u_{n,\alpha}^{-1}(A) = m_H(u_{n,\alpha}^{-1}A), \quad A \in \mathcal{B}(H^2(D)).$$

For brevity, let $U_{n,\alpha} = m_H u_{n,\alpha}^{-1}$.

Lemma 9. Suppose that $T^{27/82} \leq H \leq T^{1/2}$, and α is transcendental. Then, $P_{T,H,n,\alpha}$ converges weakly to $U_{n,\alpha}$ as $T \to \infty$.

Proof. The definition of $u_{n,\alpha}$ yields

$$u_{n,\alpha}\Big(\Big(p^{-i\tau}:p\in\mathbb{P}\Big),\Big((m+\alpha)^{-i\tau}:m\in\mathbb{N}_0\Big)\Big)=\underline{\zeta}_n(s+i\tau,\alpha).$$

Therefore, by the definitions of $P_{T,H,\alpha}^{\Omega}$ and $P_{T,H,n,\alpha}$, we have

$$P_{T,H,n,\alpha}(A) = L_{T,H}\left(\left(\left(p^{-i\tau}: p \in \mathbb{P}\right), \left((m+\alpha)^{-i\tau}: m \in \mathbb{N}_0\right)\right) \in u_{n,\alpha}^{-1}A\right)$$

for all $A \in \mathcal{B}(H^2(D))$. Hence,

$$P_{T,H,n,\alpha} = P_{T,H,\alpha}^{\Omega} u_{n,\alpha}^{-1}.$$

This, the continuity of $u_{n,\alpha}$, Lemma 8, and Theorem 5.1 of [38] prove that $P_{T,H,n,\alpha}$ converges weakly to $U_{n,\alpha}$. \Box

On $(\Omega, \mathcal{B}(\Omega), m_H)$, define the $H^2(D)$ -valued random element $\zeta(s, \omega, \alpha)$ by

$$\underline{\zeta}(s,\omega,\alpha) = (\zeta(s,\omega_1),\zeta(s,\omega_2,\alpha)),$$

where

$$\zeta(s,\omega_1) = \sum_{m=1}^{\infty} \frac{\omega_1(m)}{m^s} \text{ and } \zeta(s,\omega_2,\alpha) = \sum_{m=0}^{\infty} \frac{\omega_2(m)}{(m+\alpha)^s}.$$

We observe that the latter series are uniformly convergent on compact subsets of strip *D* for almost all ω_1 and ω_2 , respectively (see, for example, [10,15]). Let $P_{\underline{\zeta},\alpha}$ be the distribution of the random element $\zeta(s, \omega, \alpha)$, i. e.,

$$P_{\underline{\zeta},\alpha}(A) = m_H \Big\{ \omega \in \Omega : \underline{\zeta}(s,\omega,\alpha) \in A \Big\}, \quad A \in \mathcal{B}(H^2(D)).$$

In [23], for the proof of Theorem 5, a limit theorem for the functions $\zeta(s)$ and $\zeta(s, \alpha)$ with transcendental α was obtained. For $A \in \mathcal{B}(H^2(D))$, let

$$P_{T,\alpha}(A) = L_T(\underline{\zeta}(s+i\tau,\alpha) \in A).$$

Then, in [23], it was proved that $P_{T,\alpha}$, as $T \to \infty$, and $U_{n,\alpha}$, as $n \to \infty$ converges weakly to the same probability measure on $(H^2(D), \mathcal{B}(H^2(D)))$, and this measure is $P_{\underline{\zeta},\alpha}$. Thus, we have the following statement.

Now, we are ready to prove a limit theorem for $P_{T,H,\alpha}$.

Theorem 9. Suppose that $T^{27/82} \leq H \leq T^{1/2}$, and α is transcendental. Then $P_{T,H,\alpha}$ converges weakly to $P_{\zeta,\alpha}$ as $T \to \infty$.

