Solutions with a Flat Horizon in D Dimensions within the Cubic Form of f(Q) Gravity
Abstract
:1. Introduction
2. The Theory of
3. Static Anti-de-Sitter Black Hole Solution
4. The Fundamental Features of the Black Hole Solutions Given by Equation (19)
5. The Black Holes Thermodynamic Properties as Expressed by Equation (19)
6. Conclusions and Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef]
- Filippenko, A.V.; Riess, A.G. Results from the high Z supernova search team. Phys. Rep. 1998, 307, 31–44. [Google Scholar] [CrossRef]
- McDonald, P.; Seljak, U.; Burles, S.; Schlegel, D.J.; Weinberg, D.H.; Cen, R.; Shih, D.; Schaye, J.; Schneider, D.P.; Bahcall, N.A.; et al. The Lyman-alpha forest power spectrum from the Sloan Digital Sky Survey. Astrophys. J. Suppl. 2006, 163, 80–109. [Google Scholar] [CrossRef]
- Koivisto, T.; Mota, D.F. Dark energy anisotropic stress and large scale structure formation. Phys. Rev. D 2006, 73, 083502. [Google Scholar] [CrossRef]
- Daniel, S.F.; Caldwell, R.R.; Cooray, A.; Melchiorri, A. Large Scale Structure as a Probe of Gravitational Slip. Phys. Rev. D 2008, 77, 103513. [Google Scholar] [CrossRef]
- Nadathur, S.; Percival, W.J.; Beutler, F.; Winther, H. Testing Low-Redshift Cosmic Acceleration with Large-Scale Structure. Phys. Rev. Lett. 2020, 124, 221301. [Google Scholar] [CrossRef]
- Schimd, C.; Tereno, I.; Uzan, J.P.; Mellier, Y.; van Waerbeke, L.; Semboloni, E.; Hoekstra, H.; Fu, L.; Riazuelo, A. Tracking quintessence by cosmic shear—Constraints from virmos-descart and cfhtls and future prospects. Astron. Astrophys. 2007, 463, 405–421. [Google Scholar] [CrossRef]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, 043528. [Google Scholar] [CrossRef]
- Allemandi, G.; Borowiec, A.; Francaviglia, M.; Odintsov, S.D. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D 2005, 72, 063505. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Spherically symmetric charged black holes in f(R) gravitational theories. Eur. Phys. J. Plus 2018, 133, 18. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef]
- Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D 2007, 75, 104016. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 1–161. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1–6. [Google Scholar] [CrossRef]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Vacuum nonsingular black hole solutions in tetrad theory of gravitation. Gen. Relativ. Gravit. 2002, 34, 1047–1058. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Saridakis, E.N. New rotating black holes in nonlinear Maxwell f(R) gravity. Phys. Rev. D 2020, 102, 124072. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301, Erratum in Phys. Rev. D 2010, 82, 109902. [Google Scholar] [CrossRef]
- Shirafuji, T.; Nashed, G.G.L.; Kobayashi, Y. Equivalence principle in the new general relativity. Prog. Theor. Phys. 1996, 96, 933–948. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Vacuum nonsingular black hole in tetrad theory of gravitation. Nuovo Cim. B 2002, 117, 521–532. [Google Scholar]
- Boehmer, C.G.; Mussa, A.; Tamanini, N. Existence of relativistic stars in f(T) gravity. Class. Quantum Gravity 2011, 28, 245020. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Nojiri, S.; Odintsov, S.D. Equivalence of modified gravity equation to the Clausius relation. Europhys. Lett. 2010, 89, 50003. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Finite-time future singularities in modified Gauss-Bonnet and F(R,G) gravity and singularity avoidance. Eur. Phys. J. C 2010, 67, 295–310. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Houndjo, M.J.S.; Momeni, D.; Myrzakulov, R. A type of Levi-Civita solution in modified Gauss-Bonnet gravity. Can. J. Phys. 2014, 92, 173–176. [Google Scholar] [CrossRef]
