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Abstract: In this paper, we investigate and specify the Bertrand offsets of slant ruled and developable
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1. Introduction

In the spatial kinematic, the locomotion of an oriented line embedded linked with a
mobile solid body is mostly a ruled surface (RS). As it is a significant theme of research in
vintage differential geometry, it has been appraised by numerous scholars; see [1–7]. From
the geometric point of view, the distinctive characteristics of ruled surfaces and their offset
surfaces have been inspected in both Euclidean and non-Euclidean spaces. In the context
of line geometry, Ravani and Ku released the theory of Bertrand (B) curves for RS [8].
They showed that a RS can have an infinite number of Bertrand offsets (BO), much as a
plane curve can have an infinite number of B matches. Küçük and Gürsoy have specified
some descriptions of BO of trajectory RS in view of the connections through the projection
areas for the spherical curves of BO and their integral invariants [9]. In [10], Kasap and
Kuruoglu obtained the interrelations through integral invariants of the couple of the RS
in Euclidean 3-space E3. In [11], Kasap and Kuruoglu actuated the research of BO of RS
in Minkowski 3-space. The involute–evolute offsets of RS were located by Kasap et al.
in [12]. Orbay et al. [13] instigated the search of Mannheim offsets of the RS . Onder and
Ugurlu obtained the relationships through invariants of Mannheim offsets of timelike RS ,
and they presented the issues for these surface offsets to be developable [14]. In view of
the involute–evolute offsets of ruled surfaces, in [7], Senturk and Yuce designed integral
invariants of these offsets via the geodesic Frenet frame [15]. More recently, Yoon explored
evolute offsets of the RS in Minkowski 3-space E3

1 with stationary Gaussian curvature and
mean curvature [16]. Also, Ref. [17] introduced some characterizations for a non-null RS
to be a slant RS in E3

1 , and described the relationships between a non-null slant RS and its
striction line. M. Onder and O. Kaya in [18] obtained new characterizations for slant RS in
the Euclidean 3-space. There exist a considerable number of written works on the topic
of comprehensive diverse treatises; for instance, [19–24]. Nevertheless, to our knowledge,
there is no work related to creating BO of slant RS via the geometrical properties of the
striction curve (SC). This paper is suggested to assist with such a requirement.

In this paper, a generalization of the helical curves is offered for ruled developable sur-
faces. Interestingly, the consequences slightly clarify the symmetry among point geometry
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of helical curves and line geometry of ruled surfaces. If all the rulings of a ruled surface have
a stationary angle with a definite line then the ruled surface is a slant ruled surface. Conse-
quently, we defined the BO of slant ruled and developable surfaces. As administrations of
our central repercussions, we used some models to demonstrate the procedure.

Our findings contribute to a deeper understanding of the interplay between spatial
movements and ruled surface, with potential applications in fields such as robotics and
mechanical engineering.

2. Basic Concepts

In this section, we provide some connotations, including for RS in Euclidean 3-space
E3 that can be found in the textbooks of differential geometry [1–3].

A represented surface

M : x(u, v) = c(u) + ve(u), u ∈ I, v ∈ R, (1)

such that
< e,e>=<e′, e′ >= 1, < c′, e′ >= 0, ′ =

d
du

,

is coined a RS ; c(u) is the SC and the variable u is the arc length of the spherical image
e = e(u) ∈ S2. This parametrization provides an opportunity to check the kinematic
geometry and pertinent geometric diagnostics. For the geometrical ownerships of M, we
set up t(u) = e′, f(u) = e× t. Then, the set {e(u), t(u), f(u)} is the movable Blaschke
frame of e(u) ∈ S2 and the vectors t and f are designated as the central normal and the
asymptotic normal of M, respectively. Thus, the Blaschke formula is e′

t′

f′

 =

 0 1 0
−1 0 χ
0 −χ 0

 e

t

f

 = ω ×

 e

t

f

, (2)

where ω(u) = χ(u)e(u) + f(u) is the Darboux vector, and χ(u) is the geodesic curvature of
e(u) ∈ S2. The tangent of the SC is

c′(u) = λ(u)e(u) + µ(u)f(u). (3)

