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Abstract: Lead recycling is very important for reducing environmental pollution risks and damages.
Liquid lead is recovered from exhaust batteries inside stirred batch reactors; the process requires
melting to be cleaned. Nevertheless, it is necessary to establish parameters for evaluating mixing to
improve the efficiency of the industrial practices. Computational fluid dynamics (CFD) has become
a powerful tool to analyze industrial processes for reducing operating costs, avoiding potential
damages, and improving the equipment’s performance. Thus, the present work is focused on
simulating the fluid hydrodynamics inside a lead-stirred reactor monitoring the distribution of an
injected tracer in order to find the best injection point. Then, different injected points are placed on a
control plane for evaluation; these are evaluated one by one by monitoring the tracer concentration at
a group of points inside the batch. The analyzed reactor is a symmetrical, vertical batch reactor with
two geometrical sections: one cylindrical body and a semi-spherical bottom. Here, one impeller with
four flat blades in a shaft is used for lead stirring. The tracer concentration on the monitoring points is
measured and averaged for evaluating the efficiency inside the tank reactor. Hydrodynamics theory
and a comparison between the concentration profiles and distribution of tracer curves are used to
demonstrate both methods’ similarities. Then, the invariability of the tracer concentration on the
monitoring points is adopted as the main parameter to evaluate the mixing, and the best injection
point is found as a function of the shortest mixing time. Additionally, the influence of the impeller
rotation speed is analyzed as an additional control parameter to improve industrial practices.

Keywords: fluid flow stirring; recycling procedure; evaluation of mixing efficiency; tracer concentration;
computational fluid dynamics (CFD)

1. Introduction

Batteries are electrochemical devices used for storing energy generated using a cell
packaged with a cathode and an anode submerged in an electrolytic solution [1–12]. Lead
and sulfuric acid are in vehicle batteries; these are the most popular product where lead is.
Nevertheless, the components are toxic and corrosive, can pollute air, soil, and water, and
can also be cause for an explosion or a fire. Moreover, exposure to these components can
produce serious health hazards to humans and natural life [1–3,7,13–20]. Zhang, li Sun, and
other authors have talked about some industrial methods for recycling hazardous materials.
Although lead–acid batteries can be physically recharged many times, their working life
is limited, as during each cycle, certain stress is placed on the lead plates, according to
the operating conditions [3,4,6,7,9–13]. This causes short circuits and reduces the battery’s
lifetime [2–5,13]. Prengaman, Hildebrandt, and Tian et al. have been working also on the
recycling of lead batteries due to the fact that these are one of the most dangerous wastes in
the automotive industry [5–8,12,16–19].

Industrially, lead is collected for recycling and reducing environmental damage. Fur-
thermore, the recycling process uses less energy than refining primary ore [2–8,13,14].
Nowadays, recycling has become a clean economical option for many industrial trials
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which want to reduce costs; this fact is a very interesting motivation for studying and
improving industrial lead processing [1–4,6–9,14,15]. Furthermore, the evaluation of mix-
ing performance is very important for reducing working times and increasing stirring
efficiency. That is the reason why this work can be considered as an initial approach to
establish mathematical parameters to evaluate industrial practices and improve the actual
procedures [6–8,14,15].

Some authors have been working on the simulation of fluid flows involving lead
recycling inside chemical reactors [10–12,19–23]. But the geometrical configuration of re-
actors and the operating conditions are different for each industrial case, making stirring
in chemical reactors a complex problem [5–8,14,15,20–27]. Some of these authors have
been working with computer simulations showing concentration profiles as evidence of
mixing or making physical models to compare results. Other authors like Debangshu
have worked on suspensions of solids in recycling procedures, and Feng Wang has studied
the measurement of phase holdups in stirred tanks [9,10,20–27]. But the simulation of
stirring inside a tank is a complex problem where many variables are involved in terms
of the Navier–Stokes equations, and many phenomena must be solved to understand
hydrodynamics. Some authors have been testing this by inducing turbulence effects on
solid–liquid suspensions to solve problems related to polymerization [20–23]. Rahimi,
Lassin, and others studied hollow impeller effects to validate experimental fluid dynamics
using CFD in order to evaluate the influence of the impeller speed [28–30]. Some authors
simulated lead bullion in hemispherical vessels known as kettles [9–12,14,15,31–34]. Other
authors have studied fluid flow dynamics in reactors for different purposes, such as the
analysis of resin beads and ways of scaling up. But hydrodynamic behavior and physical
properties are particular for each simulated case [10–12,14,16–19]. These authors have
provided important knowledge for understanding the hydrodynamic behavior of fluid
in chemical reactors. Other authors have studied the effect of perturbations in stirred
tanks [19–25,30,35–38]. Others have been analyzing chemical reactions and the evolution of
liquid–liquid phases [17–23,26–29,36–40]. Murthy, Zhong Zhang, Sossa-Echeverria, Szalai,
and others have dedicated their works to evidencing the influence of tanks and impeller
geometries [16–23,35,36]. Some of them have used the residence time distribution method
to analyze efficiency in a stirred tank [12,15,26–34,41–43]. Others have simulated disso-
lutions in tanks and validated these procedures as appropriate for establishing physical
parameters to improve mixing [11,12,16–29]. In 2016, Divyamaan worked on a computer
simulation of solid–liquid stirred tanks. Tamburini et al. have produced similar works
considering solid–liquid suspension and predicting the solid particle distribution and the
minimum impeller speed for homogeneous mixing. To conclude, an understanding of the
hydrodynamics phenomena involved is very important to improve actual industrial prac-
tices in many metallurgical processes [17–30,35,36,39–42,44–49]. Some authors have been
studying problems of phenomena related to fluids confined in industrial tanks such as the
solid suspension of particles involving chemical reactions evaluating fluid hydrodynamics
behaviors under symmetrical and asymmetrical jet conditions [32–34,36–40,43–45,50–52].
Authors have also been developing numerical methods and new approaching techniques
for fluid evaluation [6–8,14,15,31–34,42,43,50], inclusively, other metallurgical problems
where pyro-processing and the hydrodynamics of liquid metals can be analyzed to improve
industrial practices [11,12,16–18,26–29,31–34,41–43].

