Phase Diffusion Mitigation in the Truncated Mach–Zehnder Interferometer
Abstract
:1. Introduction
2. Truncated MZ Interferometer
2.1. Model
2.2. Phase Estimation
2.3. Phase Estimation with Phase Diffusion
3. Phase Noise Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SQL | Standard quantum limit |
MZ | Mach–Zehnder |
LISA | Laser interferometer space antenna |
BS | Beam splitter |
HD | Homodyne detection |
LO | Local oscillator |
OPO | Optical parametric oscillator |
LIGO | Laser interferometer gravitational-wave observatory |
QCRB | Quantum Cramér-Rao bound |
QFI | Quantum Fisher information |
CM | Covariance matrix |
References
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photon. 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Carruthers, P.; Nieto, M.M. Phase and Angle Variables in Quantum Mechanics. Rev. Mod. Phys. 1968, 40, 411–440. [Google Scholar] [CrossRef]
- Lynch, R. The quantum phase problem: A critical review. Phys. Rep. 1995, 256, 367–436. [Google Scholar] [CrossRef]
- Susskind, L.; Glogower, J. Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1964, 1, 49–61. [Google Scholar] [CrossRef]
- Armen, M.A.; Au, J.K.; Stockton, J.K.; Doherty, A.C.; Mabuchi, H. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 2002, 89, 133602. [Google Scholar] [CrossRef]
- Higgins, B.L.; Berry, D.W.; Bartlett, S.D.; Mitchell, M.W.; Wiseman, H.M.; Pryde, G.J. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements. New. J. Phys. 2009, 11, 073023. [Google Scholar] [CrossRef]
- Nagata, T.; Okamoto, R.; O’Brien, J.L.; Sasaki, K.; Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 2007, 316, 726–729. [Google Scholar] [CrossRef]
- Hradil, Z. Estimation of counted quantum phase. Phys. Rev. A 1995, 51, 1870–1873. [Google Scholar] [CrossRef] [PubMed]
- Pezzé, L.; Smerzi, A.; Khoury, G.; Hodelin, J.F.; Bouwmeester, D. Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. Phys. Rev. Lett. 2007, 99, 223602. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Liang, X.; Yu, Z.; Yuan, C.-H.; Zhang, W.; Chen, L. Phase Sensitivity Improvement in Correlation-Enhanced Nonlinear Interferometers. Symmetry 2022, 14, 2684. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzanski, R.; Dorner, U.; Smith, B.J.; Lundeen, J.S.; Wasilewski, W.; Banaszek, K.; Walmsley, I.A. Quantum phase estimation with lossy interferometers. Phys. Rev. A 2009, 80, 013825. [Google Scholar] [CrossRef]
- Escher, B.M.; de Matos Filho, R.L.; Davidovich, L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 2011, 7, 406–411. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzanski, R.; Kolodynski, J.; Guta, M. The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 2012, 3, 1063. [Google Scholar] [CrossRef]
- Yue, J.D.; Zhang, Y.R.; Fan, H. Quantum-enhanced metrology for multiple phase estimation with noise. Sci. Rep. 2014, 4, 5933. [Google Scholar] [CrossRef]
- Berry, D.W.; Michael, J.W.; Wiseman, H.M. Stochastic Heisenberg Limit: Optimal Estimation of a Fluctuating Phase. Phys. Rev. Lett. 2013, 111, 113601. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.; Brask, J.B.; Markiewicz, M.; Kołodynski, J.; Acin, A. Noisy Metrology beyond the Standard Quantum Limit. Phys. Rev. Lett. 2013, 111, 120401. [Google Scholar] [CrossRef] [PubMed]
- Dur, W.; Skotiniotis, M.; Frowis, F.; Kraus, B. Improved Quantum Metrology Using Quantum Error Correction. Phys. Rev. Lett. 2014, 112, 080801. [Google Scholar] [CrossRef]
- Kessler, E.M.; Lovchinsky, I.; Sushkov, A.O.; Lukin, M.D. Quantum Error Correction for Metrology. Phys. Rev. Lett. 2014, 112, 150802. [Google Scholar] [CrossRef] [PubMed]
- Brivio, D.; Cialdi, S.; Vezzoli, S.; Gebrehiwot, B.T.; Genoni, M.G.; Olivares, S.; Paris, M.G.A. Experimental estimation of one-parameter qubit gates in the presence of phase diffusion. Phys. Rev. A 2010, 81, 012305. [Google Scholar] [CrossRef]
- Alipour, S.; Mehboudi, M.; Rezakhani, A.T. Quantum Metrology in Open Systems: Dissipative Cramer-Rao Bound. Phys. Rev. Lett. 2014, 112, 120405. [Google Scholar] [CrossRef] [PubMed]
