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Abstract: Recently, transfer learning has gained popularity in the machine learning community.
Transfer Learning (TL) has emerged as a promising paradigm that leverages knowledge learned
from one or more related domains to improve prediction accuracy in a target domain with limited
data. However, for time series forecasting (TSF) applications, transfer learning is relatively new.
This paper addresses the need for empirical studies as identified in recent reviews advocating the
need for practical guidelines for Transfer Learning approaches and method designs for time series
forecasting. The main contribution of this paper is the suggestion of a comprehensive framework
for Transfer Learning Sensitivity Analysis (SA) for time series forecasting. We achieve this by
identifying various parameters seen from various angles of transfer learning applied to time series,
aiming to uncover factors and insights that influence the performance of transfer learning in time
series forecasting. Undoubtedly, symmetry appears to be a core aspect in the consideration of these
factors and insights. A further contribution is the introduction of four TL performance metrics
encompassed in our framework. These TL performance metrics provide insight into the extent of
the transferability between the source and the target domains. Analyzing whether the benefits of
transferred knowledge are equally or unequally accessible and applicable across different domains or
tasks speaks to the requirement of symmetry or asymmetry in transfer learning. Moreover, these TL
performance metrics inform on the possibility of the occurrence of negative transfers and also provide
insight into the possible vulnerability of the network to catastrophic forgetting. Finally, we discuss a
sensitivity analysis of an Ensemble TL technique use case (with Multilayer Perceptron models) as a
proof of concept to validate the suggested framework. While the results from the experiments offer
empirical insights into various parameters that impact the transfer learning gain, they also raise the
question of network dimensioning requirements when designing, specifically, a neural network for
transfer learning.

Keywords: transfer learning; time series forecasting; sensitivity analysis; deep learning; neural
networks; negative transfer; catastrophic forgetting
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1. Introduction
1.1. Background and Motivation

The ability to predict future values based on historical data, known as time series
forecasting, has become increasingly crucial in various fields, including finance, energy,
healthcare, and transportation [1,2]. Precise predictions allow companies and policymakers
to foresee trends, make informed decisions, and allocate resources efficiently. However,
the intrinsic features of time series data, such as temporal dependencies, non-stationarity,
and noise, render the task of forecasting time series a challenging issue within the realms
of mathematics and machine learning. Fortunately, deep learning models have received
significant focus in this domain and are praised for their capacity to capture the stochasticity
and complexity present in time series data.

On another front, data limitations still pose significant challenges. Specifically, insuf-
ficient amounts of training data, scarce labeled data, and variations in data distributions
across different domains are constant challenges in machine learning and deep learning. [3].
Transfer learning has emerged as an effective approach to tackle these issues by utilizing
knowledge acquired from one or more related domains to enhance prediction accuracy in a
target domain where data are scarce. The rationale for transfer learning lies in the idea that
models can learn common patterns, trends, and underlying relationships from a source
domain and transfer this knowledge to enhance performance in a target domain [3].

Conceptually, transfer learning involves the notions of a domain and a task [4]. A
domain D consists of a feature space X and a marginal probability distribution P(X), where
X = {x1, . . . , xn} ∈ X and n is the number of feature vectors in X. X is the space of
all the possible feature vectors, and X is a particular learning sample. So, generally, if
two domains are different, they may, therefore, have different feature spaces or different
marginal probability distributions. Also, given a specific domain D = {X , P(X)}, task T
consists of a label space Y and a predictive function f (·), denoted by T = {Y , f (·)}. The
function f (·) is a predictive function, that is, it represents a mapping from the feature space
to the label space. Consequently, it can be used to make predictions based on unseen data.
Now, given a source domain DS and learning task TS, on the one hand, and a target domain
DT and learning task TT , on the other hand, the goal of transfer learning is to improve the
learning of the target predictive function fT(·) in DT using the knowledge in DS and TS,
where DS ̸= DT or TS ̸= TT .

While transfer learning has been widely and effectively used in Computer Vision
(CV) [5] and Natural Language Processing (NLP) [6], it is only recently that the use of
transfer learning for time series data has gained momentum [7]. Although numerous
research studies have successfully applied transfer learning for time series prediction in
areas like finance and electricity, the sentiment of the research community on the topic is
that more exploration into the theoretical foundations of transfer learning and time series
analysis is still needed. For instance, the authors of [8] contend that empirical studies that
can evaluate the benefits of different TL approaches with various types of time series data
for various prediction problems are still to be performed.

Conducting their experiments in CV, Mensink et al. [9] note that existing systematic
studies on Transfer Learning have been limited, and the circumstances in which developed
TL techniques are expected to work, in most cases, are not fully understood. This cannot be
more true for TL in time series forecasting, in which transfer learning is still in its infancy.
Furthermore, the survey [10] highlights a shortage of empirical studies that thoroughly
assess the advantages of various transfer learning methods across a range of time series
data types for different prediction problems. Therefore, empirical studies are essential to
developing guidelines for TL approaches and TL selection or method design that can be
utilized by time series practitioners.

The primary contribution of this paper is the suggestion of a comprehensive frame-
work for Transfer Learning Sensitivity Analysis for Time Series Forecasting. We achieve this
by identifying various parameters seen from various angles of transfer learning applied
to time series, aiming to uncover factors and insights that influence the performance of
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transfer learning in time series forecasting. A further contribution is the introduction of four
TL performance metrics encompassed in our framework. These TL performance metrics
provide insight into the extent of the transferability between the source and the target do-
mains. Moreover, they inform on the possibility of the occurrence of negative transfers and
also provide insight into the possible vulnerability of the network to catastrophic forgetting.

Furthermore, the concept of transfer learning, articulated through several dimensions
and reflecting balance and equivalence in the transfer of knowledge from a source domain
to a target domain, speaks to the idea of symmetry. Moreover, seen in the context of
encapsulating the harmonious exchange of learned patterns, ensuring that the benefits of
transferred knowledge are equally accessible and applicable across different domains or
tasks, leads to the requirement of symmetry in transfer learning. In the case of transfer
learning in time series forecasting, symmetry is to be regarded as a core requirement. For
example, the balanced transfer of knowledge means that the knowledge gained from the
source domain can be used effectively and efficiently in the target domain without any
bias or loss of relevance. Thus, expressing symmetry in transfer learning involves ensuring
a balanced, equitable, and harmonious application and impact of transferred knowledge
across different domains and tasks.

1.2. Problem Statement and Research Questions

Comprehensive and sufficiently extensive SA-related experimental/simulative/conceptual
studies are still/very much needed to provide insights into:

• To what extent do specific contextual parameters impact the effectiveness of TL, in the
context of time series forecasting tasks and endeavors;

• How the TL performance evolves in view of variations of certain contextual parameters
and dimensions related, amongst others, to machine learning (ML)/neural network
(NN) model types, the configuration of the ML model, the difference in distribution or
distance between the source and target domains, the size of the lag and horizons for
TSF, etc.;

• How to formulate recommendations on ML/NN model architectures and their subse-
quent TL-aware configurations and dimensioning in view of practical requirements
with respect to low model complexity for better implementability on hardware plat-
forms, etc.

Based on the above problem statement and the various TL for TSF shortcomings
discussed in [10,11], we define the following research questions (RQs):

RQ1: How can one comprehensively assess the TL performance of a network in a
given TL scenario (i.e., suggest a comprehensive TL performance analysis framework that is
ML/NN model-independent)? We answer this question, first by conducting a brief critical
state-of-the-art review related to TL performance metrics and pinpointing the gap in this
regard. Second, we suggest and define novel TL performance metrics for our framework.

RQ2: What are the essential elements of a comprehensive TL-related Sensitivity Anal-
ysis framework, in the context of TSF, independently of a given ML/NN model? In other
words, how can a comprehensive methodology for a TL sensitivity analysis for any ML/NN
model be framed? We address this question by (1) surveying the TL techniques that are ap-
plicable to TSF; (2) discussing how far the TL performance analysis framework developed
in RQ1 is applicable to all the identified TL techniques applicable to TSF; (3) providing
a brief background and motivation for a comprehensive TL Sensitivity Analysis, first, in
general, and second, specifically for TSF; also, we formulate a specification book for a
comprehensive TL sensitivity analysis for TSF; (4) providing a critical literature review
with respect to TL related-Sensitivity Analysis and identify the gap in this regard; and
(5) conducting a thorough investigation all the relevant TSF-related TL Sensitivity Analysis
contextual dimensions and parameters related to the ML/NN model, TSF Input/Output
modeling, Source-Target Domain distribution and distance characteristics, TL technique,
and Robustness to adversarial noise.
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RQ3: How can a comprehensive TL Sensitivity Analysis framework be formulated,
taking an ensemble TL for TSF as a use case and proof of concept? To answer this question,
first, we briefly discuss ensemble learning techniques. Then, we discuss dimensions
and parameters that are to be considered in a comprehensive Ensemble TL Sensitivity
Analysis. Finally, we present the selected dimensions and parameters that we consider for
implementation as a proof of concept.