2. Geometrical Model (Tank Reactor and Impeller)

As was commented previously, there are many aspects influencing the mixing process
in chemical batch reactors: the geometry of the batch, impeller mechanisms, industrial
working conditions, and properties of the fluids and phases. Moreover, the considerations
that are selected, like the use of laminar conditions or the inclusion of mathematical turbu-
lence models, can affect results. Then, in the present work, the geometrical configuration
of the reactor was built computationally based on real industrial data. A simulation of
the hydrodynamics fluid flow is performed using the software Fluent (6.0), and the re-
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sults of the tracer concentration on each monitoring node are saved at every time step
(t + ∆t) on independent files to be analyzed using Microsoft Excel in order to evaluate the
mixing efficiency [9,10,14,15,25–29]. These values are compared with tracer concentration
profiles in order to find zones with good or poor mixing and its contribution to the entire
homogeneity.

The industrial reactor analyzed consists of two parts. The first is the main upper
body with a cylindrical form and the second is a semispherical section on the bottom,
as shown in Figure 1. The cylindrical diameter is 0.44 m, and the cylinder is 0.470 m
high. The reactor is symmetrical along the vertical and horizontal axes. Then, a triangular
mesh using two-dimensional elements which form a surface model is defined for the walls
discretization, since it is only necessary to declare the surface of the reactor walls as a closed
boundary [7–11,14,15,25,41,42,48,49]. These walls are also declared free of defects and
friction. The mesh used for discretization is not structured with 1062 cells and a regular size.
The two sections were traced assuming the center on the cylindrical section at the lowest
position and the top center of the semispherical bottom. This intersection point is taken for
reference as the origin for the tank (0, 0, 0). Then, we defined two original planes which
were joined forming only one single surface that cuts the batch reactor symmetrically.
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Figure 1. Geometrical model of the tank reactor; two-dimensional views (side left, frontal and upper).

The areas measured of the cylindrical and semispherical sections are 0.66922116 m2

and 0.282244 m2, respectively, forming a solid wall with 0.9514656 m2. A non-structured
mesh with triangular cells was selected for a good fit with the cylindrical and semispherical
regions of the reactor.

The industrial reactor was stirred using one single impeller formed with a vertical shaft
and two rectangular flat solid blades joined in the low shaft position, as can be appreciated
in Figure 2a,b. The shaft is 0.610 m in length: enough to be placed inside the reactor, and
the four rectangular blades (0.0508 m × 0.0254 m) are form from the intersection of the
two flat solids. These blades are placed symmetrically (each 90◦) and are 0.00375 m thick.
Here, a mesh with triangular 2D and tetragonal 3D cells is used again for the discretization
of the entire element surface. The shaft is discretized using 16,890 two-dimensional cells,
657 two-dimensional cells are used for each impeller blade, and the measured area for the
shaft is 0.1476181 m2.
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The lead bulk volume inside the reactor is obtained applying an inverse negative
geometrical Boolean operation. The volume results from the original volume between
the walls minus the impeller volume, which was discretized using 22,097 nodes form-
ing 210,235 two-dimensional cells (triangular), which forms 99,923 tri-dimensional cells
(tetrahedral). To obtain a good approach, the smallest cell elements were placed near the
impeller, and the biggest cells were placed near the wall reactor, since the contact with the
impeller for the fluid movement simulation is very important. Moreover, the volume of the
tank obtained is the volume of liquid lead simulated.

Additionally, the tank reactor was modeled using different types of meshes, as is
shown in the validation section and also was compared with a basic physical model.

3. Semi-Planes, Injection and Monitoring Points, and Initial Assumptions

The reactor is symmetrical vertically; here, a control plane is taken for reference
purposes, as shown in Figures 3 and 4. The control plane was divided into two semi-planes.
The first of them was the injection plane. Here, all the nodes where the tracer would be
injected for each simulation were indicated. All of these were evaluated independently in
order to find the best injection point. The second plane was the monitoring plane. Here,
we placed the points where the mixing efficiency would be measured and evaluated. The
position of every point of both planes is shown in Tables 1 and 2, respectively.

Table 1. Position of the injection points on the semi-plane (coordinates).

