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Abstract: Given the AdS/CFT relationship, the study of higher-dimensional AdS black holes is
extremely important. Furthermore, since the restriction derived from f (Q)’s field equations prevents
it from deriving spherically symmetric black hole solutions, the result is either Q′ = 0 or fQQ = 0.
Utilizing the cylindrical coordinate system within the context the cubic form of f (Q) theory while
imposing the condition of a coincident gauge, we establish the existence of static solutions in D-
dimensions. The power-law ansatz, which is the most practical based on observations, will be used in
this study, where f (Q) = Q + 1

2 γQ2 + 1
3 γQ3 − 2Λ and the condition D ≥ 4 are met. These solutions

belong to a new solution class, the properties of which are derived only from the non-metricity Q
modification, since they do not have a general relativity limit. We examine the singularities present
in the solutions by calculating the non-metricity and curvature invariant values. In conclusion, we
compute thermodynamic parameters such as Gibbs free energy, Hawking temperature, and entropy.
These thermodynamic calculations confirm that our model is stable.

Keywords: f (Q) theory; cylindrical black holes; singularities and thermodynamics

1. Introduction

One notable and worrisome observation from the last 20 years is the universe’s
acceleration caused by Dark Energy (DE). This cosmological event is confirmed by recent
developments in observational cosmology: cosmic microwave background radiation [1],
Type Ia Supernovae [2–4], the Lyman-forest power spectrum from the Sloan Digital Sky
Survey [5], large-scale structure observations [6–8], and the investigation of high-energy
DE models with weak lensing data [9]. Consequently, scientists search for appropriate
modifications to the GR, such as gravitation f (R) [10–17], f (R, G), where the Gauss–Bonnet
and Ricci scalar expressions are denoted by R and G, respectively [18], f (T) gravity, with the
torsion scalar T [19–25], f (G) gravity [26–28], Brans–Dicke (BD) gravity [29,30], and so
on. The concept of higher-order curvature, or more precisely f (R) gravity, is the most
successful adaptation of GR for explaining the existence of dark matter [31].

Recently, f (Q) gravity, a well-motivated theory of gravity, was put forth by Jiménez
et al. [32]. Lagrangian density, on which it is based, produces a general function of the
non-metricity scalar Q. Non-metricity drives the gravitational interaction in space-time in
this theory. The modified theory of f (Q) gravity leads to intriguing cosmic phenomenology
at the background level [33–54]. It should also be noted that unlike f (R) gravity, where the
field equations are of the fourth order [55], f (Q)-gravity has field equations of second-order,
which is free from pathologies. Hence, the building of this f (Q) theory provides a novel
starting point for several modified gravity theories. For the time being, the study of f (Q)
gravity is the most debatable phenomenon.

Moreover, it has effectively been tested against diverse observational data related
to background and perturbations, Type Ia Supernovae (SNIa), including the Cosmic
Microwave Background (CMB), Redshift Space Distortion (RSD), growth data, Baryonic
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Acoustic Oscillations (BAO), and similar datasets [56–62]. Ultimately, the constraints of
Big Bang Nucleosynthesis (BBN) are simply transcended by f (Q) gravity [63]. Different
yet comparable theories of gravity are produced depending on T (torsion) or Q (non-
metricity). These are known as the teleparallel equivalent of GR, or (TEGR) [64,65] and
symmetric teleparallel GR (STGR) [66–68]. Instead of curvature and torsion, non-metricity
underpins the concept of gravity in STGR. Inspired by the interesting qualities of f (Q)
gravity, we will derive a D − dimensions flat horizons black hole using the cubic form of
f (Q), i.e., f (Q) = Q + 1/2γQ2 + 1/3γ1Q3 − 2Λ, where γ and γ1 are two constants of
dimensions length2, length4, and Λ. Λ in this study represents the cosmological constant.

The structure of this investigation is outlined as follows: Section 2 deals with the
examination of the field equations and a brief summary of the non-metricity formalism.
Subsequently, we present the equation of motion for gravity within the framework of f (Q).
The ansatz of the metric with a flat horizon in D-dimensions is utilized to the equations
of motion of f (Q) gravity in Section 3. Applying this approach leads to deriving a new
solution in D-dimensions. The asymptotic behavior of the solution corresponds to Anti-
de-Sitter (AdS) space. The relevant physical properties of these solutions are discussed in
Section 4. We explore the black hole’s thermodynamics in Section 5. Finally, Section 6 has
closing comments.

