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1. Introduction and Preliminaries

The Geometric Function Theory of Complex Analysis is the study of the relationship
of analytic properties of a given function and the geometric properties of its image domain.
This subject has a remarkably rich literature due mainly to its potential for applications in
the mathematical and physical sciences, and also in other areas. In particular, the estimate
distributed under the terms and  Problems for the Taylor-Maclaurin coefficients of analytic and univalent functions have
conditions of the Creative Commons ~ been investigated extensively and widely. As an example, we cite the celebrated de Branges
Attribution (CC BY) license (https://  theorem, which asserts the truths of the Milin conjecture of 1971, the Robertson conjecture
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Investigations of the estimate problems for the Taylor-Maclaurin coefficients of the
analytic functions, which are bi-univalent (that is, both the function and its inverse are
univalent), were initiated by Brannan et al. (see [2,3]) (see also the related work by Ne-
tanyahu [4]). More recently, after the publication of the pioneering work on the subject by
Srivastava et al. [5], analogous coefficient problems have been studied for various interest-
ing subclasses of the class of analytic and bi-univalent functions. These subclasses include
the classes of bi-starlike functions, bi-convex functions, bi-close-to-convex functions, and so
on (see, for example, [6-11]).

The coefficient estimate problems, which we consider in this article, involve some
new subclasses of analytic and bi-concave functions. Some earlier studies of the coefficient
estimate problems for other subclasses of analytic and bi-concave functions include (for
example) the works in [12-16].

We begin now by supposing that A represents the class of functions of the form
given by

F)=z+) oz (z€A), (1)
t=2
which are analytic in the open unit disk
A={z:zeC and |[z] <1}

As usual, we denote by S the subclass of the analytic function class A, which consists of
functions that are also univalent in A.
We also let the function % € A be given by

H(z)=z+ ict z! (z€A). ()
=2

The Hadamard product (or convolution) of 7 and H is given by
(FxM)(2)i=z+ Y maz = (HxF)(x) (2€A).
t=2
The Koebe one-quarter theorem (see, for details, [17]) states that the image of A under

1
every univalent function 7 € S contains the disk of radius T Therefore, every function

)

F € S has an inverse F ! that satisfies the following property:

N

FF 1 (w) = w (|w| < ro(F); ro(F) 2

where
G(w) = F Yw) = w— ayw?® + (211% — a3) w?

— <5ag — 5aa3 + a4)w4 +---(weA), 3)

the function G being the analytic extension of F~! to A.

As we mentioned above, a function F € A is said to be bi-univalent in A if both F
and its inverse 7! are univalent in A. Let & denote the class of analytic and bi-univalent
functions in A given by (1). Remarkably, in their pioneering work in the year 2010,
Srivastava et al. [5] actually revived the study of analytic and bi-univalent functions in
latter years. Moreover, the current literature is flooded by many sequels to their paper [5].
We recall from [5] that the following functions:

f'i(z):l_z, fz(z):flog E

z 1 14z
2

) and F3(z) = —log(l—z),
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together with their corresponding inverse functions:

e —1
ew 7

w 1 |

]-"fl(w) = 1rw FyH(w) = 201 and ]’gl(w) =

are elements of X (see [5]). For a brief history and interesting examples of functions in the
class X, see the work of Brannan et al. [2]. Brannan and Taha [3], and also the more recent
work of Srivastava et al. [5]) who introduced certain subclasses of the bi-univalent function
class X similar to the familiar subclasses S*(7y) and K(7y) of starlike and convex functions
of order v (0 <y < 1)in A, respectively.

A function F : A — C is said to belong to the family Cy(-y) if F satisfies the following
conditions:

(i) F is analytic in A with the standard normalization given by
F(0)=F(0)—1=0.
(ii) 7 maps A conformally onto a set whose complement with respect to C is convex.
(iii) The opening angle of F(A) at oo is less than or equal to 77y (7y € (1,2]).
The class of concave univalent functions in A is usually represented by the notation
Co(7y). For a detailed description of concave functions, see [14,18]. The following inequality:

z F''(z2)
F'(z)

§R<1+ ><O (z€A)

was used by Bhowmik et al. [19] in order to prove that an analytic function / maps A onto
an angled concave domain 777y if and only if

R(Pr(z)) >0 (z€A),

where

P]:(Z): 2 ((’)’—l—l)(l-f—Z) 1 Zf//(z)).

y—1 2(1—2z2) o F'(z)

The existing literature contains a number of investigations on various subclasses of the
class Cy(7y) of concave univalent functions in A (see [12,16]).
Next, we denote by (A); the Pochhammer symbol or the shifted factorial, since

(1)t = t! (t € No).