Position
(m)

Points
Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7 Pi8 Pi9 Pi10 Pi11

x 0.050 0.110 0.110 0.050 0.110 0.190 0.110 0.050 0.080 0.110 0.150
y 0.440 0.440 0.385 0.330 0.330 0.330 0.275 0.220 0.022 0.220 0.220

Pi12 Pi13 Pi14 Pi15 Pi16 Pi17 Pi18 Pi19 Pi20 Pi21 Pi22
x 0.190 0.110 0.050 0.110 0.190 0.110 0.050 0.110 0.110 0.190 0.190
y 0.220 0.165 0.110 0.110 0.110 0.055 0.000 0.000 −0.110 0.440 0.000
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Table 2. Position of the monitoring points on the semi-plane (coordinates).

Position
(m)

Points
Pm1 Pm2 Pm3 Pm4 Pm5 Pm6 Pm7 Pm8

x −0.200 −0.200 −0.200 −0.200 −0.200 −0.200 −0.200 −0.200
y 0.450 0.400 0.350 0.300 0.230 0.150 0.100 0.000

Pm9 Pm10 Pm11 Pm12 Pm13 Pm14 Pm15
x −0.110 −0.110 −0.110 −0.110 −0.060 −0.050 0.000
y 0.450 0.230 0.000 −0.110 −0.150 −0.165 −0.180

The injection points were placed on different places to know their position influence
on the injection semi-plane and evaluate the changes on the hydrodynamic behavior with
a common reactor geometry and impeller during specific rotatory conditions, enabling
identifying death zones (zones with poor mixing) and zones with delays in mixing. The
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points (Pi1, Pi4, Pi8, Pi14, and Pi18) are placed along the shaft from the reactor surface to the
blades. The nearest injection points to the wall are Pi6, Pi12, Pi16, Pi21, and Pi22. The points
in the middle tank position are Pi2, Pi3, Pi5, Pi7, Pi10, Pi13, Pi15, and Pi17. Finally, only one
single point was placed on the bottom for evaluating hydrodynamic behavior in this zone
(Pi20). Here, the sub-index “i” is used to indicate the injection point.

The parameter to evaluate mixing efficiency inside the entire reactor is the tracer
distribution. This was conducted by measuring it on each monitoring point. The monitoring
points were also placed all around the semi-plane to measure the tracer concentration in
different zones inside the tank. The purpose is to identify zones with rich and poor mixing
and relate them with the hydrodynamic behavior and the evolution of tracer dispersion.
The monitoring points were placed on the monitoring semi-plane at 180◦ from the injection
semi-plane, as shown in Figure 4. These points were used for saving the tracer concentration
(Cm) at every time step (t + ∆t) during the simulation. Here, the sub-index “m” is used to
indicate the monitoring points. Initially, for t = 0, it is assumed the tracer concentration on
each monitoring point is equal to zero (Cm = 0). Some of these points were placed in the
middle of the reactor such as Pm2, Pm7 and Pm12; some others were placed near the walls
such as Pm03 to Pm06 and Pm08 to Pm11. Finally, the rest of these were placed at the bottom
such as Pm13, Pm14 and Pm15. Here, evaluation is very important because this region is
critical for mixing.

4. Assumptions

The following assumptions and boundary conditions are taken into account for all the
simulations exposed in this work:

• The impeller shaft is in the middle position of the reactor body for symmetrical
conditions. Additionally, no vibration is assumed during rotation; then, the influence
of the shaft rotation is not significant. Consequently, the only elements that provide
stirring to the bath are the four blades.

• Rugosity on tank walls (cylinder and semispherical) is neglected as a consequence of
the fluid displacement being free, and no drag is induced.

• The impeller rotates at 200 radians per minute: approximately 32 RPMs.
• The surface of the liquid lead is flat; this condition is equivalent to assuming a closed

reactor on the tank top. The lead surface is discretized with 1512 two-dimensional
cells, and the measured area is 0.149812 m2.

• The maximum face area for a cell used for discretization is 1.9733 × 10−3 m2 in contrast
the minimum cell face area is 2.0324 × 10−6 m2.

• The temperature of liquid lead is assumed as 327.46 ◦C (equal to 600.61 K or 621.43 F).
This is the lead melting point, and the lead density equal to 10.66 g/cm3. Then, liquid
lead is a heavy incompressible fluid.

• During all analyzed cases on simulations, no heat interchange is assumed (isothermal
system); then, the lead properties remain constant.

• The tank is considered as isolated, there is no mass interchange, the volume is constant
inside, and the tracer replaces a defined lead volume in the 3D mesh.

• The movement of fluid is not a step pulse defined and not a continuous injection; the
tracer volume replaced is moved as a consequence of the inertial forces due to the
impeller impulse.

• The time step (∆t) used for simulation was 5.208 × 10−3 and represents a rotation of
1◦ around the tank circumference considering the rotatory speed of the impeller.

• There is no volume or mass interchange during the simulation; moreover, the move-
ment of the fluid is due exclusively to the inertial forces of the velocity generated by
the impeller movement.

