Organocatalytic Conjugate Hydroazidation and Hydrocyanation: A Metal-Free Approach to Synthetically Versatile Chiral Building Blocks
Abstract
:1. Introduction
2. Enantioselective Conjugate Azidation
2.1. Organocatalyzed Enantioselective Hydroazidation
2.2. Organocatalyzed Enantioselective Hydrocyanation
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacMillan, D.W.C. The advent and development of organocatalysis. Nature 2008, 455, 304–308. [Google Scholar] [CrossRef]
- Albrecht, Ł.; Albrecht, A.; Dell’Amico, L. Asymmetric Organocatalysis: New Strategies, Catalysts, and Opportunities; WILEY-VCH GmbH: Weinheim, Germany, 2023. [Google Scholar]
- Benaglia, M. Organocatalysis—Stereoselective Reactions and Applications in Organic Synthesis; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- García Mancheño, O.; Waser, M. Recent Developments and Trends in Asymmetric Organocatalysis. Eur. J. Org. Chem. 2023, 26, e202200950. [Google Scholar] [CrossRef]
- Vogel, P.; Lam, Y.-H.; Simon, A.; Kouk, K.N. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis. Catalysts 2016, 6, 128. [Google Scholar] [CrossRef]
- Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. Int. Ed. 2005, 44, 5188–5240. [Google Scholar] [CrossRef]
- Jafarzadeh, M. Trimethylsilyl Azide (TMSN3): A Versatile Reagent in Organic Synthesis. Synlett 2007, 13, 2144–2145. [Google Scholar] [CrossRef]
- Waser, J.; Carreira, E.M. Organic Azides: Syntheses and Applications; Brase, S., Banert, K., Eds.; Wiley-VCH: Weinheim, Germany, 2010; pp. 95–111. [Google Scholar]
- Chiba, S. Application of Organic Azides for the Synthesis of Nitrogen-Containing Molecules. Synlett 2012, 1, 21–44. [Google Scholar] [CrossRef]
- Sivaguru, P.; Ning, Y.; Bi, X. New Strategies for the Synthesis of Aliphatic Azides. Chem. Rev. 2021, 121, 4253–4307. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.-G.; Hu, X.-S.; Zhou, F.; Zhou, J. Catalytic enantioselective synthesis of α-chiral azides. Org. Chem. Front. 2018, 5, 1542–1559. [Google Scholar] [CrossRef]
- Myers, J.K.; Jacobsen, E.N. Asymmetric Synthesis of α-Amino Acid Derivatives via Catalytic Conjugate Addition of Hydrazoic Acid to Unsaturated Imides. J. Am. Chem. Soc. 1999, 121, 8959–8960. [Google Scholar] [CrossRef]
- Taylor, M.S.; Zalatan, D.N.; Lerchner, A.M.; Jacobsen, E.N. Highly Enantioselective Conjugate Additions to α,β-Unsaturated Ketones Catalyzed by a (Salen)Al Complex. J. Am. Chem. Soc. 2005, 127, 1313–1317. [Google Scholar] [CrossRef]
- Guerin, D.J.; Horstmann, T.E.; Miller, S.J. Amine-catalyzed addition of azide ion to α,β-unsaturated carbonyl compounds. Org. Lett. 1999, 1, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, T.E.; Guerin, D.J.; Miller, S.J. Asymmetric Conjugate Addition of Azide to α,β-Unsaturated Carbonyl Compounds Catalyzed by Simple Peptides. Angew. Chem. Int. Ed. 2000, 39, 3635–3638. [Google Scholar]