χ(u), λ(u) and µ(u) are referred to as the structure elements of the ruled surface. The
geometric ownerships of λ(u) and µ(u) are demonstrated as follows: λ(u) narrates the
angle through the tangent to the SC and the ruling of the surface and µ(u) is the distribution
parameter of M. By the differential organization (2)—a non-developable RS can be
realized as follows:

M : x(u, v) =
u∫
0

(λ(u)e(u) + µ(u)f(u))du + ve(u), u ∈ I, v ∈ R. (4)

The unit normal vector n(u, v) of M is

n(u, v) =
xu × xv

∥xu × xv∥
=

−vf+ µt√
µ2 + v2

, (5)

which is the central normal t at the striction point (v = 0). The curvature center of e(u) ∈ S2

is qualified by

b(u) =
ω

∥ω∥=
χ√

1 + χ2
e+

1√
1 + χ2

f. (6)

Let α be the radii of curvature through b and e. Then,

b(u) = cos αe+ sin αf, with cot α = χ(u). (7)
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The geodesic curvature χ(u), the curvature κ(u) and the torsion τ(u) of e(u) ∈ S2 fulfil that

κ(u) =
√

1 + χ2 =
1

sin α
=

1
ρ(u)

, τ(u) := ±α′ = ± χ′

1 + χ2 , (8)

where 0 < α ≤ π
2 .

Corollary 1. If χ(u) is a steady, then e(u) ∈ S2 is a circle.

Proof. Via Equation (8) we can figure out that χ is steady yields that τ(u) = 0, and κ(u)
is steady straight away, which reveals e(u) ∈ S2 is a circle (If χ(u) ̸= 0) or a great circle
(when χ(u) = 0).

Let us have a mobile frame {c(u); a1, a2, a3}; c′(u)∥c′(u)∥−1=a1(u) be the tan-
gent unit vector to c(u), a3(u) = t(u) is the surface unit normal united with c(u), and
a2(u)=a3 × a1 be the tangent unit to M. Thus, we have the following Darboux formulae

 a1
a2
a3

 =


λ√

λ2+µ2
0 µ√

λ2+µ2
µ√

λ2+µ2
0 − λ√

λ2+µ2

0 1 0


 e

t

f

. (9)

Let ϑ be the arc length of c(u), that is, dϑ =
√

λ2 + µ2du. Then,

d
dϑ

 a1
a2
a3

 =

 0 κg κn
−κg 0 τg
−κn −τg 0

 a1
a2
a3

, (10)

where

κg(ϑ) =
1

λ2 + µ2
d

dϑ
(µ

dλ

dϑ
− λ

dµ

dϑ
), κn(ϑ) =

λ − χµ

λ2 + µ2 , τg(ϑ) =
µ + χλ

λ2 + µ2 . (11)

κg(ϑ), κn(ϑ), and τg(ϑ) are the geodesic curvature, the normal curvature, and the geodesic
torsion of c(ϑ), respectively. Thus,

(1) c(ϑ) is a geodesic curve if κg(ϑ) = 0.
(2) c(ϑ) is an asymptotic curve if κn(ϑ) = 0.
(3) c(ϑ) is a curvature line if τg(ϑ) = 0.

Definition 1. A ruled surface is named a slant ruled surface if all its rulings have a stationary
angle with a stationary definite line.

3. Bertrand Offsets of Slant Ruled Surfaces

In this section, we contemplate and discuss BO of slant ruled surfaces. Then, a theory
approximate to the theory of offset curves can be expanded for such surfaces.

3.1. Height Functions

In approximate with [25], a point b0 ∈ S2 will be coined a bk curvature-center of the
curve e(u) ∈ S2; for all u such that < b0, e(u) >= 0, but < b0, ek+1

1 (s) > ̸= 0. Here ek+1

signalizes the k-th derivation of e(u) with regard to u. For the first curvature-center b

of e(u), we find < b, e′ >= ± < b, t >= 0, and < b, e′′ >= ± < b,−e+χf > ̸= 0. So, b is at
least a b2 curvature-center of e(u) ∈ S2. We now mark a height function a : I ×S2 → R, by
a(s, b0) =< b0, e >. We engage the notation a(u) = a(u, b0) for any steady point b0 ∈ S2.
Hence, we state the following:
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Proposition 1. Under the above assumptions, we find that:
i—a will be steady in the first estimation if b0 ∈ Sp{e,f}, that is,

a′ = 0 ⇔< e, b0>=0 ⇔< t, b0>=0 ⇔ b0=c1e+c3f;

for real numbers c1, c3 ∈ R, and c2
1 + c2

3 = 1.
ii—a will be steady in the second estimation if b0 is b2 for the curvature axis of b0 ∈ S2, that is,

a′ = a′′ = 0 ⇔ b0=± b.