RQ4: To what extent do the dimensions and parameters selected in the Sensitivity
Analysis framework (RQ3) impact the transfer learning performance? To answer this
question, we present the results of the experiments by discussing the underlying insights
with respect to the transfer learning process, thereby demonstrating the effectiveness and
feasibility of this methodology in practice.

The remainder of the paper is structured as follows: Section 2 introduces a Com-
prehensive Transfer Learning Performance Analysis Framework. Section 3 discusses the
Essential Elements of Comprehensive TL-Related Sensitivity Analysis in the Context of
Time Series Forecasting. Section 4 offers a brief overview of ensemble learning techniques,
while Section 5 implements the Ensemble Transfer Learning Sensitivity Analysis as a use
case. Finally, Section 6 provides concluding remarks and directions for future study.

2. A Comprehension Transfer Learning Performance Analysis Framework (RQ1)

In this section, we present a comprehensive framework for analyzing transfer learning
performance, offering a systematic approach to evaluating the extent of transferability,
adaptability, and effectiveness across diverse domains. We start by surveying the literature
about transfer learning performance metrics. We then introduce our framework, which
encompasses a range of TL performance metrics, allowing researchers and practitioners
to gain deeper insights into the transfer learning process and make informed decisions to
optimize performance for specific tasks and domains.

2.1. Critical State-of-the-Art Review of TL Performance Metrics

Transfer learning, a prominent machine learning paradigm, has revolutionized several
domains by enabling models to use knowledge acquired on one task to improve perfor-
mance on another task. However, the effectiveness of transfer learning models depends on
the careful selection and evaluation of performance measures. In this section, we are con-
ducting a brief state-of-the-art review of the key metrics used to assess the performance of
transfer learning models, highlighting their strengths, limitations, and recent developments.

The authors of [12] undertook a task to study and compare the network performance
of five selected pre-trained models based on transfer learning. The authors note an im-
portant challenge with conducting transfer learning: certain layers of a pre-trained model
require retraining, whereas others must be left untouched to ensure effective adaptation
to a new task. However, typical issues encountered have to do with the selection of the
layers that must be enabled for training and the layers that must be frozen. Eventually,
these concerns, together with setting hyperparameter values, will have a substantial effect
on the training capabilities and the extent of the transfer learning performance. The paper
does not suggest metrics to assess the performance of the transfer learning process. But to
reach their aim, they simply compare the accuracy of the five selected pre-trained models.
Wang et al. [13], starting from a simple and intuitive premise about TL that learning a new
concept is easier if one has previously learned one or more similar concepts, propose a TL
performance metric that they call the performance gap. They define the performance gap
as a measure of the discrepancy between the source and target domains, regarded as an
algorithm-dependent regularizer that controls the model complexity to be upper-bounded.
However, even though the performance gap is both data- and algorithm-dependent, the
metric is considered crucial for a more informative and finer generalization bound. The
study by Weiss and Khoshgoftaar [14] provides a discussion of the relative performance
analysis of state-of-the-art transfer learning algorithms and traditional machine learning al-
gorithms. Their analysis addresses the question of whether the area under the curve (AUC)
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performance is predictive of classification accuracy in a transfer learning environment,
where there is no labeled target data to perform validation methods.

The study in [15] has conducted a survey on transfer learning. Their surveyed works
demonstrate how transfer learning has been applied to many real-world applications.
Next are some of the applications and the performance metrics used for transfer learning.
For Imagine classification, multi-language text document classification, multi-language
text sentiment classification, and document text classification, classification accuracy is
measured as the performance metric. For word classification, the F1 score is measured as
the performance metric. For object category recognition, the area under the curve (AUC) is
measured as the performance metric. Moreover, the average precision is measured as the
performance metric for the object image classification application.

When it comes to regression tasks in transfer learning, mean squared error, root mean
squared error, or mean absolute error are the preferred metrics to quantify the difference
between the TL model’s outputs and the actual values [16,17].

A study posing a question similar to the one we have presented in this study is ref-
erenced in [18]. We agree with the fundamental premise that assessing transferability is
crucial for a transfer learning task. This refers to providing insight into when transfer
learning may be effective and the extent to which it can work. Given a metric capable of
efficiently and accurately measuring transferability across arbitrary tasks, the problem of
learning about task transfers simplifies largely to search procedures about potential transfer
sources and targets as quantified by the metric. Traditionally, transferability has been
measured using the model’s accuracy, as stated in the cases above. We equally have studies
that have focused on task relatedness [19] and domain similarity and dissimilarity [20,21],
as will be discussed in Section 3.5.3. However, they cannot directly explain task transfer
performance, and the H-score proposed in [18] only estimates the performance of trans-
ferred representations from one task to another in classification problems. That is why we
are proposing our four TL metrics. Our proposition necessitates that we briefly discuss
the issues of negative transfer and catastrophic forgetting. One conclusion from [14] is
that analyzing the relative performance of TL algorithms across a wide range of distortion
profiles should be considered an area for future research. Negative transfer occurs when
the source domain data and tasks contribute to lower learning performance in the target
domain. Despite the fact that the prevention of negative transfer is a very important issue,
little research has been published on this topic [19].

2.2. Negative Transfer and Catastrophic Forgetting in Transfer Learning

Though Transfer learning comes with numerous promises, such as an effective way
to train models quickly and efficiently, especially for tasks and domains where there is a
limited amount of data available [15], the effectiveness of transfer learning is not always
guaranteed [22]. Two of the potential dilemmas faced by transfer learning are: negative
transfer and catastrophic forgetting.

Negative transfer poses a limit to the power of transfer learning [22]. As put in [4],
when designing transfer learning, one has to be sure of what to transfer, how to transfer,
and when to transfer. What to transfer refers to determining which part of knowledge
can be transferred across domains or tasks. Certain knowledge can be specific to certain
domains or tasks, while other knowledge can be shared across multiple domains, potentially
enhancing performance in the target domain or task. After determining what knowledge
can be transferred, learning algorithms must be designed to transfer the knowledge, which
corresponds to answering the question of how to transfer. Next, knowing when to transfer
refers to determining situations in which knowledge should be transferred, implying
knowing in which situations knowledge should not be transferred. In some cases, if the
source domain and target domain are unrelated, a brute-force transfer approach might not
succeed. In the worst scenario, this could even impair the learning performance in the target
domain, a situation commonly known as negative transfer. So, in short, negative transfer
occurs when the performance in the target domain deteriorates instead of improving during
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the transfer learning. Nevertheless, how to avoid and prevent negative transfers remains
an important open issue that has yet to be fully addressed.

On the other side, catastrophic forgetting is another threat. After a network has
been trained for a particular task, it cannot easily be trained to do new tasks. Typical
deep neural networks tend to catastrophically forget previous tasks when new ones are
introduced [23]. Catastrophic forgetting in neural networks occurs because of the stability-
plasticity dilemma [24]. Normally, the network requires sufficient plasticity to learn new
tasks, but significant changes in weights can lead to forgetting by disrupting previously
learned representations. Maintaining the stability of the network’s weights protects against
forgetting previously learned tasks, yet excessive stability hampers the model’s ability
to learn new tasks. Networks that are designed to assimilate new information gradually,
similar to the way humans accumulate new memories over time, will prove more efficient
than completely retraining the model every time there is a need to learn a new task [23].

In short, catastrophic forgetting is the phenomenon where an artificial neural network
abruptly forgets previously acquired information when it starts to learn new information.
Negative transfer, on the other hand, happens when the performance in the target domain
gets worse rather than better through the process of transfer learning [25]. Multiple factors
contribute to these challenges, including the disparity between the source and target
domains, the design of the transfer learning algorithm, and the quality of the source and
target data.

