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Abstract: Optical rotation (OR), the most frequently used chiroptical method, is used for the char-
acterization of newly synthesized or isolated compounds. Computational predictions of OR are,
however, mainly used for the determination of the absolute configurations of chiral compounds,
but they may also be used for the verification of conformational analysis results if the experimental
values are known. Our computational study deals with the conformational analysis of flexible
salicylamide-based peptidomimetics, starting with a conformation search, then a low-level ab initio
preoptimization of the hundreds of conformations found, and, finally, a higher-level DFT optimiza-
tion. For the resulting minima structures, Boltzmann populations were calculated, followed by OR
calculations for all the populated conformers using the DFT method with various basis sets with
diffuse functions. Weighted averages of the ORs were compared with experimental values, and the
agreement, which ranged from excellent to moderate for various compounds, served as a verification
of the conformational analysis results.

Keywords: salicylamide; peptidomimetics; antimicrobial activity; optical rotation; absolute
configuration; conformational analysis; DFT calculations

1. Introduction

Knowing the exact spatial arrangement of compounds, either newly synthetized or
isolated from natural sources, is fundamental knowledge for the study of their properties
not only in the pharmaceutical industry and medicine but also in organic chemistry, bio-
chemistry, and materials science [1–8]. Furthermore, for chiral compounds, the absolute
configuration must be known. Common structure determination techniques like NMR,
IR, or MS spectroscopy cannot be used for this purpose, as two enantiomers provide the
same spectral signals in all these spectroscopies. The only classical structural tool that can
distinguish enantiomers is X-ray crystallography, which is, however, limited to crystalline
compounds only. Here, the recently developed computational methods may be of use, as
ab initio or DFT calculations of chiroptical properties may be used for the determination or
confirmation of the absolute configurations of chiral compounds. And as optical rotation
(OR) is a routinely measured property for new compounds, the calculation of OR is the
most frequently used method for that purpose, making use of the fact that the ORs of both
enantiomers ER and ES are of the same absolute value but of opposite signs:

[α]ν(ER) = −[α]ν(ES) (1)
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The theoretical quantum-mechanical background for optical rotation was derived
long ago by Rosenfeld in 1928 [9], and the current methodology has been reviewed
recently [10,11]. As a result, calculations of OR for rigid molecules are becoming rou-
tine. However, for conformationally flexible molecules, the situation is more complicated,
and a detailed conformational analysis must be performed prior to OR calculations to
obtain equilibrium populations of stable conformations and their relative free energies. The
calculated OR is then a weighted average of the ORs of populated conformers:

[α]ν = ∑
i

xi[α]
i
ν (2)

where xi is the molar fraction of the i-th conformer and [α]iν is the optical rotation of the i-th
conformer.

OR is extremely sensitive to the shape of a molecule, and even different conformers of the
same compound often have different signs of OR. Comparison of experimental and calculated
value of OR can thus be used as a verification of the results of conformational analysis.

For our computational study, six compounds bearing the salicylic motif, which are
interesting both for their structure and spectrum of biological activities, were selected. Sali-
cylic acid is found, for example, in willow bark, from which it was isolated. In addition to
fulfilling the function of a plant hormone [12], today, it is mainly used in dermatology [13];
however, its antimicrobial activity has also been described [14–16]. The best-known drugs
derived from it are acetylsalicylic acid or Aspirin®—with anti-inflammatory, antipyretic,
and anticoagulant effects [17]—and mesalazine, which is used to treat inflammatory bowel
diseases [18]. Salicylanilides, commercially available, e.g., as niclosamide [19], rafox-
anide [20], or closantel [21], are anthelmintics, but in recent years, their other biological
effects have been discovered, e.g., anticancer [22] or antiviral [23], stimulating scientific
interest in these simple and small molecules [24–32]. In addition to anticancer activity [33],
for example, their herbicidal activity [34] or ability to inhibit acetylcholinesterase [35–37]
can be mentioned. However, the antimicrobial activity of salicylamides is the most de-
scribed [24,25,38–46], and it can be multiplied by introducing a carbamate group to the free
phenolic salicylic hydroxyl or by inserting an amino acid fragment between the salicylic
and anilide parts of the molecule, i.e., by the preparation of diamides, namely, salicylamide-
based peptidomimetics [30,47–53]. It is necessary to mention that salicylanilide-based
peptidomimetics also show anticancer activity [54–56].