- Avilez, A.; Skordis, C. Cosmological constraints on Brans-Dicke theory. Phys. Rev. Lett. 2014, 113, 011101. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dialektopoulos, K.F.; Romano, A.E.; Tomaras, T.N. Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures. Phys. Rev. Lett. 2015, 115, 181104. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) Gravity. arXiv 2023, arXiv:2309.15958. [Google Scholar]
- Maurya, S.K.; Singh, K.N.; Govender, M.; Mustafa, G.; Ray, S. The Effect of Gravitational Decoupling on Constraining the Mass and Radius for the Secondary Component of GW190814 and Other Self-bound Strange Stars in f(Q) Gravity Theory. Astrophys. J. Suppl. 2023, 269, 35. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S.; Pekar, S. Cosmology in f(Q) geometry. Phys. Rev. D 2020, 101, 103507. [Google Scholar] [CrossRef]
- Dialektopoulos, K.F.; Koivisto, T.S.; Capozziello, S. Noether symmetries in Symmetric Teleparallel Cosmology. Eur. Phys. J. C 2019, 79, 606. [Google Scholar] [CrossRef]
- Bajardi, F.; Vernieri, D.; Capozziello, S. Bouncing Cosmology in f(Q) Symmetric Teleparallel Gravity. Eur. Phys. J. Plus 2020, 135, 912. [Google Scholar] [CrossRef]
- Flathmann, K.; Hohmann, M. Post-Newtonian limit of generalized symmetric teleparallel gravity. Phys. Rev. D 2021, 103, 044030. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Garg, M.; Heisenberg, L. Non-linear extension of non-metricity scalar for MOND. Phys. Lett. B 2020, 811, 135970. [Google Scholar] [CrossRef]
- Mandal, S.; Sahoo, P.K.; Santos, J.R.L. Energy conditions in f(Q) gravity. Phys. Rev. D 2020, 102, 024057. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Christodoulakis, T. Quantum cosmology in f(Q) theory. Class. Quantum Gravity 2021, 38, 225003. [Google Scholar] [CrossRef]
- Nakayama, Y. Weyl transverse diffeomorphism invariant theory of symmetric teleparallel gravity. Class. Quantum Gravity 2022, 39, 145006. [Google Scholar] [CrossRef]
- Khyllep, W.; Paliathanasis, A.; Dutta, J. Cosmological solutions and growth index of matter perturbations in f(Q) gravity. Phys. Rev. D 2021, 103, 103521. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Katsuragawa, T. Static and spherically symmetric solutions in f(Q) gravity. Phys. Rev. D 2022, 105, 024060. [Google Scholar] [CrossRef]
- Quiros, I. Nonmetricity theories and aspects of gauge symmetry. Phys. Rev. D 2022, 105, 104060. [Google Scholar] [CrossRef]
- Ferreira, J.; Barreiro, T.; Mimoso, J.; Nunes, N.J. Forecasting F(Q) cosmology with ΛCDM background using standard sirens. Phys. Rev. D 2022, 105, 123531. [Google Scholar] [CrossRef]
- Solanki, R.; De, A.; Sahoo, P.K. Complete dark energy scenario in f(Q) gravity. Phys. Dark Univ. 2022, 36, 100996. [Google Scholar] [CrossRef]
- De, A.; Mandal, S.; Beh, J.T.; Loo, T.H.; Sahoo, P.K. Isotropization of locally rotationally symmetric Bianchi-I universe in f(Q)-gravity. Eur. Phys. J. C 2022, 82, 72. [Google Scholar] [CrossRef]
- Solanki, R.; Pacif, S.K.J.; Parida, A.; Sahoo, P.K. Cosmic acceleration with bulk viscosity in modified f(Q) gravity. Phys. Dark Univ. 2021, 32, 100820. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R. Model-independent reconstruction of f(Q) non-metric gravity. Phys. Lett. B 2022, 832, 137229. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Roumeliotis, M.; Christodoulakis, T. FLRW solutions in f(Q) theory: The effect of using different connections. Phys. Rev. D 2022, 106, 043509. [Google Scholar] [CrossRef]
- Albuquerque, I.S.; Frusciante, N. A designer approach to f(Q) gravity and cosmological implications. Phys. Dark Univ. 2022, 35, 100980. [Google Scholar] [CrossRef]
- Arora, S.; Sahoo, P.K. Crossing Phantom Divide in f(Q) Gravity. Ann. Phys. 2022, 534, 2200233. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Soudi, I.; Farrugia, G.; Gakis, V.; Levi Said, J.; Saridakis, E.N. Polarization of gravitational waves in symmetric teleparallel theories of gravity and their modifications. Phys. Rev. D 2019, 100, 044008. [Google Scholar] [CrossRef]