The tracer takes place (is injected computationally) inside the tank reactor when the
velocity of the fluid is stable. Then, this is considered as the beginning of the simulation
cases. The distribution of the velocity vectors due to the impeller rotation can be appreciated
in Figure 5a–c; here, the biggest vectors can be appreciated near the blades, and the smallest
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vectors are in the tank body. During experimental mixing operations, a tracer can be injected
using a tubing inlet system submerged into the bath. Nevertheless, this is not performed
in the present work. The tracer cannot be injected computationally. The simulation is
performed by replacing a defined lead volume, which is 125 cm3 = 1.25 × 10−4 m3. Then,
the tracer distribution is saved and evaluated dynamically as simulations run. During every
simulation, only one single lead volume is replaced on the injection cells by an identical
tracer volume at the beginning of the simulation (t = 0). Consequently, the tracer is assumed
as ideal; then, an original lead volume is substituted by another volume with the same
physical properties. This method is frequently used by authors who work on physical and
computer simulation to evaluate fluid flows [1–5,10–13,16–18,30,35–40]. This procedure is
conducted experimentally using colorants for painting the original fluid in order to follow
the fluid path and show streamlines of fluid [5–7,13,26–30,39,40,44–46]. Nevertheless, in
real industrial practices, solid chemicals for cleaning lead are incorporated to the bath tank
using a lance inside. The lance can be placed at different positions in the cylindrical body;
but, geometrically, it is complicated to inject below the impeller.
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5. Mathematical Modeling

The equations solved on the mathematical model are given by Navier–Stokes and con-
tinuity. The Navier–Stokes equations describe the motion of fluids. These equations arise
from applying Newton’s second law [10–12,16–18,24–30,35,36]. The Navier–Stokes equa-
tions are nonlinear partial differential equations in almost every real situation. In some cases,
such as one-dimensional flow, these equations can be simplified to linear equations. Never-
theless, nonlinearity carries most problems that are difficult or impossible to solve with
conventional analysis because the main contributor is turbulence [9–12,16,26–30,35–38].
The numerical solution of the Navier–Stokes equations for turbulent flows is complex due
to the significantly different mixing length involved in turbulent flow. Then, the stable
solution of these equations requires the definition of a fine mesh during discretization to
make the computational treatment of data feasible [5,23–29,36–39]. Turbulence models such
as the k-ε model are used in practical computational fluid dynamics (CFD) applications
where turbulent flows are modeled as is shown in this work [32–39]. The Navier–Stokes
equations are strictly a statement of the conservation of momentum laws. Thus, in order
to describe fluid flow, more information is required according to particular geometrical
case data and including particular boundary conditions. Moreover, the basic concepts
involved are the conservation of mass and the conservation of energy related to an equation
of state [30,35–38,45–48]. All these must be appropriately established. Then, a statement of
the conservation of mass is achieved through the mass continuity equation, as shown in
Equation (1).

∂p
∂t

+∇× (ρv) = 0 (1)

Then, Navier–Stokes equations can be solved in three coordinate systems; here, Carte-
sian is the system solved and equations are taken directly from the vector equations [36–40].
The solution implies the programming of Equations (2)–(4) using an explicit numerical
method. Here, the velocity components are typically named u, v, and w, which are the
dependent variables to be solved.

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+ ρgx (2)

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

)
= −∂p

∂y
+ µ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
+ ρgy (3)

ρ

(
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
= −∂p

∂z
+ µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
+ ρgz (4)

Note that gravity was assumed as a body force, and the values of gx, gy, and gz will
depend on the orientation of gravity with respect to the chosen set of coordinates; for the
reactor analyzed, gx and gy will be equal to zero; and only gz participates in the fluid motion.
Then, the continuity equation can be written as follows:

∂p
∂t

+
∂(ρu)

∂x
+

∂(ρv)
∂y

+
∂(ρw)

∂z
= 0 (5)

When the flow is at a steady state, (ρ) does not change with respect to time. Instead,
the continuity equation can be simplified to:

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (6)
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When the flow is incompressible, ρ is constant and does not change with respect to
space or time, and the continuity equation is reduced again to:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (7)

The partial differential equation for the mass transfer (equation of continuity) can
be written in rectangular coordinates as is shown in Equation (8) and in cylindrical and
spherical coordinates as shown in Equations (9) and (10), respectively, representing a so-
lution for the Fick’s law equation; these equations can be solved for regular structured
or non-structures and hexahedral or tetragonal or any other cells incorporated in nested
loops and using a finite element method. Here, the k-ε model is used to solve the prob-
lem including turbulence; then, tracer concentration values over monitoring points are
stored after every time step (pm

t+∆t); finally, data are analyzed using Microsoft Excel. It
is important to mention that the tank with a mix of lead + tracer can be considered as
a multicomponent fluid problem, as represented in Equation (11) [42]. Here, Deff is the
diffusion and turbulent coefficient.

∂cA
∂t

= DAB

[
∂2cA
∂x2 +

∂2cA
∂y2 +

∂2cA
∂z2

]
(8)

∂cA
∂t

= DAB

[
∂2cA
∂r2 +

1
r

∂cA
∂r

+
1
r2

∂2cA
∂θ2 +

∂2cA
∂z2

]
(9)

∂cA
∂t

= DAB

[
1
r2

∂

∂r

(
∂cA
∂r

)
+

1
r2 sin θ

∂

∂θ
sin θ

∂cA
∂θ

+
1

r2 sin2 θ

∂2cA
∂ϕ2

]
(10)

∂

∂t
(ρlC) +∇× (ρlulC) = ∇× (ρl De f f∇C) (11)