2. Materials and Methods
2.1. Compounds

Structures of all six salicylamides 1–6 under study are given in Table 1 together
with their systematic names generated using ACD/Name ver. 12.01 software [57]. Their
synthesis, spectral data, optical rotations, and biological activities were described previ-
ously [30,47,52] (and refs. thereon).

Table 1. Structures of salicylamides.

Comp. Structure Name Molecular Formula
/Weight Refs.

1
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1-oxopropan-2-yl}-2-hydroxybenzamide 

C16H14Cl2N2O3 

[353.200] [30,47] 
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OH

NH
NH

O

O

Cl

CH3CH3

Cl 

5-chloro-N-{(2S)-1-[(4-chloro 
phenyl)amino]-3-methyl 

-1-oxobutan-2-yl}-2-hydroxybenzamide 

C18H18Cl2N2O3 
[381.253] 

[47] 

3 

OH

NH
NH

O

O

Cl

CH3CH3

CH3 

5-chloro-2-hydroxy-N-{(2S) 
-3-methyl-1-[(4-methylphenyl)amino] 

-1-oxobutan-2-yl}benzamide 

C19H21ClN2O3 
[360.835] [30,47] 

4 
OH

NH
NH

O

O

Cl

CH3CH3

O

CH3 

5-chloro-2-hydroxy-N-{(2S)- 
1-[(4-methoxyphenyl)amino]-3-methyl 

-1-oxobutan-2-yl}benzamide 

C19H21ClN2O4 
[376.834] [30,47] 

5 

OH

NH
NH

O

O

Cl

CH3CH3

NO2 

5-chloro-2-hydroxy-N-{(2S) 
-3-methyl-1-[(4-nitrophenyl)amino] 

-1-oxobutan-2-yl}benzamide 

C18H18ClN3O5 
[391.806] 

[30] 

6 

OH

NH
NH

O

O

Cl

CH3CH3

CF3 

5-chloro-2-hydroxy-N-[(2S) 
-3-methyl-1-oxo-1-{[4-

(trifluoromethyl)phenyl]amino}butan-2-
yl]benzamide 

C19H18ClF3N2O3 
[414.806] 

[30,47] 

2.2. Conformational Analysis and Geometry Optimizations 
Low-energy conformers for all compounds 1–6 were searched using the 

Conformational Search routine of HyperChem ver. 8.0.3 software [58] at the molecular 
mechanics level using the MM+ forcefield. Found structures were preoptimized at the 
HF/4-31G level in a gas phase. Final optimization of all resulting geometries was 
performed at the DFT level using the hybrid B3PW91 [59,60] functional with 6-31G(d,p) 
basis set in chloroform using the CPCM [61,62] implicit solvation model. For comparison, 
final optimizations were also performed with the same DFT functional augmented with 
the D3 version of Grimme’s dispersion correction [63]. All minima were confirmed by a 
frequency calculation at the same level of theory, and Boltzmann populations of each 
conformer pi were calculated using 

𝑝 = exp (− 𝜀𝑘𝑇)∑ exp(− 𝜀𝑘𝑇)  (3) 

5-chloro-N-{(2S)-1-[(3-
chlorophenyl)amino]-1-oxopropan-2-

yl}-2-hydroxybenzamide

C16H14Cl2N2O3
[353.200] [30,47]

2
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Low-energy conformers for all compounds 1–6 were searched using the Conformational
Search routine of HyperChem ver. 8.0.3 software [58] at the molecular mechanics level using
the MM+ forcefield. Found structures were preoptimized at the HF/4-31G level in a gas
phase. Final optimization of all resulting geometries was performed at the DFT level using
the hybrid B3PW91 [59,60] functional with 6-31G(d,p) basis set in chloroform using the
CPCM [61,62] implicit solvation model. For comparison, final optimizations were also
performed with the same DFT functional augmented with the D3 version of Grimme’s
dispersion correction [63]. All minima were confirmed by a frequency calculation at the
same level of theory, and Boltzmann populations of each conformer pi were calculated using

pi =
exp

(
− εi

kT
)

∑i exp
(
− εi

kT
) (3)

where εi is the Gibbs free energy of i-th conformer, k is the Boltzmann constant, and T
is the absolute temperature. All DFT calculations were performed using the Gaussian
16 package [64].

2.3. Calculations of Optical Rotation

Experimental optical rotations were measured in ethyl acetate at the wavelength of
sodium D line at 589 nm. Theoretical ORs were calculated in the same solvent and at the same
wavelength using the B3PW91 functional and various basis sets with a polarization function.