- Genoni, M.G.; Olivares, S.; Paris, M.G.A. Optical Phase Estimation in the Presence of Phase Diffusion. Phys. Rev. Lett. 2011, 106, 153603. [Google Scholar] [CrossRef]
- Genoni, M.G.; Olivares, S.; Brivio, D.; Cialdi, S.; Cipriani, D.; Santamato, A.; Vezzoli, S.; Paris, M.G.A. Opical interferometry in the presence of large phase diffusin. Phys. Rev. A 2012, 85, 043817. [Google Scholar] [CrossRef]
- Feng, X.M.; Jin, G.R.; Yang, W. Quantum interferometry with binary-outcome measurements in the presence of phase diffusion. Phys. Rev. A 2014, 90, 013807. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M.; Milburn, G.J. Generalized uncertainty relations: Theory, examples, and Lorentz invariance. Ann. Phys. 1996, 247, 135–173. [Google Scholar] [CrossRef]
- Toth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A 2014, 47, 424006. [Google Scholar] [CrossRef]
- Pezzè, L.; Smerzi, A. Quantum theory of phase estimation. In Atom Interferometry; Tino, G.M., Kasevich, M.A., Eds.; Proceedings of the International School of Physics “Enrico Fermi” Series; IOS Press: Varenna, Italy, 2014; Volume 188, pp. 691–741. [Google Scholar]
- Demkowicz-Dobrzanski, R.; Jarzyna, M.; Kolodynski, J. Quantum limits in optical interferometry. Prog. Opt. 2015, 60, 345–435. [Google Scholar]
- Wang, X.B.; Hiroshima, T.; Tomita, A.; Hayashi, M. Quantum information with Gaussian states. Phys. Rep. 2007, 448, 1–111. [Google Scholar] [CrossRef]
- Monras, A. Phase space formalism for quantum estimation of Gaussian states. arXiv 2013, arXiv:1303.3682. [Google Scholar]
- Pinel, O.; Jian, P.; Treps, N.; Fabre, C.; Braun, D. Quantum parameter estimation using general single-mode Gaussian states. Phys. Rev. A 2013, 88, 040102(R). [Google Scholar] [CrossRef]
- Liu, J.; Jing, X.; Wang, X. Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 2013, 88, 042316. [Google Scholar] [CrossRef]
- Gao, Y.; Lee, H. Bounds on quantum multiple-parameter estimation with Gaussian state. Eur. Phys. J. D 2014, 68, 347. [Google Scholar] [CrossRef]
- Jiang, Z. Quantum Fisher information for states in exponential form. Phys. Rev. A 2014, 89, 032128. [Google Scholar] [CrossRef]
- Safranek, D.; Lee, A.R.; Fuentes, I. Quantum parameter estimation using multi-mode Gaussian states. New J. Phys. 2015, 17, 073016. [Google Scholar] [CrossRef]
- Jiao, G.F.; Wang, Q.; Yu, Z.; Chen, L.Q.; Zhang, W.; Yuan, C.H. Effects of losses on the sensitivity of an actively correlated Mach-Zehnder interferometer. Phys. Rev. A 2021, 104, 013725. [Google Scholar] [CrossRef]
- Chang, S.; Ye, W.; Rao, X.; Wen, J.; Zhang, H.; Gong, Q.; Huang, L.; Luo, M.; Chen, Y.; Hu, L.; et al. Intramode-correlation–enhanced simultaneous multiparameter-estimation precision. Phys. Rev. A 2022, 106, 062409. [Google Scholar] [CrossRef]
- Teklu, B.; Genoni, M.G.; Olivares, S.; Paris, M.G.A. Phase estimation in the presence of phase diffusion: The qubit case. Phys. Scr. 2010, 2010, 014062. [Google Scholar] [CrossRef]
- Trapani, J.; Teklu, B.; Olivares, S.; Paris, M.G.A. Quantum phase communication channels in the presence of static and dynamical phase diffusion. Phys. Rev. A 2015, 92, 012317. [Google Scholar] [CrossRef]
- Liu, Y.C.; Jin, G.R.; You, L. Quantum-limited metrology in the presence of collisional dephasing. Phys. Rev. A 2010, 82, 045601. [Google Scholar] [CrossRef]
- Tikhonenkov, I.; Moore, M.G.; Vardi, A. Optimal Gaussian squeezed states for atom interferometry in the presence of phase diffusion. Phys. Rev. A 2010, 82, 043624. [Google Scholar] [CrossRef]
- DiMario, M.T.; Kunz, L.; Banaszek, K.; Becerra, F.E. Optimized communication strategies with binary coherent states over phase noise channels. Npj Quantum Inf. 2019, 5, 65. [Google Scholar] [CrossRef]
- Escher, B.M.; Davidovich, L.; Zagury, N.; de Matos Filho, R.L. Quantum Metrological limits via a variational approach. Phys. Rev. Lett. 2012, 109, 190404. [Google Scholar] [CrossRef]