2. The Theory of f (Q)

This section covers some of the generic characteristics of f (Q)-gravity. We will restrict
the scope of this explanation to components (the reader can turn to Refs. [69–71] for a more
rigorous derivation in terms of forms).

For a parallelizable and differentiable manifold, the affine connection can be written
in the form:

Γσ
µν = Γ̃σ

µν + Kσ
µν + Lσ

µν , (1)

where the Levi–Civita connection is represented by Γ̃σ
µν which has the following definition:

Γ̃σ
µν =

1
2

gσρ
(
∂µgρν + ∂νgρµ − ∂ρgµν

)
. (2)

Also, the contortion Kσ
µν is defined as:

Kσ
µν =

1
2

Tσ
µν + T σ

(µ ν) , (3)

with the torsion tensor Tσ
µν = 2Γσ

[µν]
. Lastly, the deformation is Lσ

µν, which reads,

Lσ
µν =

1
2

Qσ
µν − Q σ

(µ ν) , (4)

where the non-metricity tensor, Qσ
µν, is provided by

Qσµν = ∇σgµν = ∂σgµν − Γρ
σµgνρ − Γρ

σνgµρ . (5)

Consequently, the scalar of the non-metricity is

Q =gµν(Lα
βνLβ

µα − Lβ
αβL)α

µν ≡ QσµνPσµν , (6)

where Pσµν, the conjugate of non-metricity, is given by

Pσ
µν =

1
4

(
−Qσ

µν + 2Q σ
(µ ν) + Qσgµν − Q̃σgµν − δσ

(µQν)

)
, (7)

where Qσ = Q µ
σ µ, and Q̃σ = Qµ

σµ.
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In the absence of torsion and non-metricity, the connection takes on the same form
as the metrically compatible Levi–Civita connection. Curvature and torsion are both zero
in symmetric teleparallel gravity STG, and non-metricity is contingent on the interaction
between the metric and the connection.

In Ref. [32], the authors introduced modified symmetric teleparallel gravity, with the
action reading

I = − 1
2κ2

∫
M

f (Q)
√
−gd4x +

∫
M

Lm
√
−gd4x , (8)

where g is the determinant of the metric tensor gµν, M is the space-time manifold, Lm is the
Lagrangian density of matter contents, and f (Q) is a generic function of the non-metricity
scalar Q.

One applies independent variations with respect to both the metric and the connection
to Equation (8) in order to obtain the field equations of the theory, so

ξµν ≡ 2√−g
∇α

(√
−g fQPα

µν

)
+

1
2

gµν f + fQ

(
PµαβQ αβ

ν − 2PαβµQ αβ
ν

)
= κ2Tµν , (9)

∇µ∇ν

(√
−g fQPα

µν

)
= 0 , (10)

where Tµν, as is traditional, represents the energy–momentum tensor of matter

Tµν = − 2√−g
δ(
√−gLm)

δgµν . (11)

The above expression has two parts: fQ = d f (Q)
dQ and f ≡ f (Q). We observe that there

is no hyper-momentum because the Lagrangian density of matter is calculated without
consideration of the connection. Furthermore, it is well known that by presenting f (Q) = Q,
the Lagrangian density L = − Q

2κ2 + Lm may be produced, yielding the results of GR (in
the STEGR framework).

3. Static Anti-de-Sitter Black Hole Solution

We investigate the cylindrical D-dimensional spacetime using the field equations of
f (Q) gravity, given by Equation (9). The line element that emerges from this analysis is
shown in cylindrical coordinates (t, r, ζ1, ζ2,· · · , ζD−2), as elaborated in [72]:

ds2 = µ(r)dt2 − dr2

ν(r)
− r2

D−2∑
i=1

dζ2
i . (12)

In this context, µ(r) and ν(r) denote two variables that depend on the radial coordinate.
Additionally, the form of non-metricity, Q, given by Equation (12), yields the following
form in D-dimension:

Q = − (D − 2)ν[(D − 3)µ + µ′]

r2µ
. (13)

By applying Equation (12) to the equations of motion (9), we derive the following non-zero
components when the energy–momentum is vanishing, i.e., Tµν = 0:
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ξt
t ≡ 1

