Identifying the Heat Source in Radially Symmetry and Axis-Symmetry Problems
Abstract
:1. Introduction
2. Formulation of the Problem
2.1. One-Dimensional Heat Conduction Problem
2.2. Two-Dimensional Heat Conduction Problem
3. Methodology
3.1. The Methodology for One-Dimensional Problem
3.2. The Methodology for Two-Dimensional Problem
4. Numerical Results
4.1. Numerical Examples for MFS: Radially Symmetric Heat Equation
4.2. Numerical Examples for MFS: Axisymmetric Heat Equation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems; Springer: New York, NY, USA, 2011. [Google Scholar]
- Denisov, A.M. Uniqueness and nonuniqueness of the solution to the problem of determining the source in the heat equation. Comput. Math. Math. Phys. 2016, 56, 1737–1742. [Google Scholar] [CrossRef]
- Yamamoto, M. Conditional stability in determination of force terms of heat equations in a rectangle. Math. Comput. Model. 1993, 18, 79–88. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. Determination of a spacewise dependent heat source. J. Comput. Appl. Math. 2007, 209, 66–80. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. A variational method for identifying a spacewise-dependent heat source. IMA J. Appl. Math. 2007, 72, 748–760. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. A procedure for determining a spacewise dependent heat source and the initial temperature. Appl. Anal. 2008, 87, 265–276. [Google Scholar] [CrossRef]
- Farcas, A.; Lesnic, D. The boundary-element method for the determination of a heat source dependent on one variable. J. Eng. Math. 2006, 54, 375–388. [Google Scholar] [CrossRef]
- Yi, Z.; Murio, D.A. Source term identification in 1-D IHCP. Comput. Math. Appl. 2004, 47, 1921–1933. [Google Scholar] [CrossRef]
- Yi, Z.; Murio, D.A. Source term identification in 2-D IHCP. Comput. Math. Appl. 2004, 47, 1517–1533. [Google Scholar] [CrossRef]
- Yang, C.Y. A sequential method to estimate the strength of the heat source based on symbolic computation. Int. J. Heat Mass. Transfer 1998, 41, 2245–2252. [Google Scholar] [CrossRef]
- Yang, C.Y. Solving the two-dimensional inverse heat source problem through the linear least-squares error method. Int. J. Heat Mass Transfer 1998, 41, 393–398. [Google Scholar] [CrossRef]
- Golberg, M.A.; Chen, C.S. The method of fundamental solutions for potential hemholtz and diffusion problems. In Boundary Integral Methods: Numerical and Mathematical Aspects; Computational Mechanics Publication: Southampton, UK, 1999; pp. 103–176. [Google Scholar]
- Fairweather, G.; Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 1998, 9, 69–95. [Google Scholar] [CrossRef]
- Powell, M.D.J. Radial basis functions for multivariable interpolation: A review. In Numerical Analysis, Longman Scientific and Technical; Griffiths, D.F., Watson, G.A., Eds.; Longman Scientific and Technical: Harlow, UK, 1987; pp. 223–241. [Google Scholar]
- Kupradze, V.D. A method for the approximate solution of limiting problems in mathematical physics. USSR Comput. Maths. Math. Phys. 1964, 4, 199–205. [Google Scholar] [CrossRef]
- Young, D.L.; Tsai, C.C.; Murugesan, K.; Fan, C.M.; Chen, C.W. Time-dependent fundamental solutions for homogeneous diffusion problems. Eng. Anal. Bound. Elem. 2004, 28, 1463–1473. [Google Scholar] [CrossRef]
- Wu, Z.; Hermite, C. Birkhoff interpolation for scattered data by radial basis function, Approxim. Theory Appl. 1992, 8, 1–10. [Google Scholar]
- Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. Reproducing kernel particle methods for structural dynamics. Internat. J. Numer. Methods Engrg. 1995, 38, 1655–1679. [Google Scholar] [CrossRef]
- Li, X.; Li, S. Effect of an efficient numerical integration technique on the element-free Galerkin method. Appl. Numer. Math. 2023, 192, 204–225. [Google Scholar] [CrossRef]
- Bogomolny, A. Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 1985, 22, 644–669. [Google Scholar] [CrossRef]
- Chen, J.T.; Chen, I.L.; Chen, K.H.; Lee, Y.T.; Yeh, Y.T. A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function. Eng. Anal. Bound. Elem. 2004, 28, 535–545. [Google Scholar] [CrossRef]
- Kang, S.W.; Lee, J.M.; Kang, Y.J. Vibration analysis of arbitrary shape membranes using non-dimensional dynamic influence function. J. Sound Vib. 1999, 221, 117–132. [Google Scholar] [CrossRef]
- Chen, W.; Tanaka, M. A meshless, integration-free, and boundary-only RBF technique. Comput. Math. Appl. 2002, 43, 379–391. [Google Scholar] [CrossRef]