So, it becomes imperative to devise ways that can, first, quantify the extent to which
transfer learning is adversely affected by both negative transfer and catastrophic forgetting
and, eventually, address these dilemmas. The scope of this study is focused on the former
task. Readers interested in the development of the latter task can visit [23], suggesting
methods to alleviate catastrophic forgetting in image data and [26] in time series data. The
study in [27] also suggests ways of handling negative transfer, though the survey in [28],
which is a decade-long survey of transfer learning, acknowledges that negative transfer is
still an open challenge in transfer learning. However, the objective of this study is to suggest
metrics that can provide insight into the occurrence of these phenomena during the transfer
learning process. To this aim, transfer learning performance metrics are presented shortly.

2.3. Definition and Justification of Normalized Performance Metrics and Performance
Assessment Scenarios

A variety of evaluation metrics are used in time series forecasting. Among these are
the R-squared, the Mean Squared Error (MSE) and its variants such as the Root Mean
Squared Error (RSME), the Mean Absolute Error (MAE), and its variants such as the Mean
Absolute Percentage Error (MAPE), etc. However, we introduce a unified performance
metric that encapsulates the combined information about RMSE and MAE. We denote this
metric as the ePerfi metric (error performance), which we can define as

ePer f i =

√
1
2

(
NRMSE2

i + NMAE2
i

)
(1)

where NRMSE is the normalized RMSE, NMAE is the normalized MAE, and i determines
which error performance metric is calculated.

The NRMSE and NMAE are defined as follows:

NRMSE =
RMSE

ymax − ymin
(2)

and
NMAE =

MAE
ymax − ymin

(3)

where ymax − ymin is the range of the (test) dataset. It can be noted that ePer f i is computed
as a quadratic mean of the NRMSE and the NMAE. This has been carefully thought
through because of the robustness of the results that it can provide. The quadratic mean is a
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versatile mathematical concept that has useful properties for quantifying the magnitude and
variability of the considered values and for analyzing data in a variety of contexts. It has the
benefit of being less sensitive to outliers compared to other measures of central tendency.

Next, to establish a framework for the study, we define different performance assess-
ment scenarios. These performance assessment scenarios are distinguished by whether the
dataset that is used for training or testing, is taken from the source domain (training data 1
and test data 1) or the target domain (training data 2 and test data 2). Figure 1 and Table 1
offer more insights into understanding these performance assessment scenarios.
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Table 1. Definition of the performance assessment scenarios.

Performance
Analysis Scenario Model Training Test Performance

Metric

Scenario 1 Model 1 Training data 1 Test data 1 ePerf1
Scenario 2 Model 2/A Training data 2 Test data 2 ePerf2
Scenario 3 Model 1 Training data 1 Test data 2 ePerf3
Scenario 4 Model 2/A Training data 2 Test data 1 ePerf4
Scenario 5 Model 2/B Training data 2 Test data 2 ePerf5

Thus, five basic error performance metrics, ePer f i, are defined for five performance
analysis scenarios. These error performance metrics can also be referred to as neural
network’s performance metrics, as they assess the performance of neural networks set up
in specific configurations.

To this end, we define three configurations (or states) of models: Model-1, Model-2A,
and Model-2B; and in the experiments that will be carried out, all three models are of the
same type. We consider them to be MLPs. Details about these models and the setup for the
five performance analysis scenarios are provided in Figure 1.

Let us consider the two domains: the source domain and the target domain. The
training data and test data of the source dataset are represented by Training Data 1 and Test
data 1, respectively. And the training data and test data of the target dataset are represented
by Training Data 2 and Test data 2, respectively. As for the models, Model-1 is considered the
source model. But for the target model, we present two nuances: Model-2A and Model-2B.
Model-2A presents a target model that results from the source model, Model-1, but that
is fine-tuned by the target data. In other words, Model-2A is equivalent to a pre-trained
Model-1, but with the difference that Model-2A is (or will be) fine-tuned by the target dataset
before conducting the forecasting task. On the other hand, Model-2B, the second nuance
of the target model, is a brand-new model that will be trained from scratch by the target
dataset. That is, it has no pre-training configuration (condition).
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Hence the definition of the following five performance analysis scenarios:

• Performance analysis scenario 1: In this scenario, Training Data 1 is used to train Model-
1, and Test data 1 is used to make predictions with Model-1. The resulting performance
of this scenario is termed ePer f 1.

• Performance analysis scenario 2: In this scenario, Training Data 2 is used to fine-tune,
or to continue the training of, Model-1, which then becomes Model-2A. Then, Test data 2
is used to make predictions with Model-2A. The resulting performance of this scenario
is termed ePer f 2.

• Performance analysis scenario 3: The only action in this scenario is Test data 2, which is
used to make predictions with Model-1, which was trained in scenario 1. The resulting
performance of this scenario is called ePer f 3.

• Performance analysis scenario 4: The only action in this scenario is that Test data
1 is used to make predictions with Model-2A, which was trained in scenario 2. The
resulting performance of this scenario is called ePer f 4.

• Performance analysis scenario 5: In this scenario, Training Data 2 is used to train
Model-2B, and Test data 2 is used to make predictions with Model-2B. The resulting
performance of this scenario is termed ePer f 5.

In short, for scenario 1, the training of the source model is performed by the source
data, and the prediction is conducted by the source data using the source model. In scenario
3, no training is carried out. Simply put, the target data are used to make predictions with
the source model. For scenario 2, target data are used to fine-tune or continue training the
source model, which then becomes the first version of the target model. Then the target
data are used to perform predictions with this version of the target model. In scenario 4,
no training is carried out. Simply put, the source data are used to make predictions with
the version of the target model constituted in scenario 2. And in scenario 5, the target
data are used to train another version of the target model, a brand new model that has
not undergone any prior training. Then, the target data are used to make predictions with
this model.

The aim of these experiments is to produce the following five error performance
metrics: ePer f 1, ePer f 2, ePer f 3, ePer f 4 and ePer f 5, which are essential in defining the
Transfer Learning performance metrics in the next section.

2.4. Definition and Justification of Comprehensive TL Performance Metrics

To gain insight into the level of transferability, we define the following novel transfer
learning performance metrics: (a) TL gain (TLG), (b) TL forgetting ratio (TLFR), (c) reference
generalization ratio (RGR), and (d) TL generalization gain (TLGG).

The transfer learning gain (TLG) is defined as follows:

TLG =
ePer f 5
ePer f 2

(4)

It provides insight into the extent to which transfer learning occurred. When TLG
is greater than 1 (TLG > 1), it shows a positive TL impact compared to a case without
prior training of the model used. When TLG is less than 1 (TLG < 1), it shows an absolute
negative transfer. When TLG = 1, it shows a zero transfer situation.

The TL forgetting ratio (TLFR) is defined as follows:

TLFR =
ePer f 1
ePer f 4

(5)

If the model is good at remembering, TLFR should be 1 or higher. In the case of
TLFR < 1, we have a case of forgetting, and we speak of catastrophic forgetting when TLFR
is significantly smaller than 1 (TLFR ≪ 1).



Symmetry 2024, 16, 241 9 of 28

The TL generalization gain (TLGG) is defined as follows:

TLGG =
ePer f 3
ePer f 2

(6)

It indicates how much gain we have gotten from the transfer learning compared to
a simple use of Model 1 in the target domain without new retraining. TLGG is normally
expected to be higher than 1 (TLGG > 1). Any situation with TLGG < 1 indicates a negative
TL-related generalization situation.

The reference generalization ratio (RGR) is defined as follows:

RGR =
ePer f 1
ePer f 3

(7)

It tests the generalization capability of the source model. If the RGR is close to 1
(RGR ≈ 1), that means the source model is good at generalization in the target domain.
When RGR ≪ 1, it means the source model is not good at generalization.

The set of these four novel metrics proposed above appears to be simple yet highly
intuitive because they can be used to comprehensively assess the efficiency of transfer
learning for a specific neural network architecture. They offer valuable insights into two
types of negative transfer (absolute and generalization-related) as well as issues pertaining
to eventual catastrophic forgetting that may occur during the transfer learning process.