6. Computer Simulations

The model used for simulation was (k-ε), and the software used for solving was
Fluent 6.0; hydrodynamic behavior is studied calculating and saving the tracer concen-
tration at each step (t + ∆t) during simulations on every monitoring point. Figure 6a–c
show the tracer concentration on all the monitoring points for the injection points Pi11,
Pi18, and Pi21, respectively. These monitoring points were placed inside the tank, near and
far from the impeller. Some of the curves in these figures show parabolic behavior and
others are sinusoidal. Sinusoidal curves are near the impeller; here, the tracer concentration
changed at every time step during simulation due to the strong influence of turbulence
and vector velocities. In contrast, parabolic behavior is frequently observed near the walls
and at the bottom of the tank, where the homogenization of tracer concentration is very
slow, and no strong fluctuations are presented because these points are far away from the
impeller influence. The tracer begins to be distributed by stirring from values equal to
zero (the tracer is absent on monitoring points). Then, as the simulation time advances,
there are some periods when the tracer concentration is increased and others when it is
decreased. Nevertheless, these fluctuations are reduced as the simulation continues. The
reduction on this fluctuation is considered as a parameter to evaluate mixing. Thus, for
long times, all the monitoring points tend to adopt the same averaged concentration. This
means that the tracer has been homogeneously distributed. There are curves with high
tracer saturations on Figure 6a,c; this is not good for mixing; these excesses must be stirred
to obtain a homogeneous distribution. Figure 6a shows that only a few curves are parabolic
and remain always with a low tracer concentration. Nevertheless, these curves take a lot
of time to reach the final average concentration, indicating poor mixing in these regions.
Thus, according to the time scales in the horizontal axes, it is possible to appreciate that the
best injection point is Pi18; here, the tank delay is only 450 s. On the other hand, the worst
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injection point is Pi21 with delays of more than 1400 s, and the tracer distribution injecting
on Pi11 is considered as an intermediate behavior.
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point (Pi21).

In Figure 6b, only one curve presents a high tracer concentration, and others have
minor excesses. This means that minor stirring work must be applied for mixing. Figure 6c
shows there are some curves with high tracer concentrations, but there are also many curves
with a very poor concentration which are located near the bottom, because accessing this
zone is very difficult. Moreover, all curves tend to the same the final value; this variability
is considered as homogeneity criterion for the mixing. Thus, finding the best injection
point is the first way to improve industrial practices. In Figure 6a–c, similar behavior can
be appreciated on the corresponded monitoring points for every different injection point;
nevertheless, curves are affected by the analyzed injection point.
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Tracer concentration on all the monitoring points can be stored and then averaged to
obtain a significant value of the tracer concentration inside the reactor which represents
the entire behavior. Equation (12) can be used to represent this process; here, the sum in
the numerator is the contribution of every monitoring point where tracer concentration
was measured, and 15 is the number of monitoring points. Then, this is repeated during
every time step (t + ∆t) for every corresponding injection point (CI). Figure 7 shows these
averaged curves to illustrate the general tracer concentration for the best, an intermediate
and the worst injection points. Here, it is possible to confirm Pi18 is the best injection point.
The curve is lightly sinusoidal, but fluctuations are quickly damped; thus, the curve tends
to the final tracer concentration value and no more than 450 s is required for the mixing.
This curve is just above the final tracer concentration, and the fluctuations are minors and
quickly damped. In contrast, the worst injection point is Pi21, where there is too much of a
time delay because many of the curves are parabolic and distribution is very slow.

Ct+∆t
i =

mp=15
∑

mp=1
Ct+∆t

mp

15
(12)
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respectively); curves for averaged behavior.

The injection point Pi11 shows a moderate behavior, because it was placed between
the shaft and the wall (in a middle distance). Its curve is also sinusoidal, although a high
excess of tracer concentration is appreciated at short simulation times. This variation is
also quickly stabilized as time passes, but the time required for a good mixing is near 600 s.
Moreover, the fluctuations are so high in comparison with those for the injection point Pi18.
This curve is initially significantly above the final tracer concentration value. Then, this
instability must be reduced applying additional stirring in comparison with the point Pi18.

Pi21 is the worst injection point. Here, the hydrodynamic behavior is very different.
Mixing is delayed due to the tracer being slowly distributed. The time required for mixing
considering this injected point is more than 900 s. This curve is always below the final
tracer concentration value due to the difficulty for the distribution all around the tank.
This injection point is placed near the top corner of the cylindrical section of the tank; it
is very far from the impeller influence. Then, the evolution of tracer distribution is very
slow. Furthermore, the buoyancy of tracer is critical for the simulation on the semispherical
region because it is so difficult to distribute tracers in this region. Moreover, in Figure 7,
it can be seen that the final tracer concentration all around the tank for all the injected
points tends to a final value which is considered as the moment when the tracer has been
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homogeneously distributed and no additional stirring is required. Consequently, the best
injection point is with the shortest mixing time as indicated.