Proof. Introduce a random variable $\xi_{T,H}$ defined on a certain probability space $(\widehat{\Omega}, \mathcal{A}, \mu)$ and uniformly distributed on [T, T + H]. Define the $H^2(D)$ -valued random elements as follows:

$$\underline{\zeta}_{T,H,n,\alpha} = \underline{\zeta}_{T,H,n,\alpha}(s) = (\zeta_n(s+i\xi_{T,H}), \zeta_n(s+i\xi_{T,H},\alpha))$$

and

$$\underline{\zeta}_{T,H,\alpha} = \underline{\zeta}_{T,H,\alpha}(s) = (\zeta(s+i\xi_{T,H}), \zeta(s+i\xi_{T,H},\alpha)).$$

Moreover, let $\underline{\zeta}_{n,\alpha}$ denote the $H^2(D)$ -valued random element with distribution $U_{n,\alpha}$. Further on, we will use the language of convergence in distribution ($\xrightarrow{\mathcal{D}}$), i. e., we say that a random

element η_n , as $n \to \infty$, converges in distribution to η if the distribution of η_n , as $n \to \infty$, converges weakly to that of η .

In virtue of Lemma 10, we have

$$\underline{\zeta}_{T,H,n,\alpha} \xrightarrow[T \to \infty]{\mathcal{D}} \underline{\zeta}_{n,\alpha}.$$
(12)

By Lemma 10,

$$\underline{\zeta}_{n,\alpha} \xrightarrow[n \to \infty]{\mathcal{D}} \underline{\zeta}(s,\alpha).$$
(13)

The definitions of $\underline{\zeta}_{T,H,n,\alpha'}, \underline{\zeta}_{T,H,\alpha'}$ and $\xi_{T,H}$ show that, for every $\varepsilon > 0$,

$$\begin{split} \lim_{n \to \infty} \limsup_{T \to \infty} \mu \Big\{ \rho_2 \Big(\underline{\zeta}_{T,H,\alpha'} \underline{\zeta}_{T,H,n,\alpha} \Big) \geqslant \varepsilon \Big\} \\ &= \lim_{n \to \infty} \limsup_{T \to \infty} L_{T,H} \Big(\rho_2 \Big(\underline{\zeta}(s+i\tau,\alpha), \underline{\zeta}_n(s+i\tau,\alpha) \Big) \geqslant \varepsilon \Big) \\ &\leqslant \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{\varepsilon H} \int_T^{T+H} \rho_2 \Big(\underline{\zeta}(s+i\tau,\alpha), \underline{\zeta}_n(s+i\tau,\alpha) \Big) \, \mathrm{d}\tau. \end{split}$$

Therefore, Lemma 7 implies that

$$\lim_{n\to\infty}\limsup_{T\to\infty} \mu\Big\{\rho_2\Big(\underline{\zeta}_{T,H,\alpha'}\underline{\zeta}_{T,H,n,\alpha}\Big) \geqslant \varepsilon\Big\} = 0.$$

This equality and relations (12) and (13) show that all hypotheses of Theorem 4.2 of [38] are fulfilled because the space $H^2(D)$ is separable. In consequence,

$$\underline{\zeta}_{T,H,\alpha} \xrightarrow[T\to\infty]{\mathcal{D}} \underline{\zeta}(s,\alpha),$$

and this relation is equivalent to the weak convergence of $P_{T,H,\alpha}$ to $P_{\zeta,\alpha}$ as $T \to \infty$. \Box

4. Proof of the Main Theorem

Theorem 9 is the main ingredient of the proof of Theorem 8. However, the support of the limit measure $P_{\underline{\zeta},\alpha}$ is also needed. We recall that the support of $P_{\underline{\zeta},\alpha}$ is a minimal closed set $S_{\underline{\zeta},\alpha} \subset H^2(D)$ such that $P_{\underline{\zeta},\alpha}(S_{\underline{\zeta},\alpha}) = 1$. The elements of $S_{\underline{\zeta},\alpha}$ have a property that, for every open neighborhood *G* of *g*, the inequality $P_{\zeta,\alpha}(G) > 0$ is satisfied.