3. Essential Elements of a Comprehensive TL-Related Sensitivity Analysis in the
Context of Time Series Forecasting (RQ2)

In this section, we intend to comprehensively survey all the elements and parame-
ters that can be useful in a TL sensitivity analysis. We do so by identifying the various
dimensions and parameters seen from various angles of transfer learning applied to time
series, aiming to uncover factors and insights that can influence the performance of transfer
learning in time series forecasting. However, we start by surveying the TL techniques ap-
plicable to time series forecasting. We then discuss how far the developed TL performance
analysis framework can be applicable to the surveyed TL techniques. Next, we provide a
background and motivation for a comprehensive TL Sensitivity Analysis. We will finally
perform a critical literature review of Sensitivity Analysis related to Transfer Learning
before identifying all the aforementioned relevant contextual elements and parameters.

3.1. A Brief Survey of TL Techniques for TSF

When surveying the topic of TL techniques, it is noted that there are slight variations
in the way diverse authors have previously categorized transfer learning methods. These
categorizations result from using either the feature space or the task and domains as
distinguishing criteria [29]. For example, Pan and Yang [4] categorize transfer learning
methods based on differences in task and domain. They presented the following categories:
inductive transfer learning, transductive transfer learning, and unsupervised transfer
learning. In inductive transfer learning, the target task is different from the source task,
regardless of whether the source and target domains are identical or not. In transductive
transfer learning, the source and target tasks are the same, while the source and target
domains differ. Finally, in unsupervised transfer learning, similar to inductive transfer
learning, the target task is different from but related to the source task.

Unlike Pan et al., Weiss et al. [15] categorize transfer learning methods using the
feature space as a criterion. They suggest two categories: homogeneous transfer learning
solutions and heterogeneous transfer learning solutions. This categorization is based on
the similarity between the source and target domains. Homogeneous transfer learning
solutions are used when the domains are of the same feature space and the feature spaces of
the data in the source and target domains are represented by the same attributes and labels
while the space itself is of the same dimension. On the other hand, heterogeneous transfer
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learning solutions are used when the domains have different feature spaces, and the feature
spaces between the source and target are nonequivalent and are generally non-overlapping.
In this case, the source and target domains may share no features and/or labels, while the
dimensions of the feature spaces may differ as well. It follows that heterogeneous transfer
learning solutions are regarded as more complicated than homogeneous transfer learning
solutions. This is because they require feature-space adaptation.

However, for the purpose of the subject of discussion in this study, we consider rather
the categorization by Weber et al. [10]. This is a categorization that is specifically tailored
for time series data (see Figure 2 and Table 2).

Symmetry 2024, 16, x FOR PEER REVIEW  10  of  29 
 

 

regardless of whether the source and target domains are identical or not. In transductive 

transfer  learning, the source and target tasks are the same, while the source and target 

domains differ. Finally,  in unsupervised  transfer  learning, similar  to  inductive  transfer 

learning, the target task is different from but related to the source task. 

Unlike Pan et al., Weiss et al. [15] categorize transfer learning methods using the fea-

ture space as a criterion. They suggest two categories: homogeneous transfer learning so-

lutions and heterogeneous transfer learning solutions. This categorization is based on the 

similarity between the source and target domains. Homogeneous transfer learning solu-

tions are used when the domains are of the same feature space and the feature spaces of 

the data in the source and target domains are represented by the same attributes and labels 

while the space itself is of the same dimension. On the other hand, heterogeneous transfer 

learning solutions are used when the domains have different feature spaces, and the fea-

ture spaces between the source and target are nonequivalent and are generally non-over-

lapping. In this case, the source and target domains may share no features and/or labels, 

while the dimensions of the feature spaces may differ as well. It follows that heterogene-

ous  transfer  learning  solutions  are  regarded  as more  complicated  than  homogeneous 

transfer learning solutions. This is because they require feature-space adaptation. 

However, for the purpose of the subject of discussion in this study, we consider rather 

the categorization by Weber et al. [10]. This is a categorization that is specifically tailored 

for time series data (see Figure 2 and Table 2). 

 

 
Figure 2. TL approaches applicable to time series (source [10]). 

Table 2. Explanation of the different types of Transfer Learning. 

Type of Transfer Learning  What Is Transferred 

Model-based  Parameters of a pre-trained model 

Feature-based  Features learned by a pre-trained model 

Instance-based  Training examples from the source domain 

3.1.1. Model-Based Transfer Learning 

This is the most common type of transfer learning, and it is the most widely used in 

time series. The approach focuses on transferring the model or parts of the model trained 

in the source domain to the target domain. The most common type of model-based trans-

fer learning involves parameter transfer, where the parameters of a model that was pre-

trained in the source domain are used to initialize the model in the target domain. For a 

neural network model, this encompasses the trained weights and biases. 

There are two primary approaches based on parameter transfer, referred to as pre‐

training and fine‐tuning and partial freezing. Apart from these two main approaches, we can 

identify additional alternative approaches, such as architecture modification, adversarial 

Figure 2. TL approaches applicable to time series (source [10]).

Table 2. Explanation of the different types of Transfer Learning.

Type of Transfer Learning What Is Transferred

Model-based Parameters of a pre-trained model
Feature-based Features learned by a pre-trained model
Instance-based Training examples from the source domain

3.1.1. Model-Based Transfer Learning

This is the most common type of transfer learning, and it is the most widely used in
time series. The approach focuses on transferring the model or parts of the model trained
in the source domain to the target domain. The most common type of model-based transfer
learning involves parameter transfer, where the parameters of a model that was pre-trained
in the source domain are used to initialize the model in the target domain. For a neural
network model, this encompasses the trained weights and biases.

There are two primary approaches based on parameter transfer, referred to as pre-
training and fine-tuning and partial freezing. Apart from these two main approaches, we can
identify additional alternative approaches, such as architecture modification, adversarial
learning, ensemble-based transfer, and the use of an objective function specifically aimed at
facilitating knowledge transfer.

• Pre-training and fine-tuning approach: for the pre-training and fine-tuning approach,
parameters from a model pre-trained on source data are either fully or partly employed
to initialize a target model. This strategy aims to accelerate convergence during target
training and enhance prediction accuracy and robustness. However, in many cases,
all model parameters are reused for target training. A different but commonly used
method involves transferring all weights to the target model except for the output
layer, which is usually randomly initialized. Task adaptation is another aspect of fine-
tuning [30]. Task adaptation, as a subcategory of transfer learning, involves adapting
a pre-trained model to a new task that is related to the original task. The goal of task
adaptation remains to improve the performance of the pre-trained model on the new
task by leveraging the knowledge learned from the original task.

• Partial freezing:partial freezing is a special case of fine-tuning, which is also frequently
used in transfer learning for time series. Used particularly for neural network-based
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transfer, only selected parts of the model are retrained instead of retraining the whole
model during a fine-tuning procedure. The parameters of the frozen layers are taken
from the source model. The other layers to be fine-tuned are either initialized with
source parameters or trained from scratch. As you survey the literature, one finds that
it is mostly the output layer that is retrained, while the rest of the network is used
as a fixed feature extractor based on the source data [31,32]. However, other studies
have tried different numbers of frozen layers and different combinations of frozen and
trainable layers [33,34].

• Architecture modification: for the transfer learning process, some studies [35,36] have
endeavored the architecture modification of the model used during source pre-training
for subsequently being fine-tuned in the target domain. For example, modifications
might entail either removing or incorporating certain layers in a deep learning model
architecture. However, an intuitive approach can involve adding adaptation layers
on top of the network that can only be trained with target data [35]. Moreover, for
adaptation to a certain problem at hand, layers may also be added inside the existing
layers of the source model [36].

• Domain-adversarial learning: this is another approach to transfer learning that can be
used to adapt a model from one domain (the source domain) to another domain (the
target domain) where the data distributions are different. Influenced by the generative
adversarial network (GAN) [37] concept and borrowing the notion of incorporating
two adversarial components within a deep neural network that engage in a zero-sum
game to optimize each other, this approach has been gaining interest [38–40]. As shown
in Figure 3, a deep adversarial neural network (DANN) comprises three elements: a
feature encoder, a predictor, and a domain discriminator. The feature encoder is made
of several layers that transform the data into a new feature representation, whereas the
predictor carries out the prediction task based on the obtained features. Moreover, the
domain discriminator, which is a binary classifier, utilizes the same features to predict
the domain from which an input sample is drawn.
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In contrast to the TL approaches mentioned earlier, the operation of adversarial-based
transfer is not divided into two stages: pre-training and adaptation. Instead, models
are trained concurrently on both source and target data, which is then referred to as joint
training. The predictor is trained using conventional supervised backpropagation, using the
available label information from any of the two domains. Simultaneously, the adversarial
objective is to generate domain-invariant features f so that, based on f, no distinction
between the target and the source domain can be made. This aim is reached by calculating
an additional domain discrimination loss, and linking the domain discriminator through
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a gradient reversal layer (GRL) that negates the gradient during backpropagation. This
process is depicted in Figure 3.

