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Abstract: In this study, the approximation of a pair of analytic functions defined on the strip {s =
σ + it ∈ C : 1/2 < σ < 1} by shifts (ζ(s + iτ), ζ(s + iτ, α)), τ ∈ R, of the Riemann and Hurwitz zeta-
functions with transcendental α in the interval [T, T + H] with T27/82 ⩽ H ⩽ T1/2 was considered. It
was proven that the set of such shifts has a positive density. The main result was an extension of the
Mishou theorem proved for the interval [0, T], and the first theorem on the joint mixed universality in
short intervals. For proof, the probability approach was applied.
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1. Introduction

Denote by s = σ + it is a complex variable and 0 < α ⩽ 1 is a fixed parameter.
The Riemann and Hurwitz zeta-functions ζ(s) and ζ(s, α), for σ > 1, are defined by the
Dirichlet series as follows:

ζ(s) =
∞

∑
m=1

1
ms and ζ(s, α) =

∞

∑
m=0

1
(m + α)s ,

The functions have analytic continuations to the whole complex plane, except for point
s = 1, which is a simple pole with residues 1. Moreover, the function ζ(s), for σ > 1, can be
defined by the Euler product as follows:

ζ(s) = ∏
p∈P

(
1 − 1

ps

)−1
,

where P is the set of all prime numbers.
The functions ζ(s) and ζ(s, α) are important tools for research in the analytic number

theory. The function ζ(s) is the main tool for investigating the distribution of prime
numbers in the set N, while the function ζ(s, α) with rational parameter α is applied for
studying prime numbers in arithmetical progressions. However, the range of applications
of the functions ζ(s) and ζ(s, α) is significantly wider than the distribution of primes. They
are used also in function theory, algebraic number theory, functional analysis, probability
theory, and even in quantum mechanics, cosmology, and music [1–5].

One of the most interesting applications of the functions ζ(s) and ζ(s, α) is connected to
a very important problem of the function theory—the approximation of analytic functions.
At present, it is known that analytic functions defined in the strip D = {s ∈ C : 1/2 < σ <
1} can be approximated by shifts ζ(s + iτ) (the case of non-vanishing analytic functions)
or by shifts ζ(s + iτ, α), τ ∈ R, for some classes of the parameter α. The latter property of
zeta-functions is called universality and, for the function ζ(s), was proved by S. M. Voronin
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in [6,7]. The initial form of the Voronin universality theorem was improved by various
authors (see [8–14]), but its remains the same in essence: the set ζ(s + iτ), τ ∈ R, is dense
in the space of analytic functions. For the statement of a modern version of Voronin’s
theorem, the following notation is convenient. The class of compact sets of the strip D
with connected complements is denoted by K, and the class of continuous functions that
are analytic in the interior of K by H0(K) with K ∈ K. Moreover, let measA stand for the
Lebesgue measure of a measurable set A ⊂ R, and

LT(. . . ) =
1
T

meas{τ ∈ [0, T] : . . . },

where in place of dots, a condition satisfied by τ is to be written. Then, we have the
following statement [8–14]:

Theorem 1. Let K ∈ K and f (s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

LT

(
sup
s∈K

| f (s)− ζ(s + iτ)| < ε

)
> 0.

Moreover, the limit

lim
T→∞

LT

(
sup
s∈K

| f (s)− ζ(s + iτ)| < ε

)
exists and is positive for all but at most countably many ε > 0 .

The problem of the approximation of analytic functions by shifts ζ(s + iτ, α) is more
complicated and depends on the arithmetic of the parameter α. The simplest case is of tran-
scendental α, i.e., when α is not a root of any polynomial p(s) ̸≡ 0 with rational coefficients.
In this case, the set {log(m + α) : m ∈ N0}, N0 = N∪ {0}, is linearly independent over Q,
and we have a certain analogy with the function ζ(s), where the linear independence of the
set {log p : p ∈ P} is applied. The case of rational parameter α = a/q, (a, q) = 1, in virtue
of the following representation:

ζ

(
s,

a
q

)
=

qs

φ(q) ∑
χ (mod q)

χ(a)L(s, χ),

where a summing runs over all Dirichlet characters modulus q, L(s, χ) denotes the Dirichlet
L-functions, and φ(q) is the Euler totient function, is reduced to the simultaneous approx-
imation of a tuple of φ(q) analytic functions by shifts (L(s + iτ, χ1), . . . , L(s + iτ, χφ(q))).
More precisely, the following result by different methods was obtained in [8,9,14] (see
also [12,15]). The class of continuous on K functions that are analytic in the interior of K is
denoted by H(K) with K ∈ K.

Theorem 2. Suppose that the parameter α is transcendental, or rational ̸= 1, 1/2. Let K ∈ K and
f (s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

LT

(
sup
s∈K

| f (s)− ζ(s + iτ, α)| < ε

)
> 0.