2r2µ2

[
2(D − 2)2ν2r2 fQQ[µ

′2 − µµ′′] + (D − 2)rµνµ′[2(D − 2) fQQ{ν − rµ′}+ r2 fQ] + µ
{
(D − 2)rµµ′

[
r2 fQ

−2(D − 3)(D − 2) fQQν
]
+ µ(r4 f (Q) + 2(D − 2)(D − 3)r2ν fQ + 4(D − 3)(N − 2)2ν2 fQQ)

}]
= 0 ,

ξr
r ≡

f (Q)r2µ + 2(D − 2)r fQνµ′ + 2(D − 2)(D − 3) fQµν

2r2µ
= 0 ,

ξζ1
ζ1 = ξζ2

ζ2 = · · · · · · = ξζD−2
ζD−2 ≡ 1

4r4µ3

{
2r2νµµ′′[µ(r2 fQ − 2(D − 2)(D − 3) fQQν)− (D − 2)rνµ′ fQQ]

+2(D − 2) fQQr3ν2µ′3 − r2µνµ′2[r2 fQ + 2 fQQ(D − 2)(rµ′ − (2D − 5)ν)] + rµ2µ′
[
rµ′(r2 fQ − 6(D − 2)(D − 3) fQQν)

+2(2D − 5)r2 fQν + 8(D − 2)(D − 3) fQQν2
]
+ 2µ2

[
(D − 3)rµµ′(r2 fQ − 2(D − 2)(D − 3)ν fQQ) + µ

(
r4 f (Q)

+2(D − 3)2r2ν fQ + 4(D − 2)(D − 3)2 fQQν2
)]}

= 0 . (14)

Following that, we will find a complete solution to Equations (14) by using a specific
expression for f (Q), namely:

f(Q) = Q +
1
2

γQ2 +
1
3

γ1Q3 − 2Λ , (15)

where γ and γ1 are dimensional constants that have the unites of length2, length4, Λ is the
cosmological constant. Given this specific f (Q) configuration, the following results are
obtained from Equations (13):

ξt
t ≡ 1

2r2µ2

{
2(D − 2)2ν2r2[γ + 2γ1Q][µ′2 − µµ′′] + (D − 2)rµνµ′[2(D − 2)[γ + 2γ1Q]{ν − rµ′}+ r2(1 + γQ + γ1Q2)]

+µ

[
(D − 2)rµµ′

[
r2[1 + γQ + γ1Q2]− 2(D − 3)(D − 2)[γ + 2γ1Q]ν

]
+ µ

{
r4[Q +

1
2

γQ2 +
1
3

γ1Q3 − 2Λ]

+2(D − 2)(D − 3)r2ν[1 + γQ + γ1Q2] + 4(D − 3)(D − 2)2ν2[γ + 2γ1Q]
}]}

= 0 ,

ξr
r ≡

[Q + 1
2 γQ2 + 1

3 γ1Q3 − 2Λ]r2µ + 2(D − 2)r[1 + γQ + γ1Q2]νµ′ + 2(D − 2)(D − 3)[1 + γQ + γ1Q2]µν

2r2µ
= 0 ,

ξζ1
ζ1 = ξζ2

ζ2 = · · · · · · = ξζD−2
ζD−2 ≡ 1

4r4µ3

{
2r2νµµ′′

[
µ
(

r2[1 + γQ + γ1Q2]− 2(D − 2)(D − 3)[γ + 2γ1Q]ν
)

−(D − 2)rνµ′(γ + γ1Q)
]
+ 2(D − 2)[γ + 2γ1Q]r3ν2µ′3 − r2µνµ′2

[
r2[1 + γQ + γ1Q2] + 2[γ + 2γ1Q][rµ′ − (2D − 5)ν]

×(D − 2)] + rµ2µ′
[
rµ′(r2[1 + γQ + γ1Q2]− 6(D − 2)(D − 3)[γ + γ1Q]ν) + 2(2D − 5)r2[1 + γQ + γ1Q2]ν

+8(D − 2)(D − 3)[γ + γ1Q]ν2
]
+ 2µ2

[
(D − 3)rµµ′(r2[1 + γQ + γ1Q2]− 2(D − 2)(D − 3)ν[γ + 2γ1Q])