• Dedicated model objective: the concept underlying dedicated model objective is that,
like in domain adversarial learning and unlike in model retraining, model objective
functions, especially those dedicated to TL, allow using source and target data within
a single training phase. Some studies that have investigated and applied this concept
include [41–43].

• Ensemble-based transfer learning: this is a TL approach that exploits the concept
of ensemble learning. Ensemble learning involves the combination of multiple base
learners, where each one is trained independently on a subset of the available data.
Generally, the objective of ensemble learning is to lower generalization errors. There
are various configurations of ensemble techniques, but the major ones are bagging,
boosting, and stacking techniques. All these techniques are being used for transfer
learning with time series. The reader may be interested in looking at [44–46]. By the
way, the use case chosen for implementation in this study is an ensemble technique
(see Section 5).

3.1.2. Feature-Based Transfer Learning

The chief aim of feature-based transfer learning is to reduce the discrepancy between
the feature spaces in the target and source domains. Hence, in feature-based transfer
learning, the original features are transformed into a new feature space that is more suitable
for the target task [10]. The goals of constructing a new feature representation are to
reduce the difference between the marginal and conditional distributions, maintain the
characteristics or underlying structures of the data, and establish a correspondence between
features. For instance, let us consider a scenario of a cross-domain text classification
problem [3]. The objective in this case is to build a target classifier using labeled text data
from a similar domain. A practical approach is to identify common latent features via
feature transformation and utilize them as a means for knowledge transfer.

The operations of feature transformation can be divided into three types, that is, feature
augmentation [47], feature reduction (or feature selection) [48], and feature alignment [49].
The feature augmentation type of transfer learning involves adding new features to the
existing feature space to improve the performance of the model on the target task. Feature
augmentation can be performed by concatenating the original features with new features
or by generating new features using techniques such as data augmentation. On the other
hand, the feature reduction type of transfer learning involves reducing the dimensionality
of the original feature space to improve the performance of the model on the target task.
Feature reduction can be performed by techniques such as principal component analysis
(PCA) or autoencoders. Finally, the feature alignment type of transfer learning involves
aligning the feature spaces of the source and target domains to reduce the distribution
differences between them. Feature alignment can be performed using techniques such as
domain adaptation or adversarial training.

Nevertheless, Webber et al. [10] point out a nuance that is worth noting: the differentia-
tion between ordinary feature transformation approaches and feature learning. They noted
that in feature learning, a neural network encoder is learned with the goal of encoding data
into a more useful feature space. In contrast to model-based techniques, in this method, the
feature learning network is a separate model dedicated solely to transfer learning purposes.
It can be combined with any distinct predictive model. Hence, the suggested grouping of
feature-based transfer learning methods into methods that do not utilize a neural network,
methods that are based on autoencoders [50], and methods based on a neural network that
are not autoencoders [51] (see Table 3).

3.1.3. Instance-Based Transfer Learning

Instance-based transfer learning involves re-weighting the instances of the source
domain to improve the performance of the model on the target domain. In instance-based
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transfer learning, the model is trained on the source domain, and then the weights of the
instances are adjusted to minimize the difference between the source and target domains.
This approach is useful when the source and target domains have different marginal
distributions, but the conditional distributions are similar [52].

Instance-based transfer learning can be seen as a form of domain adaptation, where
the goal is to adapt the source domain to the target domain by adjusting the weights of the
instances. This approach is particularly useful when the target domain has limited labeled
data, as it allows the model to leverage the labeled data from the source domain to improve
the performance on the target domain [53].

For the purpose of time series, the subject at hand in this study, the term instance
denotes an individual time series contained in a time series dataset. The study in [46]
discusses two types of Instance-based transfer learning: Instance Selection and Symbolic
Aggregation Approximation. In the Instance Selection method, a useful subset of instances
from the source domain that are most relevant to the target domain is selected to train
the target model [54]. Most selection methods take into account the similarity between
source instances and the time series found in the target dataset. However, for Symbolic
Aggregation Approximation methods, symbolic representations of the subset of instances
from the source domain can be generated. For example, the study referenced in [55]
employs the symbolic aggregation approximation (SAX) method to represent time series
data, converting each time series into a word-like format. Such word representations can be
compiled into a bag of words and, in this way, form a subset of the input data. The authors,
subsequently, construct bags of words for different subjects. Transfer learning is carried
out by collecting a bag of common words, where commonness is measured by the relative
term frequency.

3.1.4. Hybrid Approaches

The literature also presents hybrid approaches. For instance, the study in [8] proposes
a training strategy for time series transfer learning with two source datasets. First, a source
model is trained with data from the first source data. Subsequently, the new source model is
fully fine-tuned using the target data in the target domain. This is a hybrid case combining
Freezing and Full Fine-Tuning. Additionally, hybrid approaches may be constructed with
ensemble learning by combining them with other approaches such as pre-training and
fine-tuning and others, as discussed in [56–58]. Further hybrid approaches can be found
in Table 3.

3.2. How Far Is the Developed TL Performance Analysis Framework Applicable to All the TSF
TL Techniques

The framework developed in Section 3.1 has presented metrics that can be used to
evaluate the extent of transfer learning. Each TL metric sheds light on a crucial aspect of
transfer learning. First, it indicates the potential gain that is achievable. Second, it provides
insights into the occurrence, or lack thereof, of negative transfer. Lastly, it quantifies the
risk of catastrophic forgetting in the network during the transfer learning process.

For the different transfer learning techniques surveyed applicable to time series fore-
casting, the network has been identified as either a neural network or a non-neural network
(see Table 3).

Also, talking about the types of tasks identified for the time series data, the tasks can be
regression, classification, or clustering. It can be noted that the suggested TL metrics were
designed with a regression task in mind, where the error performance has been constructed
using NMAE and NRMSE. This can lead us to conclude that these metrics, for now, are
applicable to the regression forecasting task. However, the classification task’s version of
the performance metrics can be designed. These will have to follow the logic of accuracy,
recall, precision, and F1 score. This should be easy to adapt, given that the underlying
reasoning and logic of TL are actually the same, whether for regression or classification.
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For simplicity and readability, we have included in Table 3 a column that indicates, for
a specific transfer learning technique, if the suggested TL metrics will be applicable. Three
possible answers are provided: Yes, No, and Maybe. The Maybe option has been included
for options where the architecture of the network is either complex, a non-neural network,
or when the metrics originally used to evaluate the performance of the network are not
explicitly explained to provide guidance on their applicability.

3.3. Background and Motivation for a Comprehensive TL Sensitivity Analysis

This section provides motivation for a comprehensive TL sensitivity analysis, first
from a general point of view and then with a specific focus on Time Series Forecasting. But
first, we discuss what Sensitivity Analysis is.

3.3.1. What Is Sensitivity Analysis?

Sensitivity analysis is a tool used in various fields, such as financial modeling, biology,
economics, and engineering [59]. It is used to analyze the effects of varying values of a
set of independent variables on a specific dependent variable under certain conditions.
This analysis is particularly useful in situations where the relationship between inputs and
outputs is complex and not well understood. This method usually involves varying one or
more inputs to observe the resulting changes in the output. The process allows for a better
understanding of which variables have a significant impact on the output of the model,
thereby aiding in more informed decision-making.

Table 3. A summary of TL techniques used in time series forecasting and the applicability of the
developed TL metrics.