Figure 8a–d show the tracer concentration profiles on the reactor for the best injection
point (Pi18). Here, colors indicate regions where the tracer has or has not been distributed.
Figure 8a was snapped at the initial time (t = 0). Here, the tracer is originally injected.
Figure 8b was snapped at 250 s. There are regions with an excess of tracer concentration,
but there are some other regions with a poor tracer concentration such as those near the
bottom and the highest corner on the cylinder. Figure 8c was taken at 500 s, and it shows
a distribution that is nearly homogeneous. There are four zones remaining with lower
different tracer concentrations, which are near the cylinder top region, although the profile
shows a very similar tracer concentration generally. Figure 8d shows a profile with the
same color in the entire reactor. It means that the all the liquid lead and the tracer are
perfectly mixed due to stability and homogeneity criterions. Moreover, for all these figures,
the color scales are reduced as the mix inside the tank tends to be homogeneous.
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Figure 9a–d show the tracer concentration on the reactor for a point assumed to have
intermediate behavior (Pi11). Figure 9a was also taken at time t = 0; again, it is possible
to identify where the injection point is placed. In Figure 9b, the tracer has begun to be
distributed on the reactor, but there are regions with a high and a low tracer concentration
in the cylindrical section. Nevertheless, big zones with a low tracer concentration are
in the reactor bottom. In Figure 9c, high tracer concentrations remain on the cylindrical
section near the tank walls. The tracer has been introduced in the reactor bottom, but
the profile is still not homogeneous. Finally, Figure 9d shows the progress of the tracer
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distribution all around the reactor; zones with very high and low tracer concentrations have
disappeared, and the profile is certainly more homogeneous. However, this distribution
has a low efficiency in contrast with that shown in Figure 8a–d, and longer times for stirring
are necessary for a good mixing.
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Figure 10a–d show the tracer concentration for the worst injection point (Pi21). Here,
the tracer is injected into a point near the reactor top surface and the wall; this is a very
isolated region and velocity vectors are weak here, as is shown in Figure 10a. This point is
placed far away from the impeller, and the influence of the rotational movement is weak.
As a consequence, the tracer distribution is very slow, as shown in Figure 10b–d. Here, the
tracer begins to appear in regions of the cylindrical section, but the bottom of the tanks
remains without tracer presence. Nevertheless, huge regions without tracer presence can
be appreciated in the middle low cylindrical region and the reactor bottom due to the
slow diffusion. The final profile on Figure 10d shows a heterogeneous tracer distribution,
indicating the mixing efficiency is very poor, as the tracer has not been distributed in the
entire reactor. Moreover, Figures 8–10 show that the most difficult zone is the semispherical
zone. This behavior can be confirmed observing the curves in Figures 6 and 7 for the
bottom region.
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Furthermore, Figures 8–10 show the following:

• The inertial force induced by the impeller begins to break the stationary condition of
the liquid lead inside the tank.

• The distribution of tracer inside any tank reactor involves the effect of the fluid
displacement, which depends on the forces applied by the impeller movement.

• The tracer initially placed near the impeller is quickly distributed in comparison with
the tracer placed near the top or the tank walls.

• The fluid is re-driven as a function of the tank geometry; thus, the hydrodynamics is
different when the fluid makes contact with the cylindrical wall than when it takes the
flat top or the semispherical bottom.

• The tracer concentration distribution is different on each monitoring point at every
time step according with its position on the tank and the injection point analyzed.

• The final tracer concentration at a large time considered for a good mixing was
(Ctmax

tracer = 0.00135). This means that the tracer concentration is invariable and
the total tracer has been homogeneously distributed all around the tank. Then, addi-
tional stirring is not necessary.

7. Analysis of the Hydrodynamic Behavior

For understanding the hydrodynamic behavior inside the tank, an additional analysis
was conducted for the best injection point (Pi18). Figure 11a–c show the tracer concentration
curves for different zones. The curves for the monitoring points near the impeller shaft are
displayed in Figure 11a. The strongest influence of the impeller is on the monitoring point
(Pm12). This point is placed very near the injection point; then, it is quickly saturated in ex-
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cess, showing the highest concentration values. As a consequence, these regions are quickly
saturated; thus, only this curve will always remain over the final tracer concentration.
Hence, this zone can be considered as a stagnant but also oversaturated region. In other
words, a high tracer concentration remains around this zone without being distributed.
After this, the tracer concentration is lightly reduced due to a slow distribution. The tracer
concentration behavior is a sinusoidal damped curve, and the alternation is evidence of
the strong influence provided by the impeller near the injection and monitoring points.
This influence is reduced significantly on the point (Pm7) with an intermediate position
on the cylindrical tank. This curve remains without tracers and always is under the final
tracer concentration until the homogeneity is reached. But, in the points far away from
the impeller such as the monitoring points (Pm1) and (Pm2), this influence is very weak.
The tracer concentration remains equal to zero, during the initial 25 s; the tracer is slowly
dispersed and delays on arriving toward these zones. This behavior can be attributed to
the joining between the shaft and the flat liquid surface. Finally, all the curves in Figure 11a
are sinusoidal, and the homogenization is reached after 350 s, indicating a good mixing.
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The monitoring points near the tank walls are shown in Figure 11b. The monitoring
point Pm11 shows a similar behavior than the point Pm12. The tracer concentration is
quickly increased. Although the tracer concentration value is considerably more minor
than in point (Pm12), the sinusoidal behavior is also similar. Nevertheless, this point reaches
the final tracer concentration value faster than the point Pm12 due to its fluctuations being
lower. The points in the middle of tank body such as the Pm8, Pm9 and Pm10 also show a
sinusoidal behavior, but these points remain briefly with a tracer concentration equal to
zero; then, they begin to increase its tracer concentration. These curves always remain below
the final tracer concentration value until reached. Curves for the points in the faraway
positions such as Pm3, Pm4 and Pm5 also remain below the final tracer concentration during
the first 120 s and are damped curves due to the slow mixing process. Finally, the tracer
concentration in the lowest region of the semispherical reactor has longer times without
change (Ctracer = 0), as is shown in Figure 11c. The curves for the monitoring points Pm14
and Pm15 are parabolic due to the tracer being slowly dispersed here. Nevertheless, the
curve for the point Pm13 is sinusoidal due to this point being the nearest to the impeller.
These three curves also remain always below the final tracer concentration value: evidence
again that the bottom is the most complicated region for distribution.