+µ

(
r4[Q +

1
2

γQ2 +
1
3

γ1Q3 − 2Λ] + 2(D − 3)2r2ν[1 + γQ + γ1Q2] + 4(D − 2)(D − 3)2[γ + 2γ1Q]ν2
)]}

= 0 . (16)

For Equation (16), a general D-dimensional case solution is:

µ(r) = ν(r) =
1
3

 1
20

3
√

600 γ1
2Λ − 90 γ1 γ + 27 γ3 + 10

√
80 γ1 − 27 γ2 − 1080 γ1 γ Λ + 3600 γ1

2Λ2 + 324 Λ γ3γ1

γ1

+
r2

20
9 γ2 − 20 γ1

γ1
3
√

600 γ1
2Λ − 90 γ1 γ + 27 γ3 + 10

√
80 γ1 − 27 γ2 − 1080 γ1 γ Λ + 3600 γ1

2Λ2 + 324 Λ γ3γ1

+
3

20
γ

γ1

+
c1
r

. (17)
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The general behavior of the above solution shows that µ and ν behave generally
as Anti-de-Sitter(AdS) or de-Sitter (dS) spacetime. Here, c1 stands for a dimensional
integration constant. In an effort to streamline the computations, we shall assume that

Λ =
1

12γ
, γ1 =

2γ2

5
. (18)

This presumption results in a special solution that has the following form:

µ(r) = ν(r) =
r2

(D − 1)(D − 2)γ
+

c1

rD−3 . (19)

It is evident from Equation (19) that in the case of cubic form, the higher order of f (Q)
serves as a cosmological constant.

4. The Fundamental Features of the Black Hole Solutions Given by Equation (19)

Let us now investigate certain relevant facets of the solution discussed in the previous
section. The formulation of the solution’s line element (19) is as follows:

ds2 =

[
r2Λ1 −

2M
rD−3

]
dt2 − dr2

r2Λ1 − 2M
rD−3

− r2
D−2∑
i=1

dζ2
i ,

(20)

with Λ1 being the cosmological constant related to the theory of f (Q), and is defined as
Λ1 = 1

(D−1)(D−2)γ and c1 = −2M. Equation (19) clearly signifies that the line element of
the solution approaches AdS geometry. There is no counterpart for the linear form as
Λ1 → ∞.

Singularity:
Physical singularities in this framework are identified by assessing all possible invariants
within the domain of f (Q) theory. The ansatz µ(r) might exhibit roots, represented as rh.
Consequently, one must investigate the invariant behavior around these roots. Following
the evaluation from the different invariants, we obtain

Q = − 1
γ

,

RµνλρRµνλρ =
2D

(D − 1)(D − 2)2γ2 +
(D − 1)(D − 2)2(D − 3)M2

r2(D−1)
,

RµνRµν =
D

(D − 2)2γ2 , R =
D

(D − 2)γ
,

QµνρQµνρ ≈ − (D − 3)2

(D − 1)α
+

10(D − 3)M
rD−1 +O

(
rD−1

)
,

QµQµ =
4(D − 2)
(D − 1)γ

+
4(D − 2)2

r(D−1)
, (21)

where RµνλρRµνλρ, RµνQµν, Q, QµνλQµνλ, QµQµ, Q̃µQ̃µ, and Q represent all the conceivable
invariants that can be formulated within this theory, which demonstrates the singularity of
the invariants at r = 0, which is described as a singularity in curvature. The invariants we
used in this study are defined as RµνλρRµνλρ, RµνQµν, Q, QµνλQµνλ QµQµ, Q̃µQ̃µ, and Q,
which are known as the Kretschmann scalar, the square of the Ricci tensor, the Ricci scalar,
the square of the non-metricity tensor, the vectors of the non-metricity square, and the
non-metricity, respectively.
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5. The Black Holes Thermodynamic Properties as Expressed by Equation (19)

Using the recently found solution given in Equation (20), we explore the thermodynamic
properties by introducing the concept of the Hawking temperature [73,74] as:

Th =
µ′(rh)

4π
. (22)

The notation ′ in this scenario signifies a derivative in relation to the event horizon, rh,
which represents the most significant positive root of ν(rh) = 0 while ensuring that ν′(rh)
is not equal to zero. The f (Q) theory’s Bekenstein–Hawking entropy is expressed as [75,76]
(remember that the way entropy is framed in f (Q) geocentric theory is not the same as it is
presented in linear non-metricity theory; we shall be aware of the non-metricity hypothesis
when f (Q) = Q)

S(rh) =
1
4

A fQ(rh) . (23)

The event horizon’s surface area in this frame is denoted by A. As per the heat capacity
indicator Ch, the black hole will be thermodynamically stable; if Ch > 0, it will be stable,
and if Ch < 0, it will not be stable. In the next study, we determine if these black
hole solutions are thermally stable by looking at how each of their distinct heat capacity
behaves [77,78].