Since the space $H^2(D)$ is separable, we have [38]

$$\mathcal{B}(H^2(D)) = \mathcal{B}(H(D)) \times \mathcal{B}(H(D)).$$

Therefore, it suffices to deal with sets of the form

$$A = A_1 \times A_2, \quad A_1, A_2 \in \mathcal{B}(H(D)).$$

It is well known [10] that

$$L_T(\zeta(s+i\tau)\in A), \quad A\in\mathcal{B}(H(D)),$$

converges weakly to the measure P_{ζ} as $T \to \infty$, where P_{ζ} is the distribution of the random element $\zeta(s, \omega_1)$.

$$L_T(\zeta(s+i\tau,\alpha)\in A), \quad A\in\mathcal{B}(H(D)),$$

with transcendental α converges weakly to the measure $P_{\zeta,\alpha}$ as $T \to \infty$, where $P_{\zeta,\alpha}$ is the distribution of the random element $\zeta(s, \omega_2, \alpha)$ [15]. Moreover, the support of P_{ζ} is the set

$$S \stackrel{\text{def}}{=} \{g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0\},\$$

while the support of $P_{\zeta,\alpha}$ is the whole H(D) [10,15].

Lemma 11. The support of the measure $P_{\zeta,\alpha}$ is the set $S \times H(D)$.

Proof. By a property of the Haar measures m_{1H} , m_{2H} , and m_H , and the above remark, we have

$$m_H(S \times H(D)) = m_{1H}(S) \cdot m_{2H}(H(D)).$$

This and the minimality of the sets *S* and H(D) such that $m_{1H}(S) = 1$ and $m_{2H}(H(D)) = 1$ show that $S \times H(D)$ is a minimal set satisfying $m_H(S \times H(D)) = 1$. \Box

Proof of Theorem 8. By the Mergelyan theorem on the approximation of analytic functions by polynomials [39] (see also [40]), we have the existence of polynomials p(s) and q(s)such that

$$\sup_{e \in K_1} \left| f_1(s) - e^{p(s)} \right| < \frac{\varepsilon}{2} \tag{14}$$

and

$$\sup_{\in K_2} |f_2(s) - q(s)| < \frac{\varepsilon}{2}.$$
(15)

We stress that the Mergelyan theorem can be applied because $K_1, K_2 \in \mathcal{K}$.

S

5

Define the set

,

$$G_{\varepsilon} = \left\{ (g_1, g_2) \in H^2(D) : \sup_{s \in K_1} \left| g_1(s) - e^{p(s)} \right| < \frac{\varepsilon}{2}, \sup_{s \in K_2} \left| g_2(s) - q(s) \right| < \frac{\varepsilon}{2} \right\}.$$

Then, G_{ε} is an open neighborhood of an element $(e^{p(s)}, q(s)) \in S \times H(D)$. By Lemma 11 and properties of the support, we have

$$P_{\zeta,\alpha}(G_{\varepsilon}) > 0.$$
 (16)

Let

$$\mathcal{G}_{\varepsilon} = \left\{ (g_1, g_2) \in H^2(D) : \sup_{s \in K_1} |g_1(s) - f_1(s)| < \varepsilon, \sup_{s \in K_2} |g_2(s) - f_2(s)| < \varepsilon \right\}.$$

$$p|f_2(s) - q(s)| < \frac{\varepsilon}{2}.$$
(15)

$$P_{\zeta,\alpha}(\mathcal{G}_{\varepsilon}) > 0.$$

The set $\mathcal{G}_{\varepsilon}$ is open in $H^2(D)$. Therefore, Theorem 9 with the equivalent of weak convergence in terms of open sets (see Theorem 2.1 of [38]) gives

$$\liminf_{T\to\infty} P_{T,H,\alpha}(\mathcal{G}_{\varepsilon}) \ge P_{\underline{\zeta},\alpha}(\mathcal{G}_{\varepsilon}) > 0.$$

This and the definitions of $\mathcal{G}_{\varepsilon}$ and $P_{T,H,\alpha}$ imply the first assertion of the theorem.

The boundary of the set $\mathcal{G}_{\varepsilon}$ is denoted by $\partial \mathcal{G}_{\varepsilon}$. Then, we have that $\partial \mathcal{G}_{\varepsilon_1} \cap \partial \mathcal{G}_{\varepsilon_2} = \emptyset$ for different positives ε_1 and ε_2 . The set $\mathcal{G}_{\varepsilon}$ is a continuity set of $P_{\underline{\zeta},\alpha}$ if $P_{\underline{\zeta},\alpha}(\partial \mathcal{G}_{\varepsilon}) = 0$. From the above remark, it follows $P_{\underline{\zeta},\alpha}(\partial \mathcal{G}_{\varepsilon}) \neq 0$ for at most countably many $\varepsilon > 0$. Applying Theorem 9 again in terms of continuity sets (see Theorem 2.1 of [38]), we obtain that

$$\lim_{T\to\infty} P_{T,H,\alpha}(\mathcal{G}_{\varepsilon}) = P_{\zeta,\alpha}(\mathcal{G}_{\varepsilon}) > 0$$

for all but at most countably many $\varepsilon > 0$. This proves the second statement of the theorem.