iii—a will be steady in the third estimation if b0 is b3 curvature axis of b0 ∈ S2, that is,

a′ = a′′ = a′′′ = 0 ⇔ b0= ±b, and χ′ ̸= 0.

iv—a will be steady in the fourth estimation if b0 is b4 curvature axis of b0 ∈ S2, that is,

a′ = a′′ = a′′′ = aiv = 0 ⇔ b0= ±b, χ′ = 0, and χ′′ ̸= 0.

Proof. 1— For the first derivation of a we find

a′ =< e′, b0>. (12)

So, we acquire
a′ = 0 ⇔< t, b0>=0 ⇔ b0=c1e+c3f; (13)

for real numbers c1, c3 ∈ R, and c2
1 + c2

3 = 1, the consequence is evident.
2—Derivation of Equation (12) show that:

a′′ =< e′′, b0>= < −e+ χf, b0> . (14)

Based on the Equations (13) and (14) we have:

a′ = a′′ = 0 ⇔< x, b0>= < x, b0>=0 ⇔ b0= ± e′ × e′′

∥e′ × e′′∥ = ±b.

3—Derivation of Equation (13) offers that:

a′′′ =< e′′′,b0 >=
(

1 + χ2
)
< t, b0>+ χ′ < f, b0>

Hence, we have:
a′ = a′′ = a′′′ = 0 ⇔ b0= ±b, and χ′ ̸= 0.

4—Based on the identical arguments, we can also have:

a′ = a′′ = a′′′ = a′′′′ = 0 ⇔ b0= ±b, χ′ = 0, and χ′′ ̸= 0.

The proof is complete.

In view of Proposition 1, we have:

(a) The osculating circle S(ρ, b0) of e(u) ∈ S2 is displayed by

< b0, e >=ρ(u), <e, b0 >= 0,<e, b0 >= 0,

which are indicated based on the condition that the osculating circle must have a
touch of at least the third order at e(u0) if χ′ ̸= 0.
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(b) The curve e(u) ∈ S2 and the osculating circle S(ρ, b0) have a touch of at least the
fourth order at e(u0) if χ′ = 0, and χ′′ ̸= 0.

In this vein, by mediating the curvature centers of e(u) ∈ S2, we can obtain a sequence
of curvature axes b2, b3,..., bn. The ownerships and the mutual links among these curvature
centers are highly enjoyable issues. For instance, it is easy to see that if b0=± b, χ′ = 0,
e(u) is locating at α is steady relative to b0. In this situation, the curvature center is steady
up to the second order, and M is described as a slant ruled surface. As a result, we have
following theorem:

Theorem 1. A non-developable RS is deemed a slant RS if its geodesic curvature χ(u) is stationary.

Definition 2. Let M and M∗ be two non-developable ruled surfaces in E3. M is defined as an
offset of M∗ if there exists a bijection through their rulings, such that M and M∗ have a mutual
central normal at the analogical striction points.

Let M∗ be a B offset of M∗ and {c∗(u∗); e(u∗), t(u∗), f(u∗)} is the Blaschke frame of
M∗ as in Equations (2)–(4). Then, the surface M∗ can be written as

M∗ : r∗(u∗, v) = c∗(u∗) + ve∗(u∗), v ∈ R, (15)

where
c∗(u∗) = c(u) + ϕ∗(u)t(u). (16)

Here, ϕ∗(u) is the distance function among the analogical striction points of M and M∗.
By the derivation of the Equation (16) via u, we gain

t∗u∗′ = (λ − ϕ∗)t+ ϕ∗′ t+ (µ + χϕ∗)f. (17)

Since t∗ = t at the congruent striction points of M and M∗ with u∗′ ̸= 0 we gain ϕ∗′ = 0.
This occurs when ϕ∗ is steady. Moreover, if ϕ is the angle among the rulings of M and M∗

at the analogical striction points, that is,

< e∗, e >= cos ϕ. (18)