- Guerin, D.J.; Miller, S.J. Asymmetric Azidation−Cycloaddition with Open-Chain Peptide-Based Catalysts. A Sequential Enantioselective Route to Triazoles. J. Am. Chem. Soc. 2002, 124, 2134–2136. [Google Scholar] [PubMed]
- Nielsen, M.; Zhuang, W.; Jørgensen, K.A. Asymmetric Conjugate Addition of Azide to α,β-Unsaturated Nitro Compounds Catalyzed by Cinchona Alkaloids. Tetrahedron 2007, 63, 5849–5854. [Google Scholar] [CrossRef]
- Bellavista, T.; Meninno, S.; Lattanzi, A.; Della Sala, G. Asymmetric Hydroazidation of Nitroalkenes Promoted by a Secondary Amine-Thiourea Catalyst. Adv. Synth. Catal. 2015, 357, 3365–3373. [Google Scholar] [CrossRef]
- Shyam, P.K.; Jang, H.-Y. Metal–Organocatalytic Tandem Azide Addition/Oxyamination of Aldehydes for the Enantioselective Synthesis of β-Amino α-Hydroxy Esters. Eur. J. Org. Chem. 2014, 1817–1822. [Google Scholar] [CrossRef]
- Stöckel-Maschek, A.; Stiebitz, B.; Koelschb, R.; Neubert, K. Novel 3-amino-2-hydroxy acids containing protease inhibitors. Part 1: Synthesis and kinetic characterization as aminopeptidase P inhibitors. Bioorg. Med. Chem. 2005, 13, 4806–4818. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Tetsuhashi, M.; Sekine, K.; Miyachi, H.; Naito, M.; Hashimoto, Y.; Aoyama, H. Degradation-promoters of cellular inhibitor of apoptosis protein 1 based on bestatin and actinonin. Bioorg. Med. Chem. 2008, 16, 4685–4698. [Google Scholar] [CrossRef]
- Ekegren, J.K.; Unge, T.; Safa, M.Z.; Wallberg, H.; Samuelsson, B.; Hallberg, A. A new class of HIV-1 protease inhibitors containing a tertiary alcohol in the transition-state mimicking scaffold. J. Med. Chem. 2005, 48, 8098–8102. [Google Scholar] [CrossRef]
- Xue, Z.-K.; Fu, N.-K.; Luo, S.-Z. Asymmetric hydroazidation of α-substituted vinyl ketones catalyzed by chiral primary amine. Chin. Chem. Lett. 2017, 28, 1083–1086. [Google Scholar] [CrossRef]
- Humbrías-Martín, J.; Pérez-Aguilar, M.C.; Mas-Ballesté, R.; Dentoni Litta, A.; Lattanzi, A.; Della Sala, G.; Fernández-Salas, G.A.; Alemán, J. Enantioselective Conjugate Azidation of α,β-Unsaturated Ketones under Bifunctional Organocatalysis by Direct Activation of TMSN3. Adv. Synth. Catal. 2019, 361, 4790–4796. [Google Scholar] [CrossRef]
- Jacobsen, E.N.; Mazet, C. Dinuclear {(salen)Al} Complexes Display Expanded Scope in the Conjugate Cyanation of α,β-Unsaturated Imides. Angew. Chem. Int. Ed. 2008, 47, 1762–1765. [Google Scholar]
- Sammis, G.M.; Danjo, H.; Jacobsen, E.N. Cooperative dual catalysis: Application to the highly enantioselective conjugate cyanation of unsaturated imides. J. Am. Chem. Soc. 2004, 125, 9928–9929. [Google Scholar] [CrossRef]