Moreover, the limit

lim
T→∞

LT

(
sup
s∈K

| f (s)− ζ(s + iτ, α)| < ε

)
exists and is positive for all but at most countably many ε > 0 .
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The cases α = 1 and α = 1/2 are excluded in Theorem 2 because ζ(s, 1) = ζ(s) and

ζ

(
s,

1
2

)
= (2s − 1)ζ(s),

and, for them, the statement of Theorem 1 with class H0(K) is valid.
The most complicated case is of algebraic irrational parameter α. This case was studied

in [16]. The degree of α is denoted by d. Let θ = 4(27(4.45)2)−1 and β = θd−2. Then, in [16],
the following statement was proven to be true.

Theorem 3. Suppose that the parameter α is algebraic irrational. Let γ ∈ (0, β), 1 − β + γ ⩽
σ0 ⩽ 1, s0 = σ0 + it0, and f (s) be continuous functions on |s − s0| ⩽ r, r > 0 and analytic in the
interior of that disc. Moreover, let 0 < a < 1 and ε ∈ (0, | f (s0)|). Then, for all but finitely many
α ∈ [a, 1], of degree at most d0 − 2θ1/d2

0 + γ with

d0 ⩽
(

θ

1 − σ0 + γ

)1/2
,

there exist τ ∈ [T, 2T] and δ = δ(ε, f , T) > 0 such that

max
|s−s0|⩽δr

| f (s)− ζ(s + iτ, α)| < 3ε,

where T = T(ε, f , α) is explicitly given, the set of exceptional α is effectively described, and δ is also
effectively computable.

Theorems 1–3 are devoted to the approximation of one function from a wide class
of analytic functions. Also, there are the so-called joint universality theorems in which
a tuple of analytic functions is approximated simultaneously by shifts of zeta-functions.
The first joint universality result can also be found in Voronin [17] and deals with Dirichlet
L-functions with pairwise non-equivalent characters (see also [9,18,19]). A joint universality
theorem for a pair of Hurwitz zeta-functions was given in [20]. The joint approximation
of analytic functions by shifts of Hurwitz zeta- functions involving imaginary parts of
non-trivial zeros of the Riemann zeta-function was discussed in [21]. However, later,
many joint universality theorems were obtained for functions of the same name (for more
results, see [12]). For illustration purposes, we present one example. For j = 1, . . . , r, let
0 < αj ⩽ 1, and

L(α1, . . . , αr) = {log(m + αj) : m ∈ N0, j = 1, . . . , r}.

Theorem 4 ([15]). Suppose that the set L(α1, . . . , αr) is linearly independent over Q. For
j = 1, . . . , r, let Kj ∈ K and f j(s) ∈ H(Kj). Then, for every ε > 0,

lim inf
T→∞

LT

(
sup

1⩽j⩽r
sup
s∈Kj

| f j(s)− ζ(s + iτ, αj)| < ε

)
> 0.

Also, some problems of joint universality for Hurwitz zeta-functions can be found
in [22].

In [23], H. Mishou initiated a new type of joint mixed universality theorems; he
proved a joint universality theorem for two functions of different types, for the Riemann
zeta-function and Hurwitz zeta-function. Here, it is important to stress that ζ(s) has the
Euler product, while ζ(s, α) has no such a product for α ̸= 1 and α ̸= 1/2. Moreover, the
function ζ(s) satisfies the symmetric functional equation

ξ(s) = ξ(1 − s), s ∈ C, ξ(s) = π−s/2Γ
( s

2

)
ζ(s),
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where Γ(s) is the Euler gamma-function, while, for ζ(s, α), the following non-symmetric
equations connecting s and 1 − s are true:

ζ(1 − s, α) =
Γ(s)
(2π)s

(
e−πis/2

∞

∑
m=1

e2πimα

ms + eπis/2
∞

∑
m=1

e−2πimα

ms

)
, σ > 1,

or

ζ(s, α) =
2Γ(1 − s)
(2π)1−s

(
sin

πs
2

∞

∑
m=1

cos(2πmα)

m1−s + cos
πs
2

∞

∑
m=1

sin(2πmα)

m1−s

)
, σ < 0.

This is one of the causes of differences in the value distribution of ζ(s) and ζ(s, α) and also
reflects the approximate functional equation for ζ(s, α), which is the main ingredient for
the proof of the mean square estimate in short intervals [24].

Theorem 5 ([23]). Suppose that the parameter α is transcendental. Let K1, K2 ∈ K and f1(s) ∈
H0(K1), f2(s) ∈ H(K2). Then, for every ε > 0,

lim inf
T→∞

LT

(
sup
s∈K1

| f1(s)− ζ(s + iτ)| < ε, sup
s∈K2

| f2(s)− ζ(s + iτ, α)| < ε

)
> 0.