By derivation of Equation (18), we obtain

< t∗, e > u∗′+ < e∗, t >= −ϕ′ sin ϕ. (19)

Since M and M∗ are BO each other’s (t∗ = t), then we have ϕ′ = 0, so that ϕ is steady.
Since t∗ = t at the analogical striction points of M and M∗, it follows that the asymptotic
normals of M and M∗ also have the same steady angle at the matching striction points.
Thus, the correlation amidst their Blaschke frames can be written as: e∗

t∗

f∗

 =

 cos ϕ 0 sin ϕ
0 1 0

− sin ϕ 0 cos ϕ

 e

t

f

. (20)

If ϕ = π/2 and ϕ = 0, then the BO are coined to be right offsets and oriented offsets,
respectively [8]. The major point to note here is the technique we have applied (compared
with [8]). In conclusion, we find that:

Theorem 2. The offset angle ϕ and the offset distance ϕ∗ at the analogical striction points of M
and M∗ are constants.

It is evident from Theorem 2 that a non-developable RS commonly has a double
infinity of BO. Each BO can be traced by a steady linear offset ϕ∗ ∈ R and a steady angle
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offset ϕ ∈ [0, 2π]. Any two surfaces of this pencil of ruled surfaces are alternates of one
another; if M∗ is a BO of M, then M is likewise a BO of M∗.

Let n∗(u∗, v) be the unit normal of M∗. Then, as in Equation (6), we have:

n∗(u∗, v) =
x∗u × x∗v

∥x∗u × x∗v∥
=

−vf∗ + µ∗t∗√
µ∗2 + v2

, (21)

where µ∗ is the distribution parameter of M∗. It is evident from Equations (5) and (21) that
the normal state of RS and its BO are not the same. This signifies that the BO of a RS are,
commonly, not parallel offsets. Therefore, the parallel conditions among M∗ in terms of
M can be described by the next theorem:

Theorem 3. M and M∗ are parallel offsets if (1) µ = µ, (2) their Blaschke frames are collinear.

Proof. Let n∗(u∗, v)× n(u, v)= 0, that is, M and M∗ are parallel offsets. Then, based on
Equations (5) and (21), we have

v(µ cos ϕ − µ∗)e+v2 sin ϕt+vµ sin ϕf = 0,

which is hold true for any value v ̸= 0, that is, ϕ = 0 and µ = µ∗.
Let the two situations of Theorem 2 hold true, that is, ϕ = 0, µ = µ∗, and then use

them in n∗(u∗, v)× n(u, v). Then, we have

n∗(u∗, v)× n(u, v) =
−vf∗ + µ∗t∗√

µ∗2 + v2
× −vf+ µt√

µ2 + v2
,

which is zero vector, that is, M and M∗ are parallel offsets.

Using this method again in the same fashion, but now for developable surface µ = 0,
we have:

Corollary 2. A developable RS and its developable BO are parallel offsets if their Blaschke frames
are collinear.

Corollary 3. A developable RS and its non-developable BO cannot be parallel offsets.

Furthermore, we also have

d
du∗

 e∗

t∗

f∗

 =

 0 1 0
−1 0 χ∗

0 −χ∗ 0

 e∗

t∗

f∗

, (22)

where
du∗ = (cos ϕ + χ sin ϕ)du, χ∗du∗ = (χ cos ϕ − sin ϕ)du. (23)

By eliminating du∗/du, we acquire

(χ∗ − χ) cos ϕ + (1 + χ∗χ) sin ϕ = 0. (24)

This is a neoteric version of BO of ruled surfaces in terms of their geodesic curvatures.

Theorem 4. M and M∗ are BO if the Equation (24) is fulfilled.

Corollary 4. The BO of a slant RS is also a slant RS .

Corollary 5. M and M∗ are parallel offsets if χ∗ − χ = 0.

Corollary 6. M and M∗ are oriented offsets if 1 + χ∗χ = 0.
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3.2. Construction of Slant Ruled Surface and Its BO
In this subsection, we describe the construction of slant ruled surface and its BO.
When χ(u) is stationary, from the Equations (2) and (7), we have the ODE, e′′′+ κ2e = 0.