- Sammis, G.M.; Jacobsen, E.N. Highly Enantioselective, Catalytic Conjugate Addition of Cyanide to α,β-Unsaturated Imides. J. Am. Chem. Soc. 2003, 125, 4442–4443. [Google Scholar] [CrossRef]
- Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M.J. Catalytic Enantioselective Conjugate Addition of Cyanide to α,β-Unsaturated N-Acylpyrroles. Am. Chem. Soc. 2005, 127, 514–515. [Google Scholar] [CrossRef]
- Bernal, P.; Fernández, R.; Lassaletta, J.M. Organocatalytic Asymmetric Cyanosilylation of Nitroalkenes. Chem. Eur. J. 2010, 16, 7714–7718. [Google Scholar] [CrossRef]
- Bernardi, L.; Fini, F.; Fochi, M.; Ricci, A. Organocatalyzed Enantioselective Synthesis of Nitroalkanes Bearing All-Carbon Quaternary Stereogenic Centers through Conjugate Addition of Acetone Cyanohydrin. Synlett 2008, 12, 1857–1861. [Google Scholar] [CrossRef]
- Provencher, B.A.; Bartelson, K.J.; Liu, Y.; Foxman, B.M.; Deng, L. Structural Study-Guided Development of Versatile Phase-Transfer Catalysts for Asymmetric Conjugate Additions of Cyanide. Angew. Chem. Int. Ed. 2011, 50, 10565–10569. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, S.; Chen, F.-X. Chiral Sodium Phosphate Catalyzed Enantioselective 1,4-Addition of TMSCN to Aromatic Enones. Synlett 2010, 18, 2725–2728. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Zeng, W.; Sohail, M.; Guo, J.; Wu, S.; Chen, F.-X. Highly Efficient Asymmetric Conjugate Hydrocyanation of Aromatic Enones by an Anionic Chiral Phosphate Catalyst. Eur. J. Org. Chem. 2013, 2013, 4624–4633. [Google Scholar] [CrossRef]
Entry | R | t (h) | Yield (%) | ee (%) |
1 | PhCH2CH2 (8a) | 17 | 95 (10a) | 79 |
2 | (CH3)2CH (8b) | 18 | 63 (10b) | 71 |
3 | (CH3)2CHCH2 (8c) | 19 | 78 (10c) | 71 |
4 | CH3(CH2)4 (8d) | 18 | 92 (10d) | 71 |
5 | (CH3)3C (8e) | 15 | 86 (10e) | 82 |
6 | Cyclohexyl (8f) | 15 | 76 (10f) | 75 |
7 | Ph (8g) | 24 | 81 (10g) | 39 |
Entry | R’ | R | Product | Time (h) | Yield (%) | ee (%) |
1 | H | Me | 18a | 16 | 72 | 69 |
2 | 4-F | Me | 18b | 16 | 76 | 70 |
3 | 4-Cl | Me | 18c | 16 | 78 | 70 |
4 | 4-Br | Me | 18d | 16 | 91 | 75 |
5 | 4-OMe | Me | 18e | 18 | 78 | 69 |
6 | 4-CF3 | Me | 18f | 24 | 67 | 59 |
7 | 4-Et | Me | 18g | 16 | 90 | 45 |
8 | 3-F | Me | 18h | 18 | 72 | 44 |
9 | 3-Cl | Me | 18i | 18 | 74 | 55 |
10 | 3-Br | Me | 18j | 18 | 76 | 54 |
11 | 3-OMe | Me | 18k | 24 | 79 | 38 |
12 | 3-Br,4-F | Me | 18l | 24 | 69 | 56 |
13 | H | Et | 18m | 18 | 68 | 43 |
14 | H | n-Pr | 18n | 24 | 68 | 11 |
15 | H | Br | 18o | 32 | 56 | 16 |
Entry | R | R’ | Product | Yield (%) | ee (%) |
1 | Ph | Me | 25a | 72 | 67 |
2 | Ph | Pr | 25b | 60 | 33 |
3 | 2-naphtyl | Me | 25c | 68 | 72 |
4 | 4-ClC6H4 | Me | 25d | 75 | 64 |
5 | 4-MeC6H4 | Me | 25e | 62 | 58 |
6 | 4-MeOC6H4 | Me | 25f | 64 | 56 |
7 | 2-furyl | Me | 25g | 52 | 65 |