The thesis [25] is devoted to joint discrete universality for the Riemann and Hurwitz
zeta-functions. Mixed joint universality is studied also for more general zeta-functions.
We mention the works [26–31]. The weighted versions of the Mishou theorem are proven
in [32]. Theorems 1, 2, 4, and 5 have one common shortcoming: they imply that the
set of approximating shifts is infinite; however, they do not provide any algorithm to
find at least one approximating shift. In this sense, these theorems are ineffective. Of
course, it is difficult to discuss concrete approximation shifts; however, some additional
information on the efficacy of universality theorems is always useful. In Theorem 3, the
efficacy of approximation is described by indication of explicitly given interval [T, 2T]
containing τ such that ζ(s + iτ, α) is an approximating shift. This is a very good step in the
effectivization direction.

In contrast to Theorem 3, the proofs of Theorems 1, 2, 4, and 5 are based on measure
theory; thus, it is impossible to find an explicitly given interval containing τ with the
approximation property. Therefore, there is another method to consider approximating
shifts with τ in the interval of lengths shorter than T or, more precisely, o(T) as T → ∞.
This method leads to universality theorems in short intervals. For the function ζ(s), the
first universality theorem of such a type was obtained in [33]. Let

LT,H(. . . ) =
1
H

meas{τ ∈ [T, T + H] : . . . },

where in place of dots, a condition satisfied by τ is to be written.

Theorem 6 ([33]). Suppose that T1/3(log T)26/15 ⩽ H ⩽ T. Let K ∈ K, f (s) ∈ H0(K). Then,
for every ε > 0,

lim inf
T→∞

LT,H

(
sup
s∈K

| f (s)− ζ(s + iτ)| < ε

)
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Recently, improvements in Theorem 6 were given in [34].
An analog of Theorem 6 for the Hurwitz zeta-function is given in [35].
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Theorem 7 ([35]). Suppose that T27/82 ⩽ H ⩽ T1/2, and the parameter α is transcendental. Let
K ∈ K and f (s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

LT,H

(
sup
s∈K

| f (s)− ζ(s + iτ, α)| < ε

)
> 0.

Moreover, the lower limit can be replaced by a limit for all but at most countably many ε > 0.

The aim of this study is to obtain a version of Theorem 5 in short intervals.

Theorem 8. Suppose that T27/82 ⩽ H ⩽ T1/2, and the parameter α is transcendental. Let
K1, K2 ∈ K and f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then, for every ε > 0,

lim inf
T→∞

LT,H

(
sup
s∈K1

| f1(s)− ζ(s + iτ)| < ε, sup
s∈K2

| f2(s)− ζ(s + iτ, α)| < ε

)
> 0.

Moreover, the lower limit can be replaced by a limit for all but at most countably many ε > 0.

Using short intervals extends and improves the Mishou theorem on joint mixed
universality for the functions ζ(s) and ζ(s, α) and is the novel approach presented in
this article.

For effectivization aims of approximation, the quantity of H must be as small as
possible. On the other hand, H is closely connected to a very important but complicated
problem of analytic number theory on the mean square estimates of the functions ζ(s) and
ζ(s, α) in short intervals. Unfortunately, at present, we only have a result of H ⩾ T27/82 in
the latter problem (see Lemmas 2 and 3 below).

Mean square estimates together with a joint probabilistic limit theorem for the pair
(ζ(s), ζ(s, α)) in the space of analytic functions occupy a central place in the proof of
Theorem 8 in short intervals for the functions ζ(s) and ζ(s, α).

2. Mean Square Estimates

The first results for the Riemann zeta-function in short intervals were obtained by
D. R. Heath-Brown, J.-M. Deshouillers, A. Ivic̆, H. Iwaniec, M. Jutila, A. A. Karatsuba,
G. Kolesnik (for references, see [36]). We recall one mean square estimate from [36].

Lemma 1. Let (κ, λ) be an exponential pair and 1/2 < σ < 1 fixed. Then, for T(κ+λ+1−2σ)/2(κ+1)

× (log T)(2+κ)/(κ+1) ⩽ H ⩽ T, 1 + λ − κ ⩾ 2σ, we have uniformly in H∫ T+H

T−H
|ζ(σ + it)|2 dt ≪ H.

Lemma 2. Suppose that α ̸= 1/2, 1, and 1/2 < σ ⩽ 7/12 is fixed. Then, for T27/82 ⩽ H ⩽ T,
uniformly in H ∫ T+H

T−H
|ζ(σ + it)|2 dt ≪σ H.

Proof. The lemma follows from Lemma 1 by taking the exponential pair (11/30, 16/30).

Lemma 3. Suppose that α ̸= 1/2, 1, and 1/2 < σ ⩽ 7/12 is fixed. Then, for T27/82 ⩽ H ⩽ Tσ,
uniformly in H ∫ T+H

T−H
|ζ(σ + it, α)|2 dt ≪σ,α H.

Proof. The lemma is Theorem 2 from [24], where its proof is presented.
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Let θ > 1/2 be fixed, and, for n ∈ N,

vn(m) = exp
{
−
(m

n

)θ
}

.