- Vidrighin, M.D.; Donati, G.; Genoni, M.G.; Jin, X.M.; Kolthammer, W.S.; Kim, M.S.; Datta, A.; Barbieri, M.; Walmsley, I.A. Joint estimation of phase and phase diffusion for quantum metrology. Nat. Commun. 2014, 5, 3532. [Google Scholar] [CrossRef] [PubMed]
- Altorio, M.; Genoni, M.G.; Vidrighin, M.D.; Somma, F.; Barbieri, M. Weak measurements and the joint estimation of phase and phase diffusion. Phys. Rev. A 2015, 92, 032114. [Google Scholar] [CrossRef]
- Szczykulska, M.; Baumgratz, T.; Datta, A. Reaching for the quantum limits in the simultaneous estimation of phase and phase diffusion. Quantum Sci. Technol. 2017, 2, 044004. [Google Scholar] [CrossRef]
- Hu, X.-L.; Li, D.; Chen, L.Q.; Zhang, K.; Zhang, W.; Yuan, C.-H. Phase estimation for an SU(1,1) interferometer in the presence of phase diffusion and photon losses. Phys. Rev. A 2018, 98, 023803. [Google Scholar]
- Conlon, L.O.; Vogl, T.; Marciniak, C.D. Approaching optimal entangling collective measurements on quantum computing platforms. Nat. Phys. 2023, 19, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.J.; Dunningham, J.A. Towards improved interferometric sensitivities in the presence of loss. New. J. Phys. 2011, 13, 115003. [Google Scholar] [CrossRef]
- Vinzenz, W.; Johanna, B.; Claus, B.; Karsten, D.; Antonio, G.; Felipe, G.; Gerhard, H.; Jim, H.; Oliver, J.; Christian, K. Noise sources in the ltp heterodyne interferometer. Clas. Quantum Grav. 2006, 23, S159. [Google Scholar]
- Markus, O.; Gerhard, H.; Karsten, D. Tdi and clock noise removal for the split interferometry configuration of lisa. Clas. Quantum Grav. 2012, 29, 205003. [Google Scholar]
- Huang, W.; Liang, X.; Zhu, B.; Yan, Y.; Yuan, C.H.; Zhang, W.; Chen, L.Q. Protection of noise squeezing in a quantum interferometer with optimal resource allocation. Phys. Rev. Lett. 2023, 130, 073601. [Google Scholar] [CrossRef]
- Huang, W.; Liang, X.; Yuan, C.H.; Zhang, W.; Chen, L.Q. Optimal phase measurements in a lossy Mach-Zehnder interferometer with coherent input light. Res. Phys. 2023, 50, 106574. [Google Scholar] [CrossRef]
- Cialdi, S.; Suerra, E.; Olivares, S.; Capra, S.; Paris, M.G.A. Squeezing Phase Diffusion. Rev. Lett. 2020, 124, 163601. [Google Scholar] [CrossRef]
- Notarnicola, M.N.; Genoni, M.G.; Cialdi, S.; Paris, M.G.A.; Olivares, S. Phase noise mitigation by a realistic optical parametric oscillator. J. Opt. Soc. Am. B 2022, 39, 1059–1067. [Google Scholar] [CrossRef]
- Frascella, G.; Agne, S.; Khalili, F.Y.; Chekhova, M.V. Overcoming detection loss and noise in squeezing-based optical sensing. npj Quantum Inf. 2021, 7, 72. [Google Scholar] [CrossRef]
- Carrara, G.; Genoni, M.G.; Cialdi, S.; Paris, M.G.A.; Olivares, S. Squeezing as a resource to counteract phase diffusion in optical phase estimation. Phys. Rev. A 2020, 102, 062610. [Google Scholar] [CrossRef]
- Yurke, B.; McCall, S.L.; Klauder, J.R. SU(2) and SU(1 1) interferometers. Phys. Rev. A 1986, 33, 4033. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.E.; Gupta, P.; Schmittberger, B.L.; Horrom, T.; Hermann-Avigliano, C.; Jones, K.M.; Lett, P.D. Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer. Optica 2017, 4, 752–756. [Google Scholar] [CrossRef]
- Olivares, S. Quantum optics in the phase space A tutorial on Gaussian states. Eur. Phys. J. Top. 2012, 203, 3–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Q.; Ma, H.; Chen, L.; Zhang, W.; Yuan, C.-H. Phase Diffusion Mitigation in the Truncated Mach–Zehnder Interferometer. Symmetry 2024, 16, 187. https://doi.org/10.3390/sym16020187
Liao Q, Ma H, Chen L, Zhang W, Yuan C-H. Phase Diffusion Mitigation in the Truncated Mach–Zehnder Interferometer. Symmetry. 2024; 16(2):187. https://doi.org/10.3390/sym16020187
Chicago/Turabian StyleLiao, Quan, Hongmei Ma, Liqing Chen, Weiping Zhang, and Chun-Hua Yuan. 2024. "Phase Diffusion Mitigation in the Truncated Mach–Zehnder Interferometer" Symmetry 16, no. 2: 187. https://doi.org/10.3390/sym16020187
APA StyleLiao, Q., Ma, H., Chen, L., Zhang, W., & Yuan, C. -H. (2024). Phase Diffusion Mitigation in the Truncated Mach–Zehnder Interferometer. Symmetry, 16(2), 187. https://doi.org/10.3390/sym16020187