Entry | R | R’ | PTC | Product | Time (h) | Yield (%) | ee (%) |
---|---|---|---|---|---|---|---|
1 | Ph | Et | 28 | 30a | 24 | 77 | 95 (S) |
2 | Ph | Et | 29 | 30a | 24 | 97 | 90 (R) |
3 | Ph | Me | 28 | 30b | 24 | 78 | 97(S) |
4 | Ph | Me | 29 | 30b | 24 | 92 | 91(R) |
5 | Ph | n-C5H11 | 28 | 30c | 96 | 89 | 96(S) |
6 | Ph | n-C5H11 | 29 | 30c | 24 | 73 | 92(R) |
7 | Ph | iPr | 28 | 30d | 72 | 69 | 94(S) |
8 | Ph | iPr | 29 | 30d | 24 | 80 | 93(R) |
9 | Ph | CH2iPr | 28 | 30e | 72 | 80 | 97(S) |
10 | Ph | CH2iPr | 29 | 30e | 24 | 91 | 93(R) |
11 | Ph | CH2OSiEt3 | 28 | 30f | 48 | 75 | 93(S) |
12 | Ph | CH2OSiEt3 | 29 | 30f | 24 | 77 | 87(R) |
13 | 4-Me-C6H4 | Me | 28 | 30g | 48 | 78 | 95(S) |
14 | 4-Me-C6H4 | Me | 29 | 30g | 24 | 99 | 92(R) |
15 | 4-OMe-C6H4 | Me | 28 | 30h | 48 | 88 | 97(S) |
16 | 4-OMe-C6H4 | Me | 29 | 30h | 24 | 98 | 94(R) |
17 | 4-Cl-C6H4 | Me | 28 | 30i | 6 | 82 | 96(S) |
18 | 4-Cl-C6H4 | Me | 29 | 30i | 4 | 77 | 90(R) |
Entry | R | R’ | Product | Yield (%) | ee (%) |
---|---|---|---|---|---|
1 | Ph | Ph | 30j | 91 | 95 |
2 | Ph | Ph | 30j | 91 | 94 |
3 | Ph | 4-FC6H4 | 30k | 95 | 96 |
4 | Ph | 4-ClC6H4 | 30l | 93 | 96 |
5 | Ph | 4-BrC6H4 | 30m | 93 | 94 |
6 | 4-MeC6H4 | 3-BrC6H4 | 30n | 96 | 95 |
7 | Ph | 4-MeOC6H4 | 30o | 94 | 97 |
8 | Ph | 4-MeC6H4 | 30p | 93 | 94 |
9 | 4-MeC6H4 | Ph | 30q | 94 | 97 |
10 | 2-MeOC6H4 | Ph | 30r | 72 | 96 |
11 | 3-MeOC6H4 | Ph | 30s | 90 | 92 |
12 | 4-FC6H4 | Ph | 30t | 90 | 98 |
13 | 4-FC6H4 | Ph | 30u | 91 | 93 |
14 | 3-FC6H4 | Ph | 30v | 95 | 96 |
15 | 2-ClC6H4 | Ph | 30n | 93 | 93 |
16 | 4-ClC6H4 | Ph | 30w | 93 | 95 |
17 | 2,4-Cl2C6H3 | Ph | 30x | 96 | 92 |
18 | 4-BrC6H4 | Ph | 30y | 93 | 94 |
19 | tBu | Ph | 30z | 91 | 94 |
18 | cHex | Ph | 30z’ | 91 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schettini, R.; Della Sala, G. Organocatalytic Conjugate Hydroazidation and Hydrocyanation: A Metal-Free Approach to Synthetically Versatile Chiral Building Blocks. Symmetry 2024, 16, 199. https://doi.org/10.3390/sym16020199
Schettini R, Della Sala G. Organocatalytic Conjugate Hydroazidation and Hydrocyanation: A Metal-Free Approach to Synthetically Versatile Chiral Building Blocks. Symmetry. 2024; 16(2):199. https://doi.org/10.3390/sym16020199
Chicago/Turabian StyleSchettini, Rosaria, and Giorgio Della Sala. 2024. "Organocatalytic Conjugate Hydroazidation and Hydrocyanation: A Metal-Free Approach to Synthetically Versatile Chiral Building Blocks" Symmetry 16, no. 2: 199. https://doi.org/10.3390/sym16020199
APA StyleSchettini, R., & Della Sala, G. (2024). Organocatalytic Conjugate Hydroazidation and Hydrocyanation: A Metal-Free Approach to Synthetically Versatile Chiral Building Blocks. Symmetry, 16(2), 199. https://doi.org/10.3390/sym16020199