After numerous algebraic manipulations, the solution to this equation is

e(φ) = (sin α sin φ, sin α cos φ, cos α), (25)

where φ =
√

1 + γ2u. Thus, we immediately find that

t(φ) = de
dφ

∥∥∥ de
dφ

∥∥∥−1
= (cos φ,− sin φ, 0),

f(φ) = e× t = (cos α sin φ, cos α cos φ,− sin α).

 (26)

Therefore, based on Equations (3), (25) and (26), the SC c(φ) is:

c(φ) =


(

φ∫
0

λ sin φdφ) sin α + (
φ∫
0

µ sin φdφ) cos α

(
φ∫
0

λ cos φdφ) sin α + (
φ∫
0

µ cos φdφ) cos α

(
φ∫
0

λdφ) cos α − (
φ∫
0

µdφ) sin α


(27)

Based on Equations (4), (25)–(27) the slant ruled surface M has the form

r(φ, v) =


(

φ∫
0

λ sin φdφ) sin α + (
φ∫
0

µ sin φdφ) cos α + v sin α sin φ

(
φ∫
0

λ cos φdφ) sin α + (
φ∫
0

µ cos φdφ) cos α + v sin α cos φ

(
φ∫
0

λdφ) cos α − (
φ∫
0

µdφ) sin α + v cos α


(28)

According to the Equations (15), (20) and (27) the BO surface M∗ can be inferred as

r∗(φ, v) =


(

φ∫
0

λ sin φdφ) sin α + (
φ∫
0

µ sin φdφ) cos α + ϕ∗ cos φ + v sin Θ sin φ

(
φ∫
0

λ cos φdφ) sin α + (
φ∫
0

µ cos φdφ) cos α − ϕ∗ sin φ + v sin Θ cos φ

(
φ∫
0

λdφ) cos α − (
φ∫
0

µdφ) sin α + v cos Θ


, (29)

where Θ = α + ϕ.

3.3. Classification of the Slant Ruled Surfaces

Based on the Equations (28) and (29), and via the shape of the striction curves, the
slant RS and its BO can be classified into three kinds, as follows; we will consider ϕ∗ = 1.

Case 1. If the striction curve is an asymptotic curve, κn = − χµ = 0, there are two
potential issues:

(a). In the issue of α = π/4 (λ = µ), then we have

r(φ, v) = (
√

2

φ∫
0

µ sin φdφ +
v√
2

sin φ,
√

2

φ∫
0

µ cos φdφ +
v√
2

cos φ,
v√
2
),
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and

r∗(φ, v) =


√

2
φ∫
0

µ sin φdφ + cos φ + v√
2
(cos ϕ + sin ϕ) sin φ

√
2

φ∫
0

µ cos φdφ − sin φ + v√
2
(cos ϕ + sin ϕ) cos φ

v√
2
(cos ϕ − sin ϕ)

.

For µ(φ) = φ, −30 ≤ v ≤ 30, and 0 ≤ φ ≤ 2π. The slant RS and its parallel offset are
shown in Figure 1. The slant RS and its oriented offset are shown in Figure 2.

Figure 1. Slant RS (left) and its parallel offset (right).

Figure 2. Slant RS (left) and its oriented offset (right).

(b). In the issue of α = π/2 (λ = 0), then we have

r(φ, v) = (v sin φ, v cos φ,−
φ∫
0

µdφ),

and
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r∗(φ, v) = (cos φ + v cos ϕ sin φ,− sin φ + v cos ϕ cos φ,−
φ∫
0

µdφ − v sin ϕ)

For µ(φ) = 1, −1.5 ≤ v ≤ 1.5, and 0 ≤ φ ≤ 2π, the slant RS and its parallel offset are
shown in Figure 3. The slant RS and its oriented offset are shown in Figure 4.

Figure 3. Slant ruled surface (left) and its oriented offset (right).

Figure 4. Slant RS(left) and its parallel offset (right).