- Chen, W.; Tanaka, M. New insights in boundary-only and domain-type RBF methods. Int. J. Nonlinear Sci. Numer. Simul. 2000, 1, 145–151. [Google Scholar] [CrossRef]
- Chen, W. Singular boundary method: A novel, simple, meshfree, boundary collocation numerical method. Chin. J. Solid Mech. 2009, 30, 592–599. [Google Scholar]
- Fan, C.M.; Huang, Y.K.; Chen, C.S.; Kuo, S.R. Localized method of fundamental solutions for solving two-dimensional Laplace and biharmonic equations. Eng. Anal. Bound. Elem. 2019, 101, 188–197. [Google Scholar] [CrossRef]
- Amin, M.E.; Xiong, X. Source identification problems for radially symmetric and axis-symmetric heat conduction equations. Appl. Numer. Math. 2019, 138, 1–18. [Google Scholar] [CrossRef]
- Shah, R.K.; London, A.L. Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Rostamzadeh, A. Towards Multidimensional Artificially Characteristic-Based Scheme for Incompressible Thermo-Fluid Problems. Mechanika 2018, 23, 826–834. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Duraihem, F.Z. Full Solutions to Flow and Heat Transfer from Slip-Induced Microtube Shapes. Micromachines 2023, 14, 894. [Google Scholar] [CrossRef]
- Hon, Y.C.; Wei, T. A fundamental solution method for inverse heat conduction problem. Eng. Anal. Bound. Elem. 2004, 28, 489–495. [Google Scholar] [CrossRef]
- Hon, Y.C.; Wei, T. Numerical computation for multidimensional inverse heat conduction problem. CMES Comput. Model. Eng. Sci. 2005, 7, 119–132. [Google Scholar]
- Johansson, B.T.; Lesnic, D. A method of fundamental solutions for transient heat conduction. Eng. Anal. Bound. Elem. 2008, 32, 697–703. [Google Scholar] [CrossRef]
- Chantasiriwan, S. Methods of fundamental solutions for time-dependent heat conduction problems. Int. J. Numer. Meth. Eng. 2006, 66, 147–165. [Google Scholar] [CrossRef]
- Yan, L.; Fu, C.L.; Yang, F.L. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem. 2008, 32, 216–222. [Google Scholar] [CrossRef]
- Wei, T.; Hon, Y.C.; Ling, L. Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng. Anal.Boundary Elem. 2007, 31, 373–385. [Google Scholar] [CrossRef]
- Marin, L.; Lesnic, D. The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations. Comput. Struct. 2005, 83, 267–278. [Google Scholar] [CrossRef]
- Marin, L.; Lesnic, D. The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation. Math. Comput. Model. 2005, 42, 261–278. [Google Scholar] [CrossRef]
- Marin, L.; Lesnic, D. The method of fundamental solutions for nonlinear functionally graded materials. Int. J. Solids Struct. 2007, 44, 6878–6890. [Google Scholar] [CrossRef]
- Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems; SIAM: Philadelphia, PA, USA, 1998. [Google Scholar]
- Morozov, V.A. Methods for solving Incorrectly Posed Problems; Springer: New York, NY, USA, 1984. [Google Scholar]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems, Mathematics, and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; Volume 357. [Google Scholar]
- Tautenhahn, U.; Hämarik, U. The use of monotonicity for choosing the regularization parameter in ill-posed problems. Inverse Probl. 1999, 15, 1487–1505. [Google Scholar] [CrossRef]
- Golub, G.; Heath, M.; Wahba, G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21, 215–223. [Google Scholar] [CrossRef]
- Wei, T.; Hon, Y.C. Numerical differentiation by radial basis functions approximation. Adv. Comput. Math. 2007, 27, 247–272. [Google Scholar] [CrossRef]
0.1 | 0.0560 | |||
0.2 | 0.0559 | |||
0.3 | 0.0556 | |||
0.4 | 0.0548 | |||
0.5 | 0.0534 | |||
0.6 | 0.0516 | |||
0.7 | 0.0500 | |||
0.8 | 0.0497 | |||
0.9 | 0.0513 |
0.1 | ||||
0.2 | ||||
0.3 | ||||
0.4 | ||||
0.5 | ||||
0.6 | ||||
0.7 | ||||
0.8 | ||||
0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Xiong, X. Identifying the Heat Source in Radially Symmetry and Axis-Symmetry Problems. Symmetry 2024, 16, 134. https://doi.org/10.3390/sym16020134
Shen Y, Xiong X. Identifying the Heat Source in Radially Symmetry and Axis-Symmetry Problems. Symmetry. 2024; 16(2):134. https://doi.org/10.3390/sym16020134
Chicago/Turabian StyleShen, Yu, and Xiangtuan Xiong. 2024. "Identifying the Heat Source in Radially Symmetry and Axis-Symmetry Problems" Symmetry 16, no. 2: 134. https://doi.org/10.3390/sym16020134
APA StyleShen, Y., & Xiong, X. (2024). Identifying the Heat Source in Radially Symmetry and Axis-Symmetry Problems. Symmetry, 16(2), 134. https://doi.org/10.3390/sym16020134