3. Results and Discussion
3.1. Conformational Analysis

All salicylamides 1–6 are very flexible molecules with many freely rotatable bonds.
Relevant low-energy conformations were searched using the conformation search utility in
HyperChem software. The number of conformers found for each compound is given in
Table 2. At a minimum, several hundred conformations were found for each compound,
with a maximum of 1268 for compound 3. For this reason, a low-level preoptimization
was performed at the Hartree-Fock HF/4-31 level. This step reduced the number of
conformations to about 20, and it is also given in Table 2.
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Table 2. Results of conformation search and preoptimization.

Comp. Conformations after
Conformation Search

Conformations after
Preoptimization

1 268 22
2 349 25
3 1268 10
4 1219 22
5 1180 13
6 518 24

Final geometry optimizations were performed at the B3PW91/6-31G(d,p) level. Originally,
conformational analysis was intended for predictions of NMR and IR spectra, and chloroform
was used as an implicit solvent using CPCM model. However, it was verified that there were
only minor differences in the optimized geometries in ethyl acetate and in chloroform.

All local minima were verified through frequency calculations at the same theoretical
level, and Boltzmann populations were calculated based on Gibbs free energies. Up to
four populated conformers were found for compounds 1–6, and their geometries and
populations are given in Table 3.

Table 3. Populated conformers after conformational analysis.

Comp. Conformer
Designation Geometry Population

1 a
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The various conformers of each compound differ mainly in the torsion angles con-
necting both aromatic rings. They are designated according to Figure 1 and, for a better
quantitative characterization of the separate conformers, are listed in Table 4.
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Table 4. Torsion angles of populated conformers.

Conformer Torsion 1 Torsion 2 Torsion 3 Torsion 4 Torsion 5 Torsion 6

1a −169.7 −174.1 −87.4 67.0 −178.1 177.7
2a −170.0 −177.6 −87.9 76.7 −176.4 174.6
2b −168.7 −173.7 −88.1 61.4 −179.1 179.9
2c 172.9 −173.2 −117.5 12.8 176.7 −178.1
3a 173.1 −178.7 −132.6 41.4 16.1 51.4
3b −173.7 −178.8 149.7 −37.1 −11.6 117.1
3c −171.1 −174.1 −106.8 −3.6 −14.9 114.7
4a −168.2 −178.6 −130.6 40.0 14.3 55.4
4b −172.4 −178.1 −84.4 −43.2 −8.0 106.6
4c −171.8 179.6 57.7 56.0 8.4 64.8
5a 1.3 −174.8 −86.8 72.1 −176.7 174.4
5b 0.4 −172.5 −85.9 60.0 −178.8 179.4
6a −174.6 −176.2 −133.2 39.5 18.4 42.6
6b 174.0 −176.4 −133.8 39.4 16.9 43.7
6c 173.5 −176.9 −133.4 39.4 17.1 44.8
6d 171.2 176.2 55.2 51.5 6.8 52.4

To assess the effect of dispersion interactions, all final optimizations at the DFT level
were also performed with the dispersion-corrected DFT method (DFT-D) [63] as included in
Gaussian 16. This only led to minor changes in geometries and populations for compounds
1 and 2. However, for other compounds, the changes are more noticeable. Their populations
and torsion angles are given in Table 5.

Table 5. Populations and torsion angles of dispersion-corrected populated conformers.

Conformer Population Torsion 1 Torsion 2 Torsion 3 Torsion 4 Torsion 5 Torsion 6

1a 92.17% −164.8 −175.9 −85.5 65.3 −174.6 170.2
2a 48.37% −166.2 −178.0 −87.0 73.9 −172.8 167.4
2b 29.67% −164.4 −174.1 −87.0 58.7 −176.2 174.6
2c 11.36% −164.2 167.4 −124.0 34.3 15.2 53.9
2d 8.45% 170.0 −174.1 −125.7 17.0 177.8 −179.1
3a 90.63% −163.1 169.0 −125.9 36.2 14.3 −124.3
3b 7.32% −164.8 172.2 −75.6 −7.3 −5.6 112.2
4a 95.70% −164.8 169.0 −125.0 34.7 12.3 −132.2
4b 4.20% −162.3 170.3 −59.6 −33.2 2.1 109.2
5a 94.07% −167.5 164.4 −124.9 31.9 13.9 −131.6
5b 2.44% 162.5 −164.9 36.4 42.7 −10.8 −122.6
6a 89.84% −167.0 166.3 −124.3 32.6 14.8 −129.2
6d 7.47% −160.3 169.4 −56.3 −30.8 1.1 115.5
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3.2. Calculations of Optical Rotation

For the calculation of optical rotation, we used the time-dependent Density Functional
Theory (TDDFT) [65–68] methodology with gauge-invariant atomic orbitals (GIAOs) as
implemented in Gaussian 16 software. Using a standard B3PW91 functional, we sought
to test several basis sets with diffuse functions (6-311++G(2d,p), aug-cc-pVDZ, aug-cc-
pVTZ, and aug-cc-pVQZ). To allow us to compare our calculated optical rotations with
the experimental ones, the calculations were performed at the sodium D line wavelength,
i.e., 589 nm.