8. Validation of Hydrodynamics

Instability in tracer distribution curves is at the beginning of the time simulation due to
the tracer being placed at a specific point and beginning to be distributed as the fluid forces
impulses to move. Instability (tracer concentration variation) is the criterion to minimize
the time required to obtain a homogeneous tracer distribution all around the tank. All
simulations for every different injection point tend to be a common value. Then, the goal is
to obtain the final tracer concentration in the shortest time.

Numerical methods and computer simulations have become a powerful tool to solve
old complex problems. Increasing data store and management makes it possible to obtain
accurate results quickly. Then, in this research, discretization of the lead volume on the
tank was completed using different meshes. Information about these meshes used for
discretization of the tank, impeller and lead volume is in Table 3. The tank and impeller
are 3D bodies which were discretized using 2D meshes over their surfaces and then
incorporated to the simulation. The lead volume inside was subtracted from the tank, and
the impeller was defined and meshed using triangular, squared and hexagonal 2D elements
which form tetragonal, hexagonal and honeycomb 3D meshes. The lead volume represented
by every 3D cell is a tetragonal cell 9.676 × 10−7 m3, hexahedral cell 9.6594 × 10−7 m3, and
honeycomb cell 9.71766 × 10−7 m3, respectively; these are similar volumes which were
selected to measure the efficacy of meshes.

Table 3. Features of meshes used for discretization.

Area (m2) Volume (m3)
Cells 2D

Triangular
Cells 3D

Tetragonal
Cells 3D

Hexahedron
Cells 3D

Honey Comb

Tank

Cylindrical 0.66922 0.0716019649

Semispherical 0.28445 0.0250888176

total 0.951465 0.0966907825 1062

shaft 0.147618 16,890

impeller 0.00129032 657

Lead volume (m3)

Cylindrical 0.0716019649 210,235 99,923

Semispherical 0.0250888176

total 0.0966907825 99,923 100,100 99,500
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A comparison of results using hexahedron and honeycomb meshes is shown in
Figures 12–16, taking the previously mentioned injection points (Pi=21, Pi=18, and Pi=11).
Here, all the solutions tend to the final tracer concentration; then, it is possible to affirm
the model works and results are reliable. Nevertheless, at the beginning of the simula-
tion, there are notorious differences regarding approaching and variations. Simulations
for the injection point Pi=21 is with a parabolic form due to the final tracer being slowly
distributed from points near the top. Consequently, it takes longer for the tracer delay to
be distributed. In contrast, simulations for the points Pi=18 and Pi=11 are with a sinusoidal
form due to there being a dynamic tracer interchange as a result of the impeller movement,
but the tracer is quickly distributed. Then, it is also possible to say all meshes tend to final
tracer concentration, but the tetragonal mesh has reduced fluctuations. Additionally, the
transitory states are the most complicated to calculate.
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cess for (a) injection point (Pi=21), (b) injection point (Pi=18), the best injection point, (c) injection
point (Pi=11).

Additionally, for comparison, the tracer concentration resulted for the injection points
Pi=1, and Pi=9 on every monitoring point is shown in Figure 13a,b. Here, again, all curves
tend to the final tracer concentration value, evidencing that this value can be considered as
a feasible criterion for a homogeneous distribution. Some points near the impeller tend to
the final tracer concentration, but other delays are longer. Then, the difference on tracer
concentration is a measure of the hydrodynamic difficulty to distribute the tracer on every
tank zone. Here, again, it is possible to appreciate that the tracer concentration variations
are minor on all monitoring points for the injection point Pi=9. It is possible to appreciate
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that monitoring points near the impeller tends to the final tracer concentration quickly, and
that monitoring points placed near the injection points are with a notorious tracer excess.
In contrast, monitoring points on the semispherical zone have a tracer deficit.
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To know the homogeneity of the tracer distribution, Equation (13) was used to calculate
variations respecting the last calculated values; then, the curves for every monitoring point
tend to zero when the tracer has been homogeneously distributed, as shown in Figure 14a,b.

Error = 100 (Ctracer
∆t − Ctracer

∆t−1) (13)

Injection points Pi=21, Pi=1, Pi=2 and Pi=6 are with similar behaviors and are the most
complicated for distribution; these points are near the upper wall and top of the tank.
The tracer placed in these points initially is very far from the impeller influence. Velocity
vectors are weak, and the inertial forces of the fluid move the tracer so slowly. An additional
handicap against tracer distribution is the fact that properties of the tracer and melting
lead are the same (ρtracer = ρlead); consequently, the influence of the buoyancy forces makes
difficult to drive the tracer to the bottom of the tank. Industrially, this can be a serious
problem if the density of the reacts added for the cleaning lead is equal to or less than lead
density (ρtracer < ρlead). Then, the industrial suggestion was to place the reacts near the
bottom tank. Moreover, the vector in the semispherical bottom impulses up the fluid. In
the same way, the injection points Pi=18, Pi=19, Pi=20 and Pi=22 form a common area; these
are the best injection areas due to the influence of the impeller being near. Then, the place
tracer can be strongly impulsive, while tracer concentration on the semispherical zone and
near the impeller influence denotes a very different hydrodynamic behavior, as can be seen
in Figure 15a,b.
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Finally, a comparison with a physical model is shown in Figure 16a–c. Here, it is
evident for short times, there is a notorious difference between the computational mode
using tetrahedral mesh and a model that was built. The physical model was built with a
transparent acrylic: the scale was 1:11, the fluid used for representing lead was water, and
the tracer was sodium chloride. A particle indicator velocimeter was used to measure the
quantity of tracers passing across every monitoring point position. In these figures, there
is also a tendency to the final tracer concentration calculated computationally, although
variations can be appreciated during the transitory period due to the natural turbulence of
the physical modeling.