Transfer Learning Techniques Used in TSF Some Sources Applicability of the Developed TL Metrics
Model-based
Retraining
Pre-Training and Fine-Tuning [30] Yes
Partial Freezing [31,34] Yes
Architecture Modification [35,36] Yes
Joint training
Domain-Adversarial Learning [38,39] Yes
Dedicated Model Objective [41,42] Yes
Ensemble-based Transfer [44,45] Yes
Feature-based
Non-Neural Network-based
Feature Transformation [3,10] No
Neural Network Feature Learning
Auto-encoder-based feature learning [50] Maybe
Non-reconstruction-based feature learning [51] Maybe
Instance-based
Instance Selection [53,54] Yes
Hybrid
Temporary Freezing before Full Fine-Tuning [8] Yes
Ensemble Learning, and Feature Transformation [60] Maybe
Ensemble of Fine-Tuned Models [57] Yes
Ensemble of Fine-Tuned Autoencoders [58] Maybe
Autoencoders and Adversarial Learning [38] Maybe
Transformation of Encoded Data [61] Maybe
Instance Selection and Feature Transformation [55] Maybe
Instance Selection, Pre-Training, and Fine-Tuning [54] Yes
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3.3.2. Motivation for a Comprehensive TL Sensitivity Analysis: In General

Transfer learning, an ML technique where a model developed for one task is repur-
posed and used as the starting point for a model on a second task, is widely used nowadays.
Its popularity has accrued because of the promise of an effective way to train models
quickly and efficiently, especially for tasks and domains where there is a limited amount of
data available [15].

However, it has been shown that transfer learning is not a silver bullet. There are
various settings in which it cannot be successful. Besides, there are various aspects of
transfer learning that are still to be understood and studied. As put in [ 4], several important
research issues related to transfer learning are still needed to be addressed, and one of
them is how to avoid negative transfer. Negative transfer and transferability measures are
still important issues in traditional transfer learning. The authors [ 4] add that to avoid
negative transfer learning, we need to further study transferability between source domains
or tasks and target domains or tasks. Clearly, this calls for further exploration through a
sensitivity analysis. A sensitivity analysis procedure is carried out to determine the effect of
a specific variable on the performance of a particular model being examined. Furthermore,
as reported in [15,62], TL solutions to the issues of the domain adaptation process focus
either on correcting the marginal distribution differences or the conditional distribution
differences between the source and target domains. To this end, finding improved methods
for correcting differences in the conditional distributions remains an open question in TL
research [15]. This emphasizes the need for research that helps to quantify the benefits of
correcting both distributions and identify the scenarios in which it is most effective. Also,
studies dedicated to quantifying any performance gains while simultaneously solving both
distribution differences are still needed. Such claims prove the necessity of a sensitivity
analysis of the main parameters for transfer learning performance. Therefore, in this case,
a sensitivity analysis of various aspects—such as the choice of source and target datasets,
network parameters, and so on—that provides insight into the extent to which they can
affect the transferability between source domains or tasks and target domains or tasks
is paramount.

3.3.3. Motivation for a Comprehensive TL Sensitivity Analysis: Specifically for TSF

As discussed in Section 3.3.1, the rise in popularity of TL as a promising area of ma-
chine learning stems from its potential to train models quickly and effectively, particularly
in areas or domains that are less data-dependent and less label-dependent. Also, dealing
with data from different distributions is another aspect. However, this being a new concept
applied specifically to the field of time series forecasting, additional theoretical studies and
guidance are to be further conducted to provide theoretical support for its effectiveness and
its applicability. For instance, as already mentioned, how to measure transferability across
domains and avoid negative transfers is still an important issue. The model’s parameters,
time series characteristics, and other parameters that are to influence the transferability of
knowledge and the possibility of the occurrence of negative transfer are to be identified
and carefully studied in the form of a sensitivity analysis. Catastrophic forgetting being the
other issue, various techniques to address the problem have been proposed, and others are
being improved. For instance, existing methods involve trying to find the joint distribution
of parameters shared with all tasks at hand [63], selectively slowing down learning on
the weights important for the new tasks [64], and a soft parameter pruning (SPP) strategy
trying to reach a trade-off between short-term and long-term profit of a learning model by
freeing the parameters less contributing to remember former task domain knowledge to
learn future tasks and preserving memories about previous tasks via the other parameters
effectively encoding knowledge about tasks at the same time [65]. Such approaches can be
studied further through a sensitivity analysis of the relevant parameters, given that this is a
problem far from being completely resolved.
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3.3.4. Specification Book for a Comprehensive TSF TL Sensitivity Analysis

To comprehensively assess the performance of transfer learning for a neural network,
there are a few requirements that need to be considered. These are summarized in Table 4.

Table 4. Specification book for a comprehensive TSF TL Sensitivity Analysis.

Requirement Explanation of the Requirement

Source model A pre-trained model is required to serve as the source model for the transfer learning process.
The source model should be trained on a related task or domain to the target task or domain.

Data Sufficient data are required for both the source and target tasks. The source task should have a
large amount of labeled data, while the target task may have limited labeled data.

Similarity There should be some similarity between the source and target tasks or domains. The more
similar they are, the more effective the transfer learning process will be.

TL design (layer selection)
A TL design needs to be determined beforehand. For neural networks, the selection of which
layers to update and which to fix is an important consideration in transfer learning. The choice of
layers will depend on the specific task and data.

Hyperparameter tuning Hyperparameters such as learning rate, batch size, and number of epochs need to be tuned to
optimize the performance of the transfer learning model.

Evaluation metrics Appropriate evaluation metrics need to be selected to measure the performance of the transfer
learning model. The choice of metrics will depend on the specific task and data.

Baseline model Establish baseline models, either trained from scratch or using other transfer learning techniques,
to compare and contrast the performance

Computational requirements
Define the acceptable computational time and resources for the transfer learning process. The
efficiency of transfer learning is often a consideration, especially when deployment resources
are constrained.

Model robustness Define requirements for the model’s stability and robustness against adversarial attacks, noise, or
other perturbations, especially in critical applications

Negative transfer avoidance Put mechanisms in place to detect or avoid negative transfer, where transfer learning leads to
degraded performance.

Reproducibility The evaluation process should be reproducible. This might involve requirements about
documentation, random seed settings, or the clarity of the process and methods used.

3.4. Critical Literature Review of Sensitivity Analysis Related to Transfer Learning

This section surveys critically from the literature the Sensitivity Analysis (techniques)
related to Transfer Learning. The aim of the sensitivity analysis (SA) carried out in [66] is
for the early detection of colorectal cancer (CRC), one of the most common cancer diseases
in the world. The SA, in its design, takes into consideration the following parameters:
three datasets that were prepared with different preprocessing methods in addition to
the raw dataset. K-fold cross-validation was considered with three different values for
k. Five different batch sizes were considered for each cross-validation. Finally, different
models were trained with the parameters of the most successful model. However, this
SA was not used for transfer learning but rather for selecting the best parameters to train
the model to perform the classification task at hand. In [67], Long et al. present a study
on joint adaptation networks (JAN) that learn a transfer network by aligning the joint
distributions of several domain-specific layers across domains based on a joint maximum
mean discrepancy (JMMD) criterion.

An adversarial training strategy is utilized to maximize JMMD, thereby enhancing the
distinctiveness between the source and target domain distributions.

The authors opted to perform a sensitivity analysis of the JMMD parameter, monitor-
ing the maximum value of the relative weight for JMMD. Eventually, the impact of JMMD
on the accuracy of JAN is reported in the paper, confirming the need for a proper trade-off
between deep learning and joint distribution adaptation to enhance transferability. In their
study, Abbas et al. [68] suggest a CNN architecture based on a class decomposition ap-
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proach to enhance the performance of ImageNet pre-trained CNN models through transfer
learning. Their framework is capable of delivering efficient and resilient solutions for classi-
fying medical images and coping with issues of data irregularity and the limited number of
training samples as well. However, to stress their framework, the authors demonstrate the
sensitivity of the framework to changes in the parameter k, which is the number of classes
in the class decomposition component. In the case of Guo et al. [69], in order to identify the
most influential parameters of the network configuration in non-homogeneous media with
the physics-informed deep collocation method (DCM), they carried out a global sensitivity
analysis. Algorithm-specific parameters, such as the neural architecture configurations,
parameters related to optimizers, and the number of collocation points that significantly
influence the model’s accuracy, were considered. The method has been used to improve
the generality and robustness of the DCM. In their proposed transfer learning framework,
referred to as Adaptation Regularization based Transfer Learning (ARTL), Long et al. [67]
also undertook a sensitivity analysis of the four tunable parameters that are involved in
the ARTL approaches. These parameters are shrinkage σ, MMD λ, manifold regularization
parameters γ, and the number of nearest neighbors p. They run ARTL with varying values
of p, which should be neither too large nor too small. Likewise, ARTL is run with varying
values of σ, where σ controls the model complexity of the adaptive classifier in such a
way that when σ → 0, the classifier degenerates and overfitting occurs, but when σ → ∞,
ARTL is dominated by the shrinkage regularization without fitting the input data. Also, the
ARTL is run with varying values of λ, where large values of λ make distribution adaptation
more effective, but when λ → 0, the distribution difference is not reduced and overfitting
occurs. Finally, they run the ARTL with varying values of γ, where larger values of γ
make manifold consistency more important in ARTL, in such a way that when γ → ∞,
only manifold consistency is preserved while labeled information is discarded, which is
unsupervised. While there are numerous studies on transfer learning in various fields,
there is a lack of systematic and comprehensive sensitivity analysis studies on the topic in
the literature. That is the gap that our study is attempting to fill. Moreover, our sensitivity
analysis is specifically related to time series forecasting.