While the substitution of an implicit solvent in the CPCM solvent model plays only a
minor role during geometry optimization calculations, we noticed that it plays a significant
role during OR calculation. Optical rotations are thus sensitive to solvents [69], even of
similar polarity. Differences between the calculated optical rotations in chloroform and
ethyl acetate for compounds 1 and 2 and several basis sets are illustrated in Table 6. The
same geometry is used in both calculations. For comparison, experimental optical rotations
are listed in Table 7.

Table 6. Calculated optical rotations using different solvents and basis sets.

Comp. Solvent 6-311++G(2d,p) aug-cc-pVDZ aug-cc-pVTZ

1
chloroform −0.4 6.9 14.0

ethyl acetate 1.7 22.6 31.5

2
chloroform −90.3 −85.1 −78.8

ethyl acetate −81.1 −73.9 −70.2

Table 7. Experimental optical rotations in ethyl acetate.

Comp. [α]D Refs.

1 37.0 (c 1.6) [30,47]
2 −71.7 (c 1.5) [47]
3 −56.2 (c 0.3) [30,47]
4 −63.2 (c 0.2) [30,47]
5 −64.8 (c 0.2) [30]
6 −73.8 (c 0.2) [30,47]

It is obvious that the optical rotations calculated in ethyl acetate were in all cases in
better agreement with the experimental values compared to those in chloroform.

The optical rotations of all the populated conformers and their Boltzmann weighted
averages calculated in ethyl acetate with various basis sets are given in Table 8.

The level of agreement of the calculated data with the experimental optical rotations
differs for the various compounds. Structure 1, which is conformationally rigid and for
which only one populated conformer was found, provides, with triple-ζ and quadruple-ζ
basis sets, an excellent agreement with the experimental value of 37.0◦. For compound 2,
the best agreement was achieved even if it had three conformers, two of them having a
negative value of ORs and one having a positive value. It is obvious that conformational
analysis in this case provided an exact representation of the populated conformers. All
the basis sets performed well for this structure, with, again, quadruple-ζ being the best.
Compounds 3 and 4 showed similarly good agreement with the experimental values, with
a difference of about 20◦. Both compounds consist of three conformers of different signs
of ORs, and the conformational analysis seems to provide an exact representation of the
conformers. However, a trend of improving results with a larger basis set was not observed
here. The worst agreement was observed for compounds 5 and 6, with a difference of
about 200 and 70◦, respectively. Both compounds consist of conformers with large negative
values of OR (<−150◦), and there is no way to achieve experimental values of about −70◦.
It is obvious that conformational analysis probably omitted some conformers with a more
positive value of ORs for both compounds.
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Table 8. Calculated optical rotations in ethyl acetate.

Comp. Conformer 6-311++G(2d,p) aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

1 a 1.7 22.6 31.5 32.2

2

a −98.6 −90.3 −84.5 −86.1
b −214.9 −207.0 −200.6 −203.2
c 177.2 179.1 179.9 180.8

w. a. 1 −81.1 −73.9 −68.8 −70.2

3

a −161.9 −158.7 −151.8 −132.8
b 108.4 110.9 111.8 121.4
c 238.3 236.7 239.9 239.9

w. a. −100.4 −97.5 −91.7 −75.1

4

a −66.9 −60.1 −54.2 −53.8
b 51.5 55.0 55.4 57.3
c −185.3 −185.2 −184.5 −201.7

w. a. −54.4 −48.7 −44.2 −45.0

5
a −230.6 −225.0 −226.9 −228.0
b −363.8 −357.1 −356.8 −340.0

w. a. −273.3 −267.3 −268.6 −263.9

6

a −247.0 −241.0 −234.3 −226.1
b −200.9 −202.2 −195.4 −187.6
c −188.9 −189.7 −183.6 −179.3
d 160.7 161.5 159.1 167.3

w. a. −160.0 −158.7 −153.5 −146.4
1 Weighted average for a compound.