Define the series

ζn(s) =
∞

∑
m=1

vn(m)

ms

which absolutely converges in any half-plane σ > σ0 with finite σ0.

Lemma 4. Suppose that K ⊂ D is a compact set and T27/82 ⩽ H ⩽ T. Then

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
sup
s∈K

|ζ(s + iτ)− ζn(s + iτ)|dτ = 0.

Proof. Let
ln(s) =

1
θ

Γ
( s

θ

)
ns.

We use the following integral representation [10]:

ζn(s) =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s + z)ln(z)dz (1)

which is a result of the classical Mellin formula that yields

vn(m) =
1

2πi

∫ θ+i∞

θ−i∞

1
θ

Γ
( s

θ

)(m
n

)−s
ds.

Let K ⊂ D be a fixed compact set. Then, K is closed and bounded; hence, there exists a
positive number δ < 1/12 such that 1/2 + 2δ ⩽ σ ⩽ 1 − δ for all s = σ + it ∈ K. We take
θ = 1/2 + δ and θ̂ = 1/2 + δ − σ. Then, θ̂ < 0 and θ̂ ⩾ 1/2 + δ − 1 + δ = 2δ − 1/2 >
−1/2 − δ = −θ. The integrand in (1) has only two simple poles in the strip θ̂ < Rez < θ,
i.e., a pole at the point z = 0 of the function Γ(s/θ) and a pole at the point z = 1 − s of the
function ζ(s + z). Therefore, using the well-known estimate

Γ(σ + it) ≪ exp{−c|t|}, c > 0, (2)

which is uniform in σ ∈ (σ1, σ2) with every σ1 < σ2, and replacing θ by θ̂ in the line of
integration in (1), via the residue theorem, we obtain, for s ∈ K,

ζn(s)− ζ(s) =
1

2πi

∫ θ̂+i∞

θ̂−i∞
ζ(s + z)ln(z)dz + ln(1 − s).

This gives, for s ∈ K,

ζn(s)− ζ(s) =
1

2π

∫ ∞

−∞
ζ

(
σ + it +

1
2
+ δ − σ + iu

)
ln

(
1
2
+ δ − σ + iu

)
du + ln(1 − s).

Hence, for s ∈ K,

ζn(s + iτ)− ζ(s + iτ) ≪
∫ ∞

−∞

∣∣∣∣ζ(1
2
+ δ + it + iτ + iu

)∣∣∣∣∣∣∣∣ln(1
2
+ δ − σ + iu

)∣∣∣∣du

+ sup
s∈K

|ln(1 − s − iτ)|,

and, after change t + u by u, we obtain
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sup
s∈K

|ζn(s + iτ)− ζ(s + iτ)| ≪
∫ ∞

−∞

∣∣∣∣ζ(1
2
+ δ + iτ + iu

)∣∣∣∣ sup
s∈K

∣∣∣∣ln(1
2
+ δ − s + iu

)∣∣∣∣du

+ sup
s∈K

|ln(1 − s − iτ)|. (3)

In view of (2), we have, for s ∈ K,

ln

(
1
2
+ δ − s + iu

)
≪δ n1/2+δ−σ exp

{
− c

θ
|u − t|

}
≪δ,K n−δ exp{−c1|u|} (4)

with c1 > 0. Moreover, it is well known that, for σ ⩾ 1/2,

ζ(σ + it) ≪ t1−σ, t ⩾ 2.

This and (4) imply that(∫ − log2 T

−∞
+
∫ ∞

log2 T

)∣∣∣∣ζ(1
2
+ δ + iτ + iu

)∣∣∣∣ sup
s∈K

∣∣∣∣ln(1
2
+ δ − s + iu

)∣∣∣∣du

≪δ,K n−δ

(∫ − log2 T

−∞
+
∫ ∞

log2 T

)
(|τ|+ |u|)1/2 exp{−c1|u|}du

≪δ,K n−δ(|τ|+ 1)1/2 exp{−c2 log2 T}, c2 > 0.

Therefore, via (3), we find
1
H

∫ T+H

T
sup
s∈K

|ζ(s + iτ)− ζn(s + iτ)|dτ

≪δ,K

∫ log2 T

− log2 T

(
1
H

∫ T+H

T

∣∣∣∣ζ(1
2
+ δ + iτ + iu

)∣∣∣∣dτ

)
sup
s∈K

∣∣∣∣ln(1
2
+ δ − s + iu

)∣∣∣∣du

+
1
H

∫ T+H

T
sup
s∈K

|ln(1 − s − iτ)|dτ +
n−δ exp{−c2 log2 T}

H

∫ T+H

T
(|τ|+ 1)1/2 dτ

def
= J1 + J2 + J3. (5)

Using the Cauchy–Schwarz inequality gives

∫ T+H

T

∣∣∣∣ζ(1
2
+ δ + iτ + iu

)∣∣∣∣dτ ≪
(∫ T+H

T

∣∣∣∣ζ(1
2
+ δ + iτ + iu

)∣∣∣∣2 dτ

)1/2

≪
(

1
H

∫ T+H+|u|

T−H−|u|

∣∣∣∣ζ(1
2
+ δ + iτ

)∣∣∣∣2 dτ

)1/2

. (6)

For |u| ⩽ log2 T and large T,

H + |u| ⩽ T1/2 + log2 T ⩽ T.