5. Conclusions

Let $\zeta(s)$ and $\zeta(s, \alpha)$ denote the Riemann and Hurwitz zeta-functions, respectively, and the parameter α is transcendental. We obtained the set of shifts $(\zeta(s + i\tau), \zeta(s + i\tau, \alpha))$, $\tau \in \mathbb{R}$, that approximate a given pair of analytic functions defined on the strip $D = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$, has a positive lower density in the interval $[T, T + H], T \to \infty$. Here, $T^{27/82} \leq H \leq T^{1/2}$. More precisely, the following result is proven. Let K_1 and K_2 be compact subsets of the strip D with connected complements, and $f_1(s) \neq 0$ and $f_2(s)$ continuous functions on K_1 and K_2 that are analytic inside of K_1 and K_2 , respectively. Then, for every $\varepsilon > 0$,

$$\begin{split} \liminf_{T \to \infty} \frac{1}{H} \mathrm{meas} \bigg\{ \tau \in [T, T + H] : \sup_{s \in K_1} |f_1(s) - \zeta(s + i\tau)| < \varepsilon \\ \sup_{s \in K_2} |f_2(s) - \zeta(s + i\tau, \alpha)| < \varepsilon \bigg\} > 0. \end{split}$$

Moreover, except for at most countably many values of $\varepsilon > 0$, "lim inf" can be replaced by "lim". This result extends that of H. Mishou [23].

We are planing to consider similar problems for discrete shifts and generalized shifts $(\zeta(s + i\varphi(\tau)), \zeta(s + i\varphi(\tau), \alpha))$ with a certain function $\varphi(\tau)$.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The author thanks the referees for their useful remarks and comments.

Conflicts of Interest: The author declare no conflicts of interest.

References

- Aref'eva, I.Y.; Volovich, I.V. Quantization of the Riemann zeta-function and cosmology. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 881–895. [CrossRef]
- 2. Elizalde, E. Zeta-functions: Formulas and applications. J. Comput. Appl. Math. 2000, 118, 125–142. [CrossRef]
- 3. Elizalde, E. Zeta-functions and the cosmos—A basic brief review. Universe 2021, 7, 5. [CrossRef]
- 4. Gutzwiller, M.C. Stochastic behavior in quantum scattering. Phys. D Nonlinear Phenom. 1983, 7, 341–355. [CrossRef]

35.