The inclusion of dispersion corrections into DFT calculations did not lead to a straight-
forward improvement of the calculated and experimental rotations. While they had a
noticeable effect on the conformational analysis, the dispersion corrections did not affect
the calculated ORs. For comparison, we recalculated optical rotations at the B3PW91/aug-
cc-pVDZ level for dispersion-corrected geometries, and the results are given in Table 9.

Table 9. Calculated optical rotations in ethyl acetate for dispersion-corrected geometries.

Comp. Conformer aug-cc-pVDZ

1 a 24.3

2

a 101.7
b −222.9
c −341.7
d 185.5

w. a. 1 −139.9

3
a −26.0
b 179.2

w. a. −10.6

4

a −60.1
b 55.0
c −185.2

w. a. −55.3

5
a −257.2
b −191.6

w. a. −255.5

6
a −335.4
b 217.5

w. a. −292.9
1 Weighted average for a compound.
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While some minor improvement can be seen for compounds 1, 4, and 5, for the other
compounds, the agreement between the calculated and experimental optical rotations
worsened, most significantly for compound 6.

Comparing the basis sets used, it can be seen that the quadruple-ζ aug-cc-pVQZ basis
set provides the best agreement between the calculated and experimental data. However, it
is also the most time consuming. Table 10 lists the average CPU task times for the basis sets
used.

Table 10. Average CPU task times for OR calculations.

Basis Set Time [d]

6-311++G(2d,p) 0.5
aug-cc-pVDZ 0.5
aug-cc-pVTZ 10
aug-cc-pVQZ >70

It is clear that the quadruple-ζ basis set is very expensive, even when used with
multiple CPUs. For this reason, we concluded that the triple-ζ basis set has the best
price/performance ratio for routine calculations of OR.

It must be emphasized that the signs of optical rotations were correctly predicted in
all cases, and the calculations of OR can thus be used for the determination of absolute
configurations, even for conformationally flexible compounds. Furthermore, it can be seen
that optical rotations are extremely sensitive to minor changes in geometry and are suitable
for the assessment of conformer populations during conformational analysis.

4. Conclusions

Based on successful applications of optical rotation calculations for the determination
of the absolute configurations of various compounds, at least the rigid ones, we chose
an opposite approach for the study of the conformational analysis of conformationally
flexible molecules. As optical rotation is extremely sensitive to the 3D geometry of a
compound, even small changes in the rotation of exocyclic groups can lead to dramatic
changes in optical rotation. For this reason, we decided to use optical rotation as an eval-
uator of the conformational analysis results of conformationally flexible molecules. We
performed a detailed computational conformational analysis of six flexible salicylamide-
based compounds. In the initial step, we used the conformation search utility, which
found hundreds of conformations for each compound. These were then optimized in
two steps, and Boltzmann populations were calculated. This yielded 1–4 conformations
for each molecule, and, finally, optical rotations were calculated as weighted averages of
rotations for each populated conformer. For their DFT calculation, the B3PW91 functional
was used with several basis sets including diffuse functions. If we assume that the optical
rotations were calculated exactly, we employed an excellent tool for the assessment of con-
formational analysis. Of the six compounds for which experimental optical rotations were
known, for two of them (1 and 2), the agreement between the calculated and experimental
rotations were excellent. Compound 1 proved to be rigid and existed in one conformer
only. For compound 2, three populated conformers were found, two of them having nega-
tive optical rotations and one having positive rotations. It is clear that the conformers and
their populations were calculated exactly in this case. For compounds 3 and 4, the agree-
ment between the experimental and calculated rotations was moderate. We can conclude
that only minor discrepancies in populations occurred in this case. The worst agreement
was found for compounds 5 and 6. All the populated conformers of these compounds
had highly negative rotations, while the experimental values were only slightly negative,
i.e., −64.8◦ and −73.8◦, respectively. It is evident that changes in populations could not
improve the agreement between the experimental and calculated values substantially
in this case and that it is probable that some conformers with only slight negative op-
tical rotations or positive ORs were missed during the conformational analysis. The
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inclusion of dispersion corrections into the DFT optimizations had a noticeable effect on
the calculated geometries and their populations; however, a clear and straightforward
improvement of the calculated optical rotations was not observed. Finally, we proved
that the optical rotations calculated with the quadruple-ζ aug-cc-pVQZ basis set were
the best but, unacceptably, too time consuming and that the triple-ζ basis set yielded
optimum performance.
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