- Lazkoz, R.; Lobo, F.S.N.; Ortiz-Baños, M.; Salzano, V. Observational constraints of f(Q) gravity. Phys. Rev. D 2019, 100, 104027. [Google Scholar] [CrossRef]
- Barros, B.J.; Barreiro, T.; Koivisto, T.; Nunes, N.J. Testing F(Q) gravity with redshift space distortions. Phys. Dark Univ. 2020, 30, 100616. [Google Scholar] [CrossRef]
- Ayuso, I.; Lazkoz, R.; Salzano, V. Observational constraints on cosmological solutions of f(Q) theories. Phys. Rev. D 2021, 103, 063505. [Google Scholar] [CrossRef]
- Mandal, S.; Sahoo, P.K. Constraint on the equation of state parameter (ω) in non-minimally coupled f(Q) gravity. Phys. Lett. B 2021, 823, 136786. [Google Scholar] [CrossRef]
- Atayde, L.; Frusciante, N. Can f(Q) gravity challenge ΛCDM? Phys. Rev. D 2021, 104, 064052. [Google Scholar] [CrossRef]
- Frusciante, N. Signatures of f(Q)-gravity in cosmology. Phys. Rev. D 2021, 103, 044021. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Gakis, V.; Saridakis, E.N.; Basilakos, S. New models and big bang nucleosynthesis constraints in f(Q) gravity. Eur. Phys. J. C 2023, 83, 58. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524–3553, Addendum in Phys. Rev. D 1982, 24, 3312–3314.. [Google Scholar] [CrossRef]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Adak, M.; Sert, O. A Solution to symmetric teleparallel gravity. Turk. J. Phys. 2005, 29, 1–7. [Google Scholar]
- Adak, M.; Kalay, M.; Sert, O. Lagrange formulation of the symmetric teleparallel gravity. Int. J. Mod. Phys. D 2006, 15, 619–634. [Google Scholar] [CrossRef]
- Adak, M.; Sert, O.; Kalay, M.; Sari, M. Symmetric Teleparallel Gravity: Some exact solutions and spinor couplings. Int. J. Mod. Phys. A 2013, 28, 1350167. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Capozziello, S.; De Falco, V.; Ferrara, C. Comparing equivalent gravities: Common features and differences. Eur. Phys. J. C 2022, 82, 865. [Google Scholar] [CrossRef]
- Nakahara, M. Geometry, Topology and Physics; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Awad, A.M.; Capozziello, S.; Nashed, G.G.L. D-dimensional charged Anti-de-Sitter black holes in f(T) gravity. J. High Energy Phys. 2017, 07, 136. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Slow-rotating charged black hole solution in dynamical Chern-Simons modified gravity. Phys. Rev. D 2023, 107, 064069. [Google Scholar] [CrossRef]
- Mazharimousavi, S.H. Dirty black hole supported by a uniform electric field in Einstein-nonlinear electrodynamics-Dilaton theory. Eur. Phys. J. C 2023, 83, 406, Erratum in Eur. Phys. J. C 2023, 83, 597. [Google Scholar] [CrossRef]
- Cognola, G.; Gorbunova, O.; Sebastiani, L.; Zerbini, S. On the Energy Issue for a Class of Modified Higher Order Gravity Black Hole Solutions. Phys. Rev. D 2011, 84, 023515. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, R.J. Horizon thermodynamics in f(R) theory. Eur. Phys. J. C 2018, 78, 682. [Google Scholar] [CrossRef]
- Nouicer, K. Black holes thermodynamics to all order in the Planck length in extra dimensions. Class. Quantum Gravity 2007, 24, 5917–5934, Erratum in Class. Quantum Gravity 2007, 24, 6435. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Charged AdS black holes and catastrophic holography. Phys. Rev. D 1999, 60, 064018. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nashed, G.G.L. Solutions with a Flat Horizon in D Dimensions within the Cubic Form of f(Q) Gravity. Symmetry 2024, 16, 219. https://doi.org/10.3390/sym16020219
Nashed GGL. Solutions with a Flat Horizon in D Dimensions within the Cubic Form of f(Q) Gravity. Symmetry. 2024; 16(2):219. https://doi.org/10.3390/sym16020219
Chicago/Turabian StyleNashed, Gamal Gergess Lamee. 2024. "Solutions with a Flat Horizon in D Dimensions within the Cubic Form of f(Q) Gravity" Symmetry 16, no. 2: 219. https://doi.org/10.3390/sym16020219
APA StyleNashed, G. G. L. (2024). Solutions with a Flat Horizon in D Dimensions within the Cubic Form of f(Q) Gravity. Symmetry, 16(2), 219. https://doi.org/10.3390/sym16020219