Hh =
dE1

dTh
=

∂M
∂rh

(
∂T
∂rh

)−1
. (24)

In this frame, E1 describes the quasilocal energy. Within the framework of four dimensions
and in relation to the solution given in Equation (20), the horizons are derived as follows:

rh = 3
√

12Mγ. (25)

Furthermore, we can obtain the following mass equation from Equation (20):

M =
rh

3

12γ
. (26)

The black hole’s total mass is influenced by the horizon, as demonstrated by Equation (26).
Figure 1a shows the relationship between ν(r) and r, illustrating the potential horizons.

The entropy of solution (20) takes the following manner:

Sh =
2πrh

2

5
. (27)

The patterns of entropy are depicted in Figure 1b, revealing a consistent behavior of the
entropy. Figure 1c shows that as the dimensional quantity γ increases the entropy decreases
as r increases.

The following formula is used to obtain the Hawking temperature of Equation (20):

Th =
rh

3 + 6Mγ

2π rh(12Mγ − rh
3)

. (28)

where Th represents the Hawking temperature. Figure 1c shows the temperature, revealing
that it is always positive. Figure 1c shows that as the dimensional quantity γ increases, the
temperature also increases as r increases.

Equations (26) and (28) are substituted into (24) to yield

Hh =
πrh

4(rh
3 − 12Mγ)2

2γ(rh
6 + 48rh

3Mγ − 72M2γ2)
. (29)
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Figure 1d shows the patterns of the heat capacity for solution (20) for several values
of the model parameters. The heat capacity is consistently positive as long as r > rh,
suggesting higher global stability, as seen in Figure 1d. Moreover, Figure 1c also shows
that as the dimensional quantity γ increases, the heat capacity decreases until we obain a
stable model.

(a) The horizons’ placements inside (b) The features of the entropy (c) The temperature
the metric potential grr

(d) The Heat capacity

Figure 1. (a) The overall trend of grr is depicted in Figure 1; (b) highlights the entropy behavior;
(c) depicts changes in the temperature; and (d) shows the heat capacity behavior. The model
parameters are consistently set to M = 1.

6. Conclusions and Discussion

In this study, we delved into the intricate realm of the cubic form of the f (Q) gravity
theory, aiming to unravel its implications and characteristics. The cubic form, encapsulated
by the function f (Q) where Q represents the non-metricity, introduces a compelling
dimension to our understanding of gravitational dynamics. Throughout our investigation,
we scrutinized various aspects including the solutions to the field equations, the behavior
of invariants, and the implications for spacetime geometry.

One of the pivotal findings of our study is the reality that the dimensional quantities
related to the quadratic and cubic higher-order theories, i.e., γ and γ1, are finally unified to
show behavior of cosmological constants, as is clear from Equation (18). This sheds light on
the nuanced interplay between the cubic form of f (Q) gravity and the fundamental aspects
of gravitational physics which indeed ensures that f (Q) will generally not be different from
the first-order approximation of f (Q) in the case of static geometry. This is due to the fact
that both the constants of the cubic form of f (Q), γ and γ1, can be rewritten in terms of the
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cosmological constant Λ, and generally the solution of the coinciding cubic case reproduces
the Schwarzschild AdS/dS, which can be generated in the linear case, i.e., f (Q) = Q + Λ.

It is crucial to extend our special study to include the charge, i.e., study the charged
field equations of f (Q) in the cubic domain. This aspect warrants further investigation
and refinement in future research endeavors.

In conclusion, our study on the cubic form of f (Q) gravity theory represents a
step forward in comprehending the complexities of alternative gravitational theories.
The intriguing patterns and phenomena uncovered in this exploration pave the way for
continued research and offer valuable contributions to the broader landscape of
gravitational physics.

Funding: This research received no external funding.
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