Bi-Concave Functions Connected with the Combination of the Binomial Series and the Confluent Hypergeometric Function
Abstract
:1. Introduction and Preliminaries
- (i)
- is analytic in with the standard normalization given by
- (ii)
- maps conformally onto a set whose complement with respect to is convex.
- (iii)
- The opening angle of at ∞ is less than or equal to
- (i)
- converges absolutely for if
- (ii)
- converges absolutely for if and
- (iii)
- diverges for all z if
- (i)
- Putting we obtain
- (ii)
- Putting we obtain
2. Coefficient Bounds for the Bi-Concave Function Class
3. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Can. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Tts Applications (Kuwait; 18–21 February 1985); Mazhar, S.M., Hamoui, A., Faour, N.S., Eds.; KFAS Proceedings Series; Pergamon Press (Elsevier Science B.V.): Oxford, UK, 1988; Volume 3, pp. 53–60, see also Studia Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Barik, S.; Mishra, A.K. Estimates for initial coefficients of certain subclasses of bi-close-to-convex analytic functions. Kragujev. J. Math. 2023, 47, 387–401. [Google Scholar] [CrossRef]
- Magesh, N.; Nirmala, J.; Yamini, J.; Swamy, S.R. Initial estimates for certain subclasses of bi-univalent functions with κ-Fibonacci numbers. Afr. Mat. 2023, 34, 35. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Cho, N.E.; Vijaya, K. A class of ϑ-bi-pseudo-starlike functions with respect to symmetric points associated with telephone numbers. Afr. Mat. 2024, 35, 17. [Google Scholar] [CrossRef]
- Sabir, P.O. Some remarks for subclasses of bi-univalent functions defined by Ruscheweyh derivative operator. Filomat 2024, 38, 1255–1264. [Google Scholar]
- Srivastava, H.M.; Sabir, P.O.; Atshan, W.G.; Mohammed, P.O.; Chorfi, N.; Vivas-Cortez, M. A family of holomorphic and m-fold symmetric bi-univalent functions endowed with coefficient estimate problems. Mathematics 2023, 11, 3970. [Google Scholar]
- Vijaya, K.; Murugusundaramoorthy, G.; Güney, H.Ö. On λ-pseudo bi-starlike functions related with Fibonacci numbers. Commun. Math. 2024, 32, 117–127. [Google Scholar] [CrossRef]
- Altinkaya, Ş. Bi-Concave functions defined by Al-Oboudi differential operator. Iran. J. Math. Sci. Inform. 2022, 17, 207–217. [Google Scholar] [CrossRef]
- Altinkaya, Ş.; Yalçin, S. Some applications of generalized Srivastava-Attiya operator to the bi-concave functions. Miskolc Math. Notes 2020, 21, 51–60. [Google Scholar] [CrossRef]
- Bayram, H.; Altinkaya, Ş. General properties of concave functions defined by the generalized Srivastava-Attiya operator. J. Comput. Anal. Appl. 2017, 23, 408–416. [Google Scholar]
- Gúney, H.Ö. Coefficient estimates for bi-concave functions of Sakaguchi type. Acta Univ. Apulensis Math. Inform. 2019, 59, 53–62. [Google Scholar]
- Sakar, F.M.; Gúney, H.Ö. Coefficient estimates for bi-concave Functions. Commun. Fac. Sci. Univ. Ank. Ser. Math. Statist. 2019, 68, 53–60. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Cruz, L.; Pommerenke, C. On Concave Univalent Functions. Complex Var. Elliptic Equ. 2007, 52, 153–159. [Google Scholar] [CrossRef]
- Bhowmik, B.; Ponnusamy, S.; Wirths, K.-J. Characterization and the pre-Schwarzian norm estimate for concave univalent functions. Monatsh. Math. 2010, 161, 59–75. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: New York, NY, USA, 1971. [Google Scholar]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Porwal, S.; Kumar, S. Confluent hypergeometric distribution and its applications on certain classes of univalent functions. Afr. Mat. 2017, 28, 1–8. [Google Scholar] [CrossRef]
- El-Deeb, S.M. On unified subclass of complex order connected with q-confluent hypergeometric distribution. Surv. Math. Appl. 2022, 16, 327–337. [Google Scholar]
- Porwal, S. Confluent hypergeometric distribution and its applications on certain classes of univalent functions of conic regions. Kyungpook Math. J. 2018, 58, 495–505. [Google Scholar]
- Airault, H.; Bouali, A. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef]
- Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343–367. [Google Scholar] [CrossRef]
- Attiya, A.A.; Albalahi, A.M.; Hassan, T.S. Coefficient estimates for certain families of analytic functions associated with Faber polynomial. J. Funct. Spaces 2023, 2023, 4741056. [Google Scholar] [CrossRef]
- Khan, S.; Altinkaya, Ş.; Xin, Q.; Tchier, F.; Khan, S.N.M.N. Faber Polynomial coefficient estimates for Janowski type bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Al-Shbeil, I.; Xin, Q.; Tchier, F.; Khan, S.; Malik, S.N. Faber polynomial coefficient estimates for bi-close-to-convex functions defined by the q-fractional derivative. Axioms 2023, 12, 585. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vanderhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; El-Deeb, S.M.; Breaz, D.; Cotîrlă, L.-I.; Sălăgean, G.S. Bi-Concave Functions Connected with the Combination of the Binomial Series and the Confluent Hypergeometric Function. Symmetry 2024, 16, 226. https://doi.org/10.3390/sym16020226
Srivastava HM, El-Deeb SM, Breaz D, Cotîrlă L-I, Sălăgean GS. Bi-Concave Functions Connected with the Combination of the Binomial Series and the Confluent Hypergeometric Function. Symmetry. 2024; 16(2):226. https://doi.org/10.3390/sym16020226
Chicago/Turabian StyleSrivastava, Hari M., Sheza M. El-Deeb, Daniel Breaz, Luminita-Ioana Cotîrlă, and Grigore Stefan Sălăgean. 2024. "Bi-Concave Functions Connected with the Combination of the Binomial Series and the Confluent Hypergeometric Function" Symmetry 16, no. 2: 226. https://doi.org/10.3390/sym16020226
APA StyleSrivastava, H. M., El-Deeb, S. M., Breaz, D., Cotîrlă, L. -I., & Sălăgean, G. S. (2024). Bi-Concave Functions Connected with the Combination of the Binomial Series and the Confluent Hypergeometric Function. Symmetry, 16(2), 226. https://doi.org/10.3390/sym16020226