3.5. Comprehensive Identification, Justification, and Explanation of All the Relevant TSF Related
TL SA Contextual Dimensions

In [9], Mensink et al. conducted a study aimed at uncovering factors of influence for
Transfer Learning across diverse appearance domains and task types. But their study is in
computer vision. However, they made a good observation that actually motivated their
experimental study. They discovered that existing systematic studies on Transfer Learning
have been limited, and the circumstances in which developed TL techniques are expected
to work, in most cases, are not fully understood. This cannot be more true for TL in time
series forecasting. This is the same reason that motivates us to conduct our study in the
form of parameters’ sensitivity analysis. The sensitivity analysis, in this context, intends to
uncover the extent to which the various dimensions and parameters (variables) can impact
the efficiency of the transfer learning of a neural network or deep learning model for a time
series forecasting task. Next, we identify and then provide a justification and explanation
of groups of relevant TSF-related SA contextual dimensions (see Figure 4).

3.5.1. Contextual Dimensions Related to the ML/NN Model

The number of parameters within the backbone, constituting the big part of the neural
or deep learning network, can impact the efficiency of transfer learning across various
domains and tasks [9]. The main parameters related to the ML/NN model are:

• Source model architecture: the architecture of the pre-trained model can greatly influence
transfer learning. The choice needs to be ideally aligned with the complexity and
nature of the new task.

• The depth of the network architecture. This is the number of hidden layers considered for
the model.
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• The width of the network architecture. This is the number of neurons in the various hidden
layers of the model.

• The model’s transferred layers: based on the first three parameters mentioned above,
the number of layers, also referred to as backbone parameters, can influence the
performance of the transfer learning. The choice is to transfer all layers or only a
subset of layers from the source model. In many cases, the higher-level features of
deep networks are more task-specific, meaning that when adapting to a new task, only
the first layers (which capture general features) may be transferable.

• Hyperparameters: the setting of adjustable hyperparameters is pivotal to the perfor-
mance of transfer learning. Key hyperparameters to watch during transfer learning
include learning rate, batch size, and number of epochs.
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3.5.2. Contextual Dimensions Related to the TSF Input/Output Modeling

The main dimensions related to the TSF Input/Output modeling (lag/horizon defini-
tion) are:

• The lag of the time series forecasting task (number of historical points in the past).
• The horizon of the time series forecasting task (the number of points in the future

to forecast).
• Eventually, the formulation of the time series forecasting task, as a univariate or a multi-

variate, can also impact the performance of transfer learning. Univariate time series
forecasting is generally simpler than multivariate time series forecasting because it
involves only predicting the future values of a single variable. As a result, trans-
fer learning is often more effective in univariate time series forecasting. However,
this assertion needs to be demonstrated empirically through an appropriate sensitiv-
ity analysis.

3.5.3. Contextual Dimensions Related to the Source-Target Domains Distribution and
Distance Characteristics

Domain similarity is an important aspect to consider for transfer learning. The more
similar the source and target domains are, the better the transfer learning performance
will be. This is because the model can leverage the knowledge it learned from the source
domain to solve the task in the target domain. So, the similarity between the source
and target domains can affect the performance of transfer learning. Below are some
dimensions/metrics/parameters that can be used to evaluate the source-target domains
(dis)similarity:
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• Domain (dataset) characterization: This refers to determining the (dis)similarity between
the domains. For instance, in the case of time series, we can compute (evaluate) the
Pearson or DTW distance [20], the degree of non-linearity of the time series [70], the
degree of homogeneity of the time series [71], and/or the degree of unpredictabil-
ity [72].

• Data size: The size of the source and target datasets also affects the performance of
transfer learning [73]. A larger source dataset will typically lead to better performance,
as it provides the model with more information to learn from. However, it is also
important to have a sufficient amount of labeled data in the target domain, as this is
what the model will be fine-tuned on.

• Data distribution: It is essential to consider the similarity between the source and target
data distributions [21] by computing the maximum mean discrepancy (MMD) between
the two domains. If the data distributions are too different, the model may not be able
to generalize well to the target domain. In this case, domain adaptation techniques
may be necessary.

• Data quality: The quality of both the source and target datasets is important for trans-
fer learning. High-quality data with good labeling will help the model learn more
effectively and generalize better to the target domain.

3.5.4. Contextual Dimensions Related to the TL Technique

The dimensions related to a TL technique are mainly the understanding of [4]:

• What to transfer: This refers to which part of the knowledge can be transferred from
the source to the target in order to improve the performance of the target task. In
short, this has to do with the approach of transfer learning, whether model-based,
feature-based, instance-based, or hybrid-based.

• How to transfer: This refers to the design of the transfer learning algorithm.

3.5.5. Contextual Dimensions Related to Robustness to Adversarial Noise

Deep neural networks have been shown to be susceptible and vulnerable to various
types of perturbations, such as adversarial noise and corruption [74]. Specifically, adversar-
ial noise refers to small, often imperceptible, perturbations added to the input data with the
intent of fooling machine learning models, especially deep neural networks. Researchers
use this adversarial noise, also called adversarial examples, to test the robustness of models
and to develop defenses against such attacks [74,75]. We believe it will be an interesting
discovery to figure out how transfer learning is affected by the injection of adversarial
examples into the input data. As already found in [74], different hidden layers make dif-
ferent contributions to model robustness with respect to adversarial noise, where shallow
layers are comparatively more critical than deep layers. Although some research has been
conducted on adversarial robustness and transfer learning [76,77], conducting a sensitivity
analysis of transfer learning for this would be an intriguing experiment.

4. A Brief Discussion of the Ensemble Learning Techniques

After presenting various TL techniques applicable to time series forecasting and
discussing the various dimensions and parameters to be considered in a comprehensive
TL sensitivity analysis for time series forecasting, Section 5 will present the Ensemble TL
technique use case as a proof of concept. But first, in this section, we will briefly discuss the
main ensemble learning techniques.

Ensemble learning is a machine learning technique that combines the predictions of
multiple models to improve predictive performance. The idea behind ensemble learning
is that by combining the predictions of multiple models, the resulting prediction will be
more accurate and robust than the prediction of any individual model. This is because each
model in the ensemble has its own strengths and weaknesses, and when combined in an
ensemble technique, the overall error gets reduced.
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As shown in Figure 5, there are three main types of ensemble learning techniques:
bagging, stacking, and boosting:
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In bagging, also known as bootstrap aggregating, several training datasets are created
by sampling with a replacement from the original training dataset. Each model within the
ensemble is trained using one of these bootstrapped datasets. The concept of bagging aims
to lower the variance in predictions by averaging the outcomes across several models. Ma-
jority voting [78] and simple averaging [79] are the most popular and intuitive aggregation
techniques in classification and regression tasks, respectively. Meanwhile, several other
aggregation techniques have been suggested in the literature [80].

In stacking, multiple different models (base models) are trained on the original training
dataset. Then, a meta-model is used to combine the predictions of multiple base models.
This meta-model is trained on the predictions of the base models.

In boosting, multiple models are trained sequentially, with each model trying to correct
the errors of the previous model. This process is repeated until a stopping criterion is met,
such as a maximum number of models or a desired level of accuracy. The idea behind
boosting is to reduce the bias of the predictions by iteratively improving the model.

5. Implementation of the Ensemble Transfer Learning Sensitivity Analysis: A Use Case
(RQ3 and RQ4)

In this section, we present the Ensemble TL technique use case as a proof of con-
cept. First, we discuss the dimensions and parameters that should be considered in a
comprehensive Ensemble TL Sensitivity Analysis. We then present the selected dimensions
and parameters considered for the proof-of-concept implementation. Following this, we
introduce the datasets used and the network parameters. The section concludes with a
discussion of the results.