It is defined for A, v € C, and in terms of the familiar Gamma function, by

"~ T(A+1) 1 (v=0; A eC\{0})
= =

T(4) AA+1)--(A+t—1)  (teN; A€C).
Here, and in what follows, it is understood conventionally that (0)y := 1 and assumed

tacitly that the I'-quotient exists.
In terms of the above-defined Pochhammer symbol (1), the generalized hypergeo-
metric function ,F; (p,q € Np), with p numerator parameters

§ET (j=1,,p)
and g denominator parameters

BicC\Zy (j=1---,9)
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. [ w, ey z] ._ i (@) (ap)s 2t
rlq = — —
]
Bl 1 Ba; = (Br)e- -~ (By)e
=t pFy(an, - apiPr,- o, Byiz) (4)

in which the infinite series

(i) converges absolutely for |z| < 0 if p < g,
(ii) converges absolutely for |z| < 1if p =g+ 1, and
(iii) divergesforallz (z #0) if p >g+1.

For p —1 = q = 1, the Equation (4) defines the Gauss hypergeometric function F,
given by

ay v (1)) 2
oF1 (w1, 05 B1;2) = t:ZO GO (z€N),

so that, by the principle of confluence, we have the confulent hypergeometric function ;F;
defined by (see, for details, [20,21])

F(a; B;z) == 1Fi(a1; pr;z) = a}iinoo{zpl <¢x1,zx2;/31; “21)}
B
= (B

Recently, Porwal and Kumar [22] (see also [23,24]) introduced the confluent hypergeo-
metric distribution (CHD) whose probability mass function is given by

(z,aeC, peC\{0,-1,-2,---}).

H-‘N

P = (B): t!(g();;ﬁ;m) @ pm >0t =0,1,2,-).

On the other hand, El-Deeb [23] introduced the following series Z(a; ; m; z) whose coeffi-
cients are probabilities of the above-defined confluent hypergeometric distribution:

t—1
(a);_ym 2 (a,Bm>0). @)

I(a; B;m;z) = Z+t;2 (B),  (t—1)! F(a; B;m)

El-Deeb [23] also defined the following linear operator Q%" F : A — A:
QUM F(2) = T{a fim;z) + F(2)
t—1

(a);_qm
_Z+Z tl(t—ll)'P(txﬁm) a; 7t (b,c,m > 0).

Now, by making use of the binomial series:

(1-2z2) = Zr: <r> (—z) (re Ng:=NuU{0}),

=0 M

we introduce the following linear differential operator for 7 € A given by (1):

Dy F (z) = QUPM F(z), (6)
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DY F(z) = DY (2) = (1 9) QUM F(2)
+ 1= (1= 0)Tz(@" F) (2)

) o mtfl
=z+ Z[l—i—(t—l)cr(é)]( ()i )> azt(7)

(B)rq (t=1)! F(a; B;m

=2
and
DY () = DY (D Lben F(z)
— (1 =) DY 1bemF(z) 4 [1— (1 - 5)’]Z(Dfr”*1'b'cfmf(z))'
_ = r n (D‘)tflmtil
SRR <<ﬂ>t_1 1) F(a;ﬁ;m) “i
=z+4 i rar z' (8)
=2
(6>0; a,,m>0; r,n €Np),
where -
_ o r n (“)tflm B
po= =) ((ﬂn_l (-1 F(a ﬁ;m)> ©)
and

co=-% () o cen. (10)
j=1
We find from (8) that
¢"(8) z (fo"f""ﬂ”"f(z))' = pOmFIBI oy 11— () DI FZ). (11)
Remark 1. Each of the following special cases is worthy of note:

(i) Putting n = 0, we obtain
pptn _ g,

where QUM is given by

a; 2t (12)

) AR
B () — 1
QP F(z) +t_22<(‘3)t1 (t—1)!F(zx;ﬁ;m)>

(ii) Putting v = 0, we obtain

Dg,n,zx,ﬁ,m —. In’“’ﬁ’m,

where TP is given by

t=2 (B)i—1 (t=1)! F(a; B;m
Definition 1. We define the functions h, p : A — C, so that

min {R(h(z)), R(p(z))} >0

I”""fﬁ"”}'(z)=z+i(1+(t—1)]”< (W) ))atz*. (13)

and
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that is,
h(z) =1+ ) hy2" and  p(z) =1+ ) puz" (z€A). (14)
n=1

n=1

Under the above-mentioned conditions, the functions h and p are said to belong to the class P.