Therefore, (6) and Lemma 2 show that, for |u| ⩽ log2 T,

1
H

∫ T+H

T

∣∣∣∣ζ(1
2
+ δ + iτ + iu

)∣∣∣∣dτ ≪δ

(
1
H
(H + |u|)

)1/2
≪δ (1 + |u|)1/2.

This and (4) give the estimate

J1 ≪δ,K n−δ
∫ log2 T

− log2 T
exp{−c1|u|}(1 + |u|)1/2 du ≪δ,K u−δ. (7)
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Similarly to (4), we obtain that, for s ∈ K,

ln(1 − s − iτ) ≪ n1−σ exp{−c1|t + τ|} ≪K n1/2−2δ exp{−c3|τ|}, c3 > 0.

Thus,

J2 ≪K n1/2−2δ 1
H

∫ T+H

T
exp{−c3|τ|}dτ ≪K

n1/2−2δ

H
. (8)

It is easily seen that
J3 ≪ n−δ exp{−c2 log2 T}T1/2.

This, (5), (7), and (8) lead to the following estimate:

1
H

∫ T+H

T
sup
s∈K

|ζ(s + iτ)− ζn(s + iτ)|dτ ≪δ,Kn−δ + n1/2−2δH−1

+ n−δ exp{−c2 log2 T}T1/2.

Taking T → ∞, and then n → ∞, gives the equality of the lemma.

Recall a metric in H(D), inducing its topology [37]. There exists a sequence {Kl} of
embedded compact sets lying in D such that

∞
∪

l=1
Kl = D,

and every compact set K ⊂ D lies in some set Kl . Then, for g1, g2 ∈ H(D), denoting

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈K |g1(s)− g2(s)|

,

we have the metric ρ that induces the topology of H(D).
The latter formula with Lemma 4 yields the following statement.

Lemma 5. Suppose that T27/82 ⩽ H ⩽ T. Then the equality

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
ρ(ζ(s + iτ), ζn(s + iτ))dτ = 0

holds.

A similar lemma for the Hurwitz zeta-function was obtained in [35]. For the same θ as
above, define

vn(m, α) = exp

{
−
(

m + α

n

)θ
}

.

and

ζn(s, α) =
∞

∑
m=0

vn(m, α)

(m + α)s

Then, the latter series, as ζn(s), is absolutely convergent for σ > σ0, with arbitrary finite σ0.

Lemma 6. Suppose that T27/82 ⩽ H ⩽ T1/2, and α ̸= 1/2 or 1. Then

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
ρ(ζ(s + iτ, α), ζn(s + iτ, α))dτ = 0.

Proof. The lemma is Lemma 10 from [35], where its proof is given.
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For
g

k
= (gk1, gk2) ∈ H2(D), k = 1, 2,

set
ρ2(g

1
, g

2
) = max(ρ(g11, g12), ρ(g21, g22)).

Then ρ2 is a metric that induces the topology of H2(D). This definition of ρ2 and Lemmas 5
and 6 imply the following lemma. For brevity, let

ζ(s, α) = (ζ(s), ζ(s, α))

and
ζn(s, α) = (ζn(s), ζn(s, α)).

Lemma 7. Suppose that T27/82 ⩽ H ⩽ T1/2, and α ̸= 1/2 or 1. Then

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
ρ2

(
ζ(s + iτ, α), ζn(s + iτ, α)

)
dτ = 0.

3. Limit Theorem

In this section, we will consider the weak convergence for

PT,H,α(A) = LT,H

(
ζ(s + iτ, α) ∈ A

)
, A ∈ B(H2(D)),

as T → ∞, with H restricted in Lemma 7, and B(X) denotes the Borel σ-field of the space X.
We start with the weak convergence of probability measures on a certain topological

group. Let

Ω1 = ∏
p∈P

{s ∈ C : |s| = 1}, Ω2 = ∏
m∈N0

{s ∈ C : |s| = 1}, and Ω = Ω1 × Ω2.

Since Ω1 and Ω2 with the product topology and pointwise multiplication are compact
topological groups, the Tikhonov theorem implies that Ω is again a compact topological
group. Thus, on (Ω1,B(Ω1)), (Ω2,B(Ω2)), and (Ω,B(Ω)), the probability Haar measures
m1H , m2H , and mH , respectively, can be defined. We notice that mH = m1H × m2H , i. e., if
A = A1 × A2, A1 ∈ B(Ω1), A2 ∈ B(Ω2), then

mH(A) = m1H(A1)m2H(A2).

