New Accurate Approximation Formula for Gamma Function
Abstract
:1. Introduction
- Ramanujan presents the approximation formula [14] as
- Mahmoud and Almuashi deduce the approximation formula [17] as
2. Main Results
3. Comparison among Some Approximation Formulas of the Gamma Function
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Wang, R. Some inequalities for the ratio of Gamma functions. J. Inequal. Appl. 2015, 2015, 178. [Google Scholar] [CrossRef]
- Alzer, H.; Jameson, G. A harmonic mean inequality for the Digamma function and related results. Rend. Sem. Mat. Univ. Padova 2017, 137, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-H.; Tian, J. Two asymptotic expansions for Gamma function developed by Windschitl’s formula. Open Math. 2017, 16, 1048–1060. [Google Scholar] [CrossRef]
- Nisar, K.S.; Qi, F.; Rahman, G.; Mubeen, S.; Arshad, M. Some inequalities involving the extended Gamma function and the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 2018, 135. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Guo, B.-N. From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of Gamma functions. J. Math. Anal. Appl. 2021, 493, 124478. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.; Stauffer, A. A Note on the summation of the incomplete Gamma function. Symmetry 2021, 13, 2369. [Google Scholar] [CrossRef]
- Tian, J.-F.; Yang, Z. Logarithmically complete monotonicity of ratios of q-gamma functions. J. Math. Anal. Appl. 2022, 508, 125868. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Yin, L.; You, H.-L. Complete monotonicity and inequalities involving the k-Gamma and k-Polygamma functions. Math. Slovaca 2023, 73, 1217–1230. [Google Scholar] [CrossRef]
- Yildirim, E. Complete monotonicity of functions involving k-Trigamma and k-Tetragamma functions with related inequalities. Turkish J. Ineq. 2023, 7, 12–21. [Google Scholar]
- Castillo, J.S.; Rojas, M.A.; Reyes, J. A more flexible extension of the Fréchet distribution based on the incomplete Gamma function and applications. Symmetry 2023, 15, 1608. [Google Scholar] [CrossRef]
- Mahmoud, M.; Alsulami, S.M.; Almarashi, S. On Some Bounds for the Gamma Function. Symmetry 2023, 15, 937. [Google Scholar] [CrossRef]
- Ismail, G.M.; El-Moshneb, M.M.; Zayed, M. Analytical technique for solving strongly nonlinear oscillator differential equations. Alex. Eng. J. 2023, 74, 547–557. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Gamma function method for the nonlinear cubic-quintic Duffing oscillators. J. Low Freq. Noise Vib. Active Control 2022, 41, 216–222. [Google Scholar] [CrossRef]
- Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebook: Part IV; Springer Science+ Business Media: New York, NY, USA, 2013. [Google Scholar]
- Programmable Calculators. 2002. Available online: http://www.rskey.org/CMS/the-library/11 (accessed on 20 April 2020).
- Smith, W.D. The Gamma Function Revisited. 2006. Available online: http://schule.bayernport.com/gamma/gamma05.pdf (accessed on 20 April 2020).
- Mahmoud, M.; and Almuashi, H. On Some Asymptotic Expansions for the Gamma Function. Symmetry 2022, 14, 2459. [Google Scholar] [CrossRef]
- Nemes, G. New asymptotic expansion for the Gamma function. Arch. Math. 2010, 95, 161–169. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 2015, 270, 665–680. [Google Scholar] [CrossRef]
- Lu, D.; Song, L.; Ma, C. A generated approximation of the gamma function related to Windschitl’s formula. J. Number Theory 2014, 140, 215–225. [Google Scholar] [CrossRef]
- Chen, C.-P. A more accurate approximation for the gamma function. J. Number Theory 2016, 164, 417–428. [Google Scholar] [CrossRef]
- Alzer, H. Sharp upper and lower bounds for the Gamma function. Proc. R. Soc. Edinb. Sect. Math. 2009, 139, 709–718. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. An accurate approximation formula for Gamma function. J. Inequal. Appl. 2018, 2018, 56. [Google Scholar] [CrossRef]
- Alzer, H. On some inequalities for the gamma and psi function. Math. Comput. 1997, 66, 373–389. [Google Scholar] [CrossRef]
- Burić, T.; Elezović, N. Some completely monotonic functions related to the psi function. Math. Inequal. Appl. 2011, 14, 679–691. [Google Scholar]
- Qi, F.; Wang, S.-H. Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions. Glob. J. Math. Anal. 2014, 2, 91–97. [Google Scholar] [CrossRef]
- Qi, F.; Guo, S.; Guo, B.-N. Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Guo, B.-N.; Qi, F. A completely monotonic function involving the tri-gamma function and with degree one. Appl. Math. Comput. 2012, 218, 9890–9897. [Google Scholar] [CrossRef]
- Koumandos, S. Monotonicity of some functions involving the gamma and psi functions. Math. Comp. 2008, 77, 2261–2275. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55; 9th printing; Dover Publications: New York, NY, USA; Washington, DC, USA, 1972. [Google Scholar]
- Qi, F.; Niu, D.W.; Guo, B.N. Refinements, generalizations, and applications of Jordan’s inequality and related problems. J. Inequal. Appl. 2009, 2009, 271923. [Google Scholar] [CrossRef]
- Elbert, A.; Laforgia, A. On some properties of the Gamma function. Proc. Am. Math. Soc. 2000, 128, 2667–2673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Almuashi, H. New Accurate Approximation Formula for Gamma Function. Symmetry 2024, 16, 150. https://doi.org/10.3390/sym16020150
Mahmoud M, Almuashi H. New Accurate Approximation Formula for Gamma Function. Symmetry. 2024; 16(2):150. https://doi.org/10.3390/sym16020150
Chicago/Turabian StyleMahmoud, Mansour, and Hanan Almuashi. 2024. "New Accurate Approximation Formula for Gamma Function" Symmetry 16, no. 2: 150. https://doi.org/10.3390/sym16020150
APA StyleMahmoud, M., & Almuashi, H. (2024). New Accurate Approximation Formula for Gamma Function. Symmetry, 16(2), 150. https://doi.org/10.3390/sym16020150