The subclass Df’n’“'ﬁ "™ Co(7y) of bi-concave functions in A is now introduced by Definition 2
below.

Definition 2. A function F of the form (1) is said to be in the class Df’"’“’ﬁ " Co(y) of bi-concave
functions F € X if the following conditions are satisfied:

,D;)",n,tx,ﬁ,m]:- "
Fey ad 2| FDA+2) —1—Z< (z)>, ch(A)  (15)
v—1 2(1—2z2) (Dfﬂr%ﬁrm]:(z)>
and
w Df’"’“’ﬂ "G (w !
Fey ad 2| OFDA+w) ( ( )>, ep(A),  (16)
¥—1 2(1 — w) (Df,n,a,ﬁ,mg(z()))

where 6 > 0, a,p,m > 0,r € N, n € Ngand v € (1,2]. Moreover, the function G in the
condition (16) is the analytic extension of F 1 to A, which is given by the Equation (3), and the
functions h p € P are defined and used as in Definition 1.

Remark 2. Our present investigation of the coefficient estimate problems makes use of Definition 2
involving the functions p and h of the class ‘P for which the following important coefficient inequali-
ties hold true for functions p, h € P given by (14):

lpn| €2 and  hy|£2 (neN:={1,23,---}),
wherein the equality is valid for the extremal functions:

1—
=1+2z4+2224--- and p(z)——zzl—22+222—~~~ (z € A).

_1+z
a T 142z

h(z) T

Several interesting examples of the functions p and h, which are motivated by the above extremal
functions, and also such examples as those given below:

14 14
(11—2> and (1_‘_2) 0<a=1)

1+ (1—-20)z and 1—(1-20)z
1-z 14z

and
(0<o=1),

will be considered in the corollaries and consequences of our main results in Theorem 1 below (see
also Remark 4).

It may be possible to suitably replace the functions p, h € ‘P in Definition 2 by members of
other function classes defined in A. However, the investigation of the analogous coefficient problems
for the correspondingly-defined bi-concave function classes will presumably be much more involved
than what we have presented in this article.

Remark 3. Each of the following special cases is worthy of note:
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(i) Putting n = 0, we obtain
DYYPICo(y) =GP Co(y),

where G¥PMCy () represents the functions F € ¥ that satisfy the conditions in (15) and (16) with
Df’"’“’ﬁ "™ veplaced by Q¥P™, which is given by (12);
(ii) Putting v = 0, we obtain

Dy Py () = RMPMCy (),

where R™*P™MCy(7y) represents the functions F € ¥. that satisfy the conditions in (15) and (16)

o,m,e,B,m

with D,’ replaced by T"%F™  which is given by (13).

2. Coefficient Bounds for the Bi-Concave Function Class Df’"’“’ﬁ "Co(7)
Throughout this section, we assume that § > 0, «,8,m > 0,t € Nand n € Ny.

Theorem 1. If the function F given by (1) belongs to the class Df’”’“’ﬁ MCo(y), and if v € (1,2],
then

ol < mm{ J (12 D (WOPPOP) (2 1)) + 7o)

W 5242 892 /
G- D(OI ") 71 ;
\/ 16202 —39s) | 2(24% —39s) } 17

and

8(v+1)°+ (=D’ (INOF + 1P OF) (12— 1) (' (0)| + [p'(0)])
3243 i 842

7

las| = miﬂ{

L =D O]+ ")) (v=1) (Bys — ¢3) [ (0)] + (v — D y3]p"(0)]
483 2495 (293 — 3¢3)

¥+1
) 18
i 2(2¢%3w3)} 19

where Py (t € {2,3}) is given by (9).