Case 2. If the striction curve is a geodesic curve, we may write

κg =
1

2 + µ2
d

dφ
(µ

dλ

dφ
− λ

dµ

dφ
) = 0 ⇒ λ/µ = c,

where c is an arbitrary constant. Thus, we may have two different cases:
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(a). In the issue of α = π/4, we have

r(φ, v) =



c√
2
(

φ∫
0

µ sin φdφ) + 1√
2
(

φ∫
0

µ sin φdφ) + v√
2

sin φ

c√
2
(

φ∫
0

µ cos φdφ) + 1√
2
(

φ∫
0

µ cos φdφ) + v√
2

cos φ

c√
2
(

φ∫
0

µdφ)− 1√
2
(

φ∫
0

µdφ) + v√
2


and

r∗(φ, v) =



c√
2

φ∫
0

µ sin φdφ + 1√
2

φ∫
0

µ sin φdφ + cos φ + v cos ϕ sin φ

c√
2

φ∫
0

µ cos φdφ + 1√
2

φ∫
0

µ cos φdφ − sin φ + v cos ϕ cos φ

c√
2

φ∫
0

µdφ − 1√
2

φ∫
0

µdφ − v sin ϕ


.

For µ(φ) = c = −1, −3 ≤ v ≤ 3, and 0 ≤ φ ≤ 2π. The slant RS and its parallel offset are
shown in Figure 5. The slant RS and its oriented offset are shown in Figure 6.

Figure 5. Slant RS (left) and its parallel offset (right).

Figure 6. Slant RS (left) and its oriented offset (right).
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(b). For the issue of α = π/2, we have

r(φ, v) = (c

φ∫
0

µ sin φdφ + v sin φ,

φ

c
∫
0

µ cos φdφ + v cos φ,−
φ∫
0

µdφ),

and

r∗(φ, v) =


c

φ∫
0

µ sin φdφ + cos φ + v cos ϕ sin φ

c
φ∫
0

µ cos φdφ − sin φ + v cos ϕ cos φ

−
φ∫
0

µdφ − v sin ϕ


For µ(φ) = −c = 1, −1.5 ≤ v ≤ 1.5, and 0 ≤ φ ≤ 2π. The slant RS and its parallel offset
are shown Figure 7. The slant RS and its oriented offset are shown in Figure 8.

Figure 7. Slant RS (left) and its parallel offset (right).

Figure 8. Slant RS (left) and its oriented offset (right).
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Case 3. If the striction curve is a curvature line, we may write µ + χ = 0, and we may
have two different cases:

(a). In the issue of α = π/4 (λ = −µ), then we have

r(φ, v) = (
v√
2

sin φ,
v√
2

cos φ,−
√

2

φ∫
0

µdφ +
v√
2
),

and

r∗(φ, v) = (cos φ + v cos ϕ sin φ,− sin φ + v cos ϕ cos φ,−
√

2

φ∫
0

µdφ − v sin ϕ).

For µ(φ) = 1, −2 ≤ v ≤ 2, and 0 ≤ φ ≤ 2π. The slant RS and its parallel offset are shown
in Figure 9. The slant RS and its oriented offset are shown in Figure 10.

Figure 9. Slant RS (left) and its parallel offset (right).

Figure 10. Slant RS (left) and its oriented offset (right).
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(b). For the issue of α = π/2 (µ = 0), we have

r(φ, v) = (

φ∫
0

λ sin φdφ + v sin φ,

φ∫
0

λ cos φdφ + v cos φ, 0),

and

r∗(φ, v) =


φ∫
0

λ sin φdφ + cos φ + v cos ϕ sin φ

φ∫
0

λ cos φdφ − sin φ + v cos ϕ cos φ

−v sin ϕ

 (30)

For λ(φ) = 1, −2 ≤ v ≤ 2, and 0 ≤ φ ≤ 2π. The slant RS and its parallel offset are shown
in Figure 11. The slant RS and its oriented offset are shown in Figure 12.

Figure 11. Slant RS (left) and its parallel offset (right).

Figure 12. Slant RS (left) and its oriented offset (right).
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4. Conclusions

This paper develops a theory regarding BO of slant ruled surfaces analogous to the
slant curve theory. In this paper, we legalize the general parameterization of a slant ruled
surface in the Euclidean 3-space E3. In terms of this, we discuss the properties of the
position vectors of the BO for slant ruled and developable surfaces. Hopefully, these scores
will be useful in the field of model-based manufacturing of mechanical products, as well as
in geometric modeling. The authors plan to apply this work in diverse spaces and discuss
the categorization of singularities as they are pointed out in [26,27].
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