Consequently, after the hydrodynamic analysis, the following criterion for identifying
an improvement on the mixing process can be confirmed.

1. Curves of tracer concentrations tend to approach the final tracer concentration faster;
thus, mixing time is reduced.

2. Fluctuation of the tracer concentration curve is minor.
3. Tracer in excess is minor, and it is quickly distributed.

Instability at the beginning of simulation is high, and the major variations between
the physical model and computer simulations are at this instant of the simulation.

Inject reacts for cleaning in different points of the tank is the easiest way for modifying
the industrial practices; then, this work represents the most economic form for improving.
Suggestions for future works are to simulate the system including different properties for
the tracer (ρtracer ̸= ρlead) and modify the tracer volume at the initial condition to know if
there is enough for the cleaning process or if the tracer volume can contribute to reduce the
mixing time. Another option to explore is to simulate different tank configurations and
different impeller configurations.

In addition, a comparison of simulations using different fine tetragonal meshes is
shown in Table 4. Here, values of the stirring times required to obtain the final tracer
concentration using the injection points Pi=21, Pi=18 and Pi=11 are employed to test the mesh
influence. Fine mesh is expressed as a percentage of nodes listed in Table 4. Thus, a 200%
mesh has double the nodes for discretization. Here, it is evident that the times vary with
wider meshes, but its influence is reduced as the mesh became smaller.

Table 4. Times required for the final tracer concentration as a function of the fine mesh employed on
the points Pi=21, Pi=18 and Pi=11.

Fine Mesh
(%)

Time (s) for the Final Tracer Concentration

Pi18 Pi11 Pi21

60 480 680 1015

80 475 635 945

Original 450 600 900

150 445 590 888

200 447 595 895

250 448 591 898

300 450 597 901

9. Influence of the Impeller Speed

Additional information can be obtained analyzing the influence of the impeller rotatory
speed, as shown in Figure 17a–c. All these curves represent the global behavior for every
impeller speed. All the curves are sinusoidal, but smoothing is different; some of them
have excess and others have a deficit of tracer concentration; the lowest excess of the tracer
appears in Figure 17a. These curves have a minor variation between them; moreover, all
curves tend to the final tracer concentration quickly. Curves below the mixing time are
slowly reduced as the impeller RPMs are increased. In Figure 17b, all curves are with an
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excess of tracer at the beginning; these remain over the final tracer concentration for more
than 150 s. Then, all of them are damped. The influence of the RPMs increment is minimal
due to the analyzed point having an intermediate behavior. The highest tracer excesses are
shown in Figure 17c; here, many curves remain with an excess of tracer remaining for at
least 200 s, until these are damped. Nevertheless, the sinusoidal forms remain for 500 s.
The increment on the impeller rotatory speed reduces the mixing time, but the influence of
selecting an appropriated injection point is stronger.
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10. Conclusions

After analyzing of the cases simulated, the following conclusions can be drawn.
The tracer concentration in the monitoring points near the impeller is strongly influ-

enced by the rotational speed and strong fluctuations of the tracer concentration can be
observed; nevertheless, the tracer excess quickly is distributed due to the stirring.

Sinusoidal curves for tracer concentration are evidence of the instability of the system;
the tracer here must be distributed to improve mixing; until all these curves are damped,
the tracer concentration will tend to be homogeneous.

There are curves with sinusoidal and parabolic behavior; parabolic curves were fre-
quently found in the bottom of the tank or near the surface of the tank due to these points
being far away from the impeller influence. Consequently, parabolic curves always have a
deficit of tracer concentration, and its presence indicates a poor mixing zone.

According to the simulations, it is unnecessary to run longer times due to the tracer
having been homogeneously distributed, and the variation of concentration values is not
significant. Consequently, employing extra times for mixing is also unnecessary.

The evolution of tracer concentration is a feasible parameter to evaluate mixing; it
is evidence of a homogeneous distribution. Moreover, understanding the hydrodynamic
dynamics inside the stirred lead reactor is very important to improve its performance.

The selection of the best injection point is very important to reduce unnecessary
working times and improve industrial efficiency.

According to the simulations, it is possible to affirm that the tracer must be injected
near the impeller in order to profit from the stirring forces. Therefore, the injection of a
tracer on points near the top surface or reactor walls must be avoided due to these having
the most delayed mixing times.

The semispherical region at the tank bottom is the most complicated region in which
to distribute the tracer due to buoyancy forces, which force up the liquid. This reactor can
be redesigned; a flat bottom configuration improves mixing.
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