For ω ∈ Ω, we have ω = (ω1, ω2) with ω1 = (ω1(p) : p ∈ P) and ω2 = (ω2(m) : m ∈ N0).
For A ∈ B(Ω), set

PΩ
T,H,α(A) = LT,H

(((
p−iτ : p ∈ P

)
,
(
(m + α)−iτ : m ∈ N0

))
∈ A

)
.

Lemma 8. Suppose that T27/82 ⩽ H ⩽ T1/2, and α is transcendental. Then, PΩ
T,H,α converges

weakly to the Haar measure mH as T → ∞.

Proof. We use similar arguments as in the case τ ∈ [0, T]. Let FT,H,α(k1, k2), k1 = (k1p :
k1p ∈ Z, p ∈ P), k2 = (k2m : k2m ∈ Z, m ∈ N0), be the Fourier transform of PΩ

T,H,α, i. e.,

FT,H,α(k1, k2) =
∫

Ω
∏∗

p∈P
ωk1p(p) ∏∗

m∈N0

ωk2m(m)dPΩ
T,H,α,
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where the star ∗ shows that only a finite number of integers k1p and k2m are not zeroes.
Thus, taking into account the definition of the measure PΩ

T,H,α, we have

FT,H,α(k1, k2) =
1
H

∫ T+H

T
∏∗

p∈P
p−iτk1p ∏∗

m∈N0

(m + α)−iτk2m dτ

=
1
H

∫ T+H

T
exp

{
−iτ

(
∑∗

p∈P
k1p log p + ∑∗

m∈N0

k2m log(m + α)

)}
dτ. (9)

We have to show that

lim
T→∞

FT,H,α(k1, k2) =

{
1 if (k1, k2) = (0, 0),
0 if (k1, k2) ̸= (0, 0),

(10)

where 0 = (0, 0, . . . ). Obviously, by (9),

FT,H,α(0, 0) = 1. (11)

Therefore, only the case (k1, k2) ̸= (0, 0) remains for consideration. Since α is transcendental,
the set L(α) = {log(m + α) : m ∈ N0} is linearly independent over Q. The set {log p :
p ∈ P} is also linearly independent over Q. The linear independence over Q for the set

L(P, α)
def
={(log p : p ∈ P), (log(m + α) : m ∈ N0)} is easily seen. Actually, if, for some

non-zeroes k1p1 , . . . , k1pr , k2m1 , . . . , k2mv ,

k1p1 log p1 + · · · k1pr log pr + k2m1 log(m1 + α) + · · · k2mv log(mv + α) = 0,

then
(m1 + α)k21 · · · (mv + α)k2v = p−k11

1 · · · p−k1r
r .

From this, it follows that there exists a polynomial p(s) with rational coefficients such that
p(α) = 0, and this contradicts the transcendence of α.

The linear independence of the set L(P, α) shows that, in the case (k1, k2) ̸= (0, 0),

A(k1, k2)
def
= ∑∗

p∈P
k1p log p + ∑∗

m∈N0

k2m log(m + α) ̸= 0.

Hence, in view of (9),

FT,H,α(k1, k2) =
exp{−iTA(k1, k2)} − exp{−i(T + H)A(k1, k2)}

iHA(k1, k2)
.

Thus, for (k1, k2) ̸= (0, 0),
lim

T→∞
FT,H,α(k1, k2) = 0,

and with (11), we obtain (10). The lemma is proven to be true.

Now, we are in position to consider the weak convergence for

PT,H,n,α(A)
def
= LT,H

(
ζn(s + iτ, α) ∈ A

)
, A ∈ B(H2(D)).

For this, define un,α : Ω ∈ H2(D) by

un,α(ω) = ζn(s, ω, α), ω ∈ Ω,

where
ζn(s, ω, α) = (ζn(s, ω1), ζn(s, ω2, α)),
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ζn(s, ω1) =
∞

∑
m=1

ω1(m), vn(m)

ms , ω1(m) = ∏
pl |m

pl+1∤m

ωl
1(p),

and

ζn(s, ω2, α) =
∞

∑
m=0

ω2(m)vn(m, α)

(m + α)s .

Since the series for ζn(s, ω1) and ζn(s, ω2, α) are absolutely convergent in every half-plane
σ > σ0, the mapping un,α is continuous; hence, (B(Ω),B(H2(D)))-measurable. Therefore,
the measure mH defines, on (H2(D),B(H2(D))), the probability measure mHu−1

n,α by

mHu−1
n,α(A) = mH(u−1

n,α A), A ∈ B(H2(D)).

For brevity, let Un,α = mHu−1
n,α.

Lemma 9. Suppose that T27/82 ⩽ H ⩽ T1/2, and α is transcendental. Then, PT,H,n,α converges
weakly to Un,α as T → ∞.