Proof. If F € Df’n’“’ﬁ "™Co(y), then it follows from (15) and (16) that

o,n,b,c,m "
2 [(r+D(A+z) | F (Df F(Z)) = h(z) (19)
y—1| 20—z (Dyoeom 7 (2))
and I
on,b,c,m
2 [ (v+1)(1+w) 1 @ (Df g(w)) = p(w) (20)
1| 2(1-w) (D bemg (w)) ’

where the functions & and p satisfy the conditions in Definition 1 and the function G in
the assertion (20) is the analytic extension of 7! to A, which is given by the Equation (3).
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Furthermore, the functions h(z) and p(w) have the following Taylor-Maclaurin series
expansions:
h(z) =1+ hiz+hyz® + - - (21)

and
p(w) =14 prw + pow® + -, (22)

respectively.
In view of the above Equations (21) and (22), we compare the coefficients of z and w
in (19) and (20). We thus find that

2[(7 +1) — 2¢par]

o =, (23)
2 1) +4¢3a3 —6
[(v +1) + 49303 — 6ysas] _ | 24
¥—1
_2[(r+1) = 2¢ay]
and
2[(v +1) +4y3a3 — 6¢3(203 —a3)] _
= P2 (26)
¥—1
Now, by using (23) and (25), we obtain
= —pr. 27)
From (23), we can write
y+1 -1
ay = - hy. 28
2= T g, (28)

Upon squaring (23) and (25), if we add the resulting equations, we get

o (1) (PR (P,
ap = 44)% + 324)% SIIJ% (hl pl) (29)

Adding (24) and (26), we have

o (r—Da+tp)  r+1
a; = 5 > . (30)
8(2y3 —3y3)  2(2y3 —3y3)
By taking the moduli in (29) and (30), we conclude that
2112 112
< J (417, =D (WOP+IPOF) (2 () +1p o)
R 3243 83
and
< [ =D(r"O)] +[p"(0)]) r+1
|az| = 5 + 5 ,
16(2973 — 3s) 2(293 — 3¢3)
which gives the bound for |a;| as we asserted in Theorem 1.
In order to find the bound for |a3|, by subtracting (26) from (24), we get
a3 = a3 — (7_1)(}12_]92). (31)

2443
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Also, upon substituting the value of a% from (29) and (30) into (31), we obtain

(r+1D* (o =D*(B+pd)  (*-1) (v =1) (2 — p)

a3 = pm + 3242 Y (= p1) — 249, (32)
and
= - Dtp) v+l (r=Dla—p) (33)
8(295 —3¢s)  2(2y3 — 3¢3) 2443
Finally, by taking the moduli in (32) and (33), we obtain
_80 P+ (=D (WOP 1P OF) (2= 1) (K@) + ¥ O))
las| = 32¢2 " 813
(r =D O] +[p"(0)])
+ 157 (34)
and 2 h// 214,/

243 (297 — 33) 2(2y3 —3ys)
which completes the proof of Theorem 1. [

Putting r = 0 in Theorem 1, we obtain the following corollary.

Corollary 1. If the function F given by (1) belongs to the class R™“F™Cy (), and if y € (1,2],
then

| {(mm DE@ g2 B0y = DE@gm (11 0)f + 7' (0)F)
|az| < min +

22(n+1) 2712 22(n+1)+3 4242

+ 22(n+1)+1424,2

(72 = 1) [BF(o; By m) (|1 (0)| + P’(0)|)> %/

8(y +1) + (v — 1)(J(0)] + |p" (0)]) } } (36)

2 2
n41 am _an+l (a)ym
16 [2 (i) =3 (2 P

and

_ . R 2
5] < min{ PO DB [s6y 417 + (v - 12 (W@ + ) )

+4(2=1) (") + [ ©O)])| + = 1P, é()oz3ﬁ+T;((l];2,S?z)| A

() m? 2 2
=) [ (gt himn ) — 2 (st ) | WO +2°0 = 1) (gt ) 1 O)

86" (53R ) {2"“ (srim) —o" (%ﬁ)(z%(mﬁnﬂ”

v+1
i n+1 am 2 n+1 (a),m?
? {2 (prtigm) —3 (W(mﬁm)]

Putting n = 0 in Theorem 1, we obtain the following corollary.