- Maino, G. Prime numbers, atomic nuclei, symmetries and superconductivity. In Symmetries and Order: Algebraic Methods in Many Body Sytems: A Symposium in Celebration of the Career of Professor Francesco Iachello, Connecticut, USA, 5–6 October 2018; AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2150, p. 030009.
- 6. Voronin, S.M. Theorem on the "universality" of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [CrossRef]
- Voronin, S.M. Analytic Properties of Arithmetic Objects. Doctoral Thesis, V.A. Steklov Mathematical Institute, Moscow, Russia, 1977.
- 8. Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1979.
- 9. Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981.
- 10. Laurinčikas, A. *Limit Theorems for the Riemann Zeta-Function;* Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996.
- 11. Steuding, J. *Value-Distribution of L-Functions*; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877.
- Matsumoto, K. A survey on the theory of universality for zeta and L-functions. In Number Theory: Plowing and Starring Through High Wave Forms, Proceedings of the 7th China-Japan Seminar, Fukuoka, Japan, 28 October–1 November 2013; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; Series on Number Theory and Its Applications; World Scientific Publishing Co.: Hackensack, NJ, USA; London, UK; Singapore; Bejing/Shanghai/Hong Kong, China; Taipei, Taiwan; Chennai, India, 2015; pp. 95–144.
- 13. Mauclaire, J.-L. Universality of the Riemann zeta function: Two remarks. *Ann. Univ. Sci. Budap. Rolando Eötvös Sect. Comput.* **2013**, 39, 311–319.
- 14. Meška, L. Modified Universality Theorems for the Riemann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2017.
- 15. Laurinčikas, A. The joint universality of Hurwitz zeta-functions. Šiauliai Math. Semin. 2008, 3, 169–187. [CrossRef]
- 16. Sourmelidis, A.; Steuding, J. On the value distribution of Hurwitz zeta-function with algebraic irrational parameter. *Constr. Approx.* **2022**, *55*, 829–860. [CrossRef]
- 17. Voronin, S.M. On the functional independence of Dirichlet *L*-functions. *Acta Arith.* **1975**, *27*, 443–453. (In Russian)
- 18. Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany; New York, NY, USA, 1992.
- 19. Bagchi, B. Joint universality theorem for Dirichlet *L*-functions. *Math. Z.* **1982**, *181*, 319–334. [CrossRef]
- 20. Mishou, H. The joint universality theorem for a pair of Hurwitz zeta-functions. J. Number Theory 2011, 131, 2352–2367. [CrossRef]
- Macaitienė, R.; Šiaučiūnas, D. Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function. II. Lith. Math. J. 2021, 61, 187–198. [CrossRef]
- 22. Nakamura, T. The existence and the non-existence of joint *t*-universality for Lerch zeta-functions. *J. Number Theory* **2007**, 125, 424–441. [CrossRef]
- 23. Mishou, H. The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions. *Lith. Math. J.* 2007, 47, 32–47. [CrossRef]
- 24. Laurinčikas, A.; Šiaučiūnas, D. The mean square of the Hurwitz zeta-function in short intervals. Axioms 2024, 13, 510. [CrossRef]
- 25. Atstopienė, J. Discrete Universality Theorems for the Riemann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2015.
- Genys, J.; Račkauskienė, S.; Macaitienė, R.; Šiaučiūnas, D. A mixed joint universality theorem for zeta-functions. *Math. Model. Anal.* 2010, 15, 431–446. [CrossRef]
- Pocevičienė, V.; Šiaučiūnas, D. A mixed joint universality theorem for zeta functions. II. Math. Model. Anal. 2014, 19, 52–65. [CrossRef]
- Kačinskaitė, R.; Matsumoto, K. The mixed joint universality for a class of zeta-functions. *Math. Nachrichten* 2015, 288, 1900–1909. [CrossRef]
- 29. Janulis, K. Mixed Joint Universality for Dirichlet *L*-Functions and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2015.
- Kačinskaitė, R.; Matsumoto, K. Remarks on the mixed joint universality for a class of zeta-functions. Bull. Aust. Math. Soc. 2017, 95, 187–198. [CrossRef]
- Balčiūnas, A.; Jasas, M.; Macaitienė, R.; Šiaučiūnas, D. On the Mishou theorem for zeta-functions with periodic coefficients. Mathematics 2023, 11, 2042. [CrossRef]
- 32. Vadeikis, G. Weighted Universality Theorems for the Remann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2021.
- 33. Laurinčikas, A. Universality of the Riemann zeta-function in short intervals. J. Number Theory 2019, 204, 279–295. [CrossRef]
- Andersson, J.; Garunkštis, R.; Kačinskaitė, R.; Nakai, K.; Pańkowski, Ł.; Sourmelidis, A.; Steuding, R.; Steuding, J.; Wananiyakul, S. Notes on universality in short intervals and exponential shifts. *Lith. Math. J.* 2024, 64, 125–137. [CrossRef]
 - Laurinčikas, A. Universality of the Hurwitz zeta-function in short intervals. Bol. Soc. Mat. Mex. 2025, 31, 17. [CrossRef]
- 36. Ivič, A. *The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications;* John Wiley & Sons: New York, NY, USA, 1985.
- 37. Conway, J.B. Functions of One Complex Variable; Springer: New York, NY, USA, 1973.
- 38. Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999.

- 39. Mergelyan, S.N. *Uniform Approximations to Functions of a Complex Variable;* American Mathematical Society Translations, No. 101; American Mathematical Society: Providence, RI, USA, 1954.
- 40. Walsh, J.L. Interpolation and Approximation by Rational Functions in the Complex Domain; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1960; Volume 20.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.