Proof. The definition of un,α yields

un,α

((
p−iτ : p ∈ P

)
,
(
(m + α)−iτ : m ∈ N0

))
= ζn(s + iτ, α).

Therefore, by the definitions of PΩ
T,H,α and PT,H,n,α, we have

PT,H,n,α(A) = LT,H

(((
p−iτ : p ∈ P

)
,
(
(m + α)−iτ : m ∈ N0

))
∈ u−1

n,α A
)

for all A ∈ B(H2(D)). Hence,
PT,H,n,α = PΩ

T,H,αu−1
n,α.

This, the continuity of un,α, Lemma 8, and Theorem 5.1 of [38] prove that PT,H,n,α converges
weakly to Un,α.

On (Ω,B(Ω), mH), define the H2(D)-valued random element ζ(s, ω, α) by

ζ(s, ω, α) = (ζ(s, ω1), ζ(s, ω2, α)),

where

ζ(s, ω1) =
∞

∑
m=1

ω1(m)

ms and ζ(s, ω2, α) =
∞

∑
m=0

ω2(m)

(m + α)s .

We observe that the latter series are uniformly convergent on compact subsets of strip D for
almost all ω1 and ω2, respectively (see, for example, [10,15]). Let Pζ,α be the distribution of
the random element ζ(s, ω, α), i. e.,

Pζ,α(A) = mH

{
ω ∈ Ω : ζ(s, ω, α) ∈ A

}
, A ∈ B(H2(D)).

In [23], for the proof of Theorem 5, a limit theorem for the functions ζ(s) and ζ(s, α) with
transcendental α was obtained. For A ∈ B(H2(D)), let

PT,α(A) = LT

(
ζ(s + iτ, α) ∈ A

)
.

Then, in [23], it was proved that PT,α, as T → ∞, and Un,α, as n → ∞ converges weakly to
the same probability measure on (H2(D),B(H2(D))), and this measure is Pζ,α. Thus, we
have the following statement.
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Lemma 10. Suppose that α is transcendental. Then, Un,α converges weakly to Pζ,α as n → ∞.

Now, we are ready to prove a limit theorem for PT,H,α.

Theorem 9. Suppose that T27/82 ⩽ H ⩽ T1/2, and α is transcendental. Then PT,H,α converges
weakly to Pζ,α as T → ∞.

Proof. Introduce a random variable ξT,H defined on a certain probability space (Ω̂,A, µ)
and uniformly distributed on [T, T + H]. Define the H2(D)-valued random elements as
follows:

ζT,H,n,α = ζT,H,n,α(s) = (ζn(s + iξT,H), ζn(s + iξT,H , α))

and
ζT,H,α = ζT,H,α(s) = (ζ(s + iξT,H), ζ(s + iξT,H , α)).

Moreover, let ζn,α denote the H2(D)-valued random element with distribution Un,α. Further

on, we will use the language of convergence in distribution ( D−→), i. e., we say that a random
element ηn, as n → ∞, converges in distribution to η if the distribution of ηn, as n → ∞,
converges weakly to that of η.

In virtue of Lemma 10, we have

ζT,H,n,α
D−−−→

T→∞
ζn,α. (12)

By Lemma 10,

ζn,α
D−−−→

n→∞
ζ(s, α). (13)

The definitions of ζT,H,n,α, ζT,H,α, and ξT,H show that, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
{

ρ2

(
ζT,H,α, ζT,H,n,α

)
⩾ ε
}

= lim
n→∞

lim sup
T→∞

LT,H

(
ρ2

(
ζ(s + iτ, α), ζn(s + iτ, α)

)
⩾ ε
)

⩽ lim
n→∞

lim sup
T→∞

1
εH

∫ T+H

T
ρ2

(
ζ(s + iτ, α), ζn(s + iτ, α)

)
dτ.

Therefore, Lemma 7 implies that

lim
n→∞

lim sup
T→∞

µ
{

ρ2

(
ζT,H,α, ζT,H,n,α

)
⩾ ε
}
= 0.

This equality and relations (12) and (13) show that all hypotheses of Theorem 4.2 of [38] are
fulfilled because the space H2(D) is separable. In consequence,

ζT,H,α
D−−−→

T→∞
ζ(s, α),

and this relation is equivalent to the weak convergence of PT,H,α to Pζ,α as T → ∞.

4. Proof of the Main Theorem

Theorem 9 is the main ingredient of the proof of Theorem 8. However, the support of
the limit measure Pζ,α is also needed. We recall that the support of Pζ,α is a minimal closed
set Sζ,α ⊂ H2(D) such that Pζ,α(Sζ,α) = 1. The elements of Sζ,α have a property that, for
every open neighborhood G of g, the inequality Pζ,α(G) > 0 is satisfied.
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Since the space H2(D) is separable, we have [38]

B(H2(D)) = B(H(D))×B(H(D)).