5.1. Dimensions and Parameters to Be Considered in a Comprehensive Ensemble TL
Sensitivity Analysis

In addition to all the relevant TSF-related TL SA contextual dimensions and parameters
discussed in Section 3.5, there are additional dimensions to consider for the ensemble TL
sensitivity analysis. For instance, for the bagging technique, these include the number
of base models, the type of network selected as base learners, and the aggregation rule.
For the stacking technique, parameters to consider are the number of the different base
learners, the types of the different base learners, as well as the type of network chosen as
the meta-learner. Finally, for the boosting techniques, essential parameters to consider are
the number of base learners, the type of base learners, and the stopping criteria.
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5.2. Selected Dimensions and Parameters Considered for Implementation as a Proof of Concept

As a proof of concept, we implement the bagging technique, which is categorized as an
ensemble learning model-based TL approach. For simplicity, just a few selected parameters
are considered in the implementation of the sensitivity analysis (see Table 5).

Table 5. Selected Sensitivity Analysis parameters.

Parameters Configuration

Ensemble technique used Bagging

Number of ensemble instances 4

Type of neural network MLP

Number of hidden layers 1 (shallow network)

Number of neurons 1, 2, 5, 10, 20, 30, 50, 70, 100, and 200

Lag size and horizon size (7, 1), (14, 1), (30, 1), (100, 1)
(7, 7), (14, 7), (30, 7), and (100, 7)

Evaluation metrics TLG, TLFR, RGR, and TLGG
(defined in Section 2.4)

(Dis)similarity metrics to assess the distance
between source and target domains Pearson, DTW

5.3. Presentation of the Datasets and Network Parameters

Ten datasets were chosen from the PJM Hourly Energy Consumption Data, which
were then pre-processed and normalized with the MinMaxScaler. The Pearson and DTW
distances were calculated, and two datasets with a Pearson distance of 0.9105 and a DTW
distance of 4300.78 were chosen, one as the source and the other as the target. Technically,
the goal is to employ different distances in the experiments to examine their effect on the
transfer learning process as well.

Several parameters are documented in the sensitivity analysis table, presented in
Table 2. Furthermore, k-fold cross-validation (k = 5) was utilized for training. The batch
size was set at 32, and the training was conducted over 30 epochs. Moreover, early stopping
was applied with a patience setting of 1. The training process for each k-fold was repeated
five times, and the best model from these five iterations was saved for making predictions.

5.4. Results Discussion

The observations from Figures 6–9 indicate that for Hor-1 and Hor-7 combinations,
ePerf values decrease with the increase in the number of neurons in hidden layers. Never-
theless, the ePerfs values for Hor-1 combinations are lower compared to those for Hor-7. In
the experiments, the ensemble consisting of four learner instances was evaluated against a
single-instance setup. Even though the figure is not included, experimental results indicate
that the decrease in ePerf values is steeper for the single-instance configuration than for the
four-instance ensemble setup. This suggests that the ensemble configuration stabilizes the
error decline. However, ePerf values are lower in the four-instance configuration than in
the single-instance setup.

TLG exhibits a declining trend as the number of neurons in hidden layers (n) increases,
for both Hor-1 and Hor-7 scenarios, except for the lag-hor (100-7) case, which only starts to
decrease from n = 100. In Hor-1 scenarios, the higher the lag value, the higher the TLG.

Concerning TLFR, it shows a decreasing trend for Hor-1, where cases with smaller lag
values are more susceptible to forgetting with the increase in the number of neurons in
the hidden layer. Hor-7 combinations exhibit stability in terms of TLFR, though the lag 7
scenario displays a certain susceptibility to forgetting, with TLFR being approximately 1.
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TLGG similarly demonstrates a declining trend for both Hor-1 and Hor-7 combinations,
with TLGG decreasing as the number of neurons in the hidden layer increases. However,
in Hor-1 scenarios, instances with higher lags exhibit greater TLGG compared to those
with lower lags. Hor-7 combinations display a more gradual decline in TLGG, with the
exception of the lag-hor (100-7) scenario, which exhibits a higher TLGG. Across both Hor-1
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and Hor-7 combinations, scenarios with smaller lag values tend to approach TLGG ≈ 1,
which is not yet a negative transfer.

Concerning RGR, every lag-hor combination within Hor-1 and Hor-7 demonstrates
an inability to generalize in the target domain without further training, which proves the
importance of transfer learning in ensuring generalization. However, it is observed that in
Hor-1 scenarios, instances with higher lags exhibit reduced RGR compared to those with
lower lags. Conversely, in Hor-7 scenarios, instances with lower lags display lower RGR
than those with higher lags.

Thus, the experiments reveal that the ensemble learning setup, consisting of four
instances, not only shields the model against the instability of ePerfs but also contributes
to robustness by enhancing performance through improved TLG and TLGG and reduced
TLFR, compared to the single-instance configuration. In most lag-hor configurations, TLG
and TLGG are higher for a lower number of neurons in the hidden layer, n, and they
decrease as n increases. Similarly, ePerf values also decrease with an increase in n. This
implies that in the process of designing a neural network for transfer learning, it is essential
to consider a trade-off or achieve a balance between the targeted TLG and the necessary
ePerf value. We refer to this as a network dimensioning requirement for transfer learning, and
we believe it could be an exciting area for future research to explore.

5.5. Assessment of the Use Case According to the Specification Book for a Comprehensive TSF TL
Sensitivity Analysis

Table 4 provides a specification book for a comprehensive TSF TL Sensitivity Analysis.
In Table 6, we assess the presented use case against this specification book.

Table 6. Assessment of the use case against the specification book for a comprehensive TSF TL
Sensitivity Analysis.

Requirement Assessment of the Use Case

Source model A source model was pre-trained for later use in the target domain.

Data Sufficient data were available to train the source model.

Similarity The calculated Pearson distance between the source and target datasets (PD = 0.9105) shows a
degree of similarity between the source and target domains.

TL design (layer selection) In this case, a shallow MLP was used.

Hyperparameter tuning Hyperparameters (learning rate, batch size, and number of epochs) were set to optimize the
performance of the transfer learning model.

Evaluation metrics The proposed TL metrics were used.

Baseline model No baseline model was explicitly chosen; however, various performance analysis scenarios were
set up, with selected scenarios being considered as baselines in the analysis (see Table 1).

Computational requirements Computational requirements were not explicitly monitored; the focus was more on the sensitivity
analysis of other dimensions.

Model robustness Requirements for the model’s robustness against adversarial attacks, noise, or other perturbations
were not considered in the use case. These will be considered in further study.

Negative transfer avoidance The aim set for the study was to gain insight into the possible vulnerability of the network to
negative transfer and catastrophic forgetting, not to eliminate them.

Reproducibility The source code is available on request for reproducibility.

6. Conclusions and Future Work

The field of transfer learning for time series forecasting is progressing, but it is still
far from reaching maturity. Our study has filled a gap highlighted in recent survey pa-
pers, underscoring the importance of conducting empirical studies to develop practical
guidelines for TL strategies and the selection or design of methods that can be employed by
practitioners. The primary contribution of this paper has been the suggestion of a compre-
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hensive framework for Transfer Learning Sensitivity Analysis for Time Series Forecasting.
This has been achieved by identifying various parameters seen from various angles of
transfer learning applied to time series, with the aim of uncovering factors and insights
that influence the performance of transfer learning in time series forecasting. A further
contribution has been the introduction of four TL performance metrics encompassed in the
framework. After choosing the Ensemble TL technique as a use case, the results from the ex-
periments of the sensitivity analysis of the Ensemble TL technique, have offered empirically
informative insights into various parameters that impact the transfer learning gain, while
raising the question of network dimensioning requirements, specifically, when designing
a neural network for transfer learning. However, the implementation described in this
paper has focused only on specific aspects of the parameters and dimensions mentioned
within the framework of sensitivity analysis. By exploring future experiments from various
angles and examining a broader array of dimensions, additional revelatory discoveries
about the transfer learning process can be uncovered. For instance, in future experiments,
considering various ML models configured with various shallow and/or deep architecture
schemes while taking into account different clusters of the source and target domains, along
with varying degrees of nonlinearity and homogeneity, can lead to interesting insights.
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