(37)
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Corollary 2. If the function F given by (1) belongs to the class G¥F"Cy(7y), and if v € (1,2],

then
(e DF@gmP = DE@EmP ([ ©)F + 17 0)F)
42| £ min 472 * 320272
| P DIE@EmP(H )] + |p’<o>|>)%
8b2m? ’
8(v+1)+ (v =1)([W" O] + Ip"(O)]) } 8)
bm 2 (b)zmz
16{2@@%) ‘3(z<>F<ﬁm>)]
and
< mm{ By = DE@ Bm)] [8(7v+1)7 + (v = 1)* (I O)F + 7' (O)F )]
= 32a2m?
LB =DF@pm) (4 1) (IW(0)] + [p'(0)])]
32a2m?
L (1= 1) (B)a Fas frm) (W (0)] + | (0)])
24(a),m? ’

m? ar 2 am 2
(r=1) (3[2(ﬁ)(:)Fz(a;B;m) ~ (rttgm) D'h"(o) + (=) (it ) 19(0)
(a)ym® am_\? g
24z, Foogm) [2 (arm ) —2 (s R )]
+1
2’)/ (),m? } (39)
i — 3 &m”
2 {2</5F(“;52m)> 3(2(5)2 F(ﬂt;ﬁ;fﬂ))}
Remark 4. The functions h and p, which we introduced in Definition 1 and used in Theorem 1, as

well as in Corollarys 1 and 2 above, play a significant role in our investigation. For example, by
appropriately specializing the functions h and p in Theorem 1, we are led to Corollarys 3 and 4 below.

Corollary 3. If the functions h and p are given by

14
h(z):(iii) =1+2az+20°2% +--- 0<a=s1)
and .
P(Z)ZGJ_i) =1-2az+20°2"—--- (0<a<1),

and if the function F given by (1) belongs to the class DY M Co(y) and v € (1,2], then

) )+ (=R 42(2 - D [(r+ 1)+ (= 1a?
'”2'5“““W s e } o
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and
1)+ (122 +2(12 - (y—1)a?
|as| = mm{ W L
[ =1 B¥s —93)[? + (v =Dy 741 @)
63 (245 — 3y3) 2(293 = 3¢3) |’
where Py (t € {2,3}) is given by (9).
Corollary 4. If the functions h and p are given by
h(z):@zl+2(l—a}z+2(l—a)zz+~~ (020<1)
and
p(z) = % =1-21-0)z+2(1-0)2>+--- (0Z0<1),
and if the function F given by (1) belongs to the class pYb MCo(vy) and v € (1,2], then
jaz| < mm{\/<v+ V4 (- 10200 202 - o)
43
\/ 2247~ 39s) } 42
and
8(y+1)%+ (v — DK (0) +|p' (0)] 2 _ 1\ (11 /
ool < [0 O (2 (O] +[p'(0)7) L DO+ o)
32¢; 813
L =D+ PO (v = 1) (Bys = y3) 1" (O)] + (v = Dy3[p"(0)]
4813 ' 2413 (293 — 3y3)
r+1
— ¢, 43
T2yl ap) } )

where Py (t € {2,3}) is given by (9).

3. Concluding Remarks and Observations

In our present investigation, we have introduced and studied the properties of some
new subclasses of the class of analytic and bi-concave functions in the open unit disk A by
using the combination of the binomial series and the confluent hypergeometric function.
Among some other properties and results, we have derived the estimates on the initial
Taylor-Maclaurin coefficients |a; | and |a3]| for functions belonging to the bi-concave function
classes, which are introduced in this paper. As some of the interesting consequences of our
main results in Theorem 1, we have deduced a set of four corollaries. Each of these results is
potentially useful in motivating further research on various other subclasses of the class of
normalized analytic (or meromorphic) and univalent (or multivalent) bi-concave functions.

In this article, we have considered the coefficient estimate problems for the initial
Taylor-Maclaurin coefficients for functions in some specified subclasses of the class of ana-
lytic and bi-concave functions in A. It would be of interest to investigate the applications of
the Faber polynomial expansion method (see [25,26]) in order to tackle the coefficient esti-
mate problems for the general Taylor-Maclaurin coefficients for these and other subclasses
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of the class of analytic and bi-concave functions (see, for details, [27-29]; see also [30] and
the references to the earlier literature on the subject, which are cited in each of these works).
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