Therefore, it suffices to deal with sets of the form

A = A1 × A2, A1, A2 ∈ B(H(D)).

It is well known [10] that

LT(ζ(s + iτ) ∈ A), A ∈ B(H(D)),

converges weakly to the measure Pζ as T → ∞, where Pζ is the distribution of the random
element ζ(s, ω1).

LT(ζ(s + iτ, α) ∈ A), A ∈ B(H(D)),

with transcendental α converges weakly to the measure Pζ,α as T → ∞, where Pζ,α is the
distribution of the random element ζ(s, ω2, α) [15]. Moreover, the support of Pζ is the set

S def
={g ∈ H(D) : g(s) ̸= 0 or g(s) ≡ 0},

while the support of Pζ,α is the whole H(D) [10,15].

Lemma 11. The support of the measure Pζ,α is the set S × H(D).

Proof. By a property of the Haar measures m1H , m2H , and mH , and the above remark, we
have

mH(S × H(D)) = m1H(S) · m2H(H(D)).

This and the minimality of the sets S and H(D) such that m1H(S) = 1 and m2H(H(D)) = 1
show that S × H(D) is a minimal set satisfying mH(S × H(D)) = 1.

Proof of Theorem 8. By the Mergelyan theorem on the approximation of analytic functions
by polynomials [39] (see also [40]), we have the existence of polynomials p(s) and q(s)
such that

sup
s∈K1

∣∣∣ f1(s)− ep(s)
∣∣∣ < ε

2
(14)

and
sup
s∈K2

| f2(s)− q(s)| < ε

2
. (15)

We stress that the Mergelyan theorem can be applied because K1, K2 ∈ K.
Define the set

Gε =

{
(g1, g2) ∈ H2(D) : sup

s∈K1

∣∣∣g1(s)− ep(s)
∣∣∣ < ε

2
, sup

s∈K2

|g2(s)− q(s)| < ε

2

}
.

Then, Gε is an open neighborhood of an element (ep(s), q(s)) ∈ S × H(D). By Lemma 11
and properties of the support, we have

Pζ,α(Gε) > 0. (16)

Let

Gε =

{
(g1, g2) ∈ H2(D) : sup

s∈K1

|g1(s)− f1(s)| < ε, sup
s∈K2

|g2(s)− f2(s)| < ε

}
.
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The inequalities (14)–(15) imply the inclusion of Gε ⊂ Gε. Therefore, in view of (16),

Pζ,α(Gε) > 0.

The set Gε is open in H2(D). Therefore, Theorem 9 with the equivalent of weak convergence
in terms of open sets (see Theorem 2.1 of [38]) gives

lim inf
T→∞

PT,H,α(Gε) ⩾ Pζ,α(Gε) > 0.

This and the definitions of Gε and PT,H,α imply the first assertion of the theorem.
The boundary of the set Gε is denoted by ∂Gε. Then, we have that ∂Gε1 ∩ ∂Gε2 = ∅ for

different positives ε1 and ε2. The set Gε is a continuity set of Pζ,α if Pζ,α(∂Gε) = 0. From
the above remark, it follows Pζ,α(∂Gε) ̸= 0 for at most countably many ε > 0. Applying
Theorem 9 again in terms of continuity sets (see Theorem 2.1 of [38]), we obtain that

lim
T→∞

PT,H,α(Gε) = Pζ,α(Gε) > 0

for all but at most countably many ε > 0. This proves the second statement of the theorem.

5. Conclusions

Let ζ(s) and ζ(s, α) denote the Riemann and Hurwitz zeta-functions, respectively, and
the parameter α is transcendental. We obtained the set of shifts (ζ(s + iτ), ζ(s + iτ, α)),
τ ∈ R, that approximate a given pair of analytic functions defined on the strip D = {s ∈
C : 1/2 < σ < 1}, has a positive lower density in the interval [T, T + H], T → ∞. Here,
T27/82 ⩽ H ⩽ T1/2. More precisely, the following result is proven. Let K1 and K2 be
compact subsets of the strip D with connected complements, and f1(s) ̸= 0 and f2(s)
continuous functions on K1 and K2 that are analytic inside of K1 and K2, respectively. Then,
for every ε > 0,

lim inf
T→∞

1
H

meas
{

τ ∈ [T, T + H] : sup
s∈K1

| f1(s)− ζ(s + iτ)| < ε

sup
s∈K2

| f2(s)− ζ(s + iτ, α)| < ε

}
> 0.

Moreover, except for at most countably many values of ε > 0, “lim inf” can be replaced by
“lim”. This result extends that of H. Mishou [23].

We are planing to consider similar problems for discrete shifts and generalized shifts
(ζ(s + iφ(τ)), ζ(s + iφ(τ), α)) with a certain function φ(τ).
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25. Atstopienė, J. Discrete Universality Theorems for the Riemann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University,

Vilnius, Lithuania, 2015.
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