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Abstract: This paper focuses on examining numerical solutions for fractional-order models within
the context of the coupled multi-space Korteweg-de Vries problem (CMSKDV). Different types of
kernels, including Liouville-Caputo fractional derivative, as well as Caputo-Fabrizio and Atangana-
Baleanu fractional derivatives, are utilized in the examination. For this purpose, the nonstandard
finite difference method and spectral collocation method with the properties of the Shifted Vieta-
Lucas orthogonal polynomials are employed for converting these models into a system of algebraic
equations. The Newton-Raphson technique is then applied to solve these algebraic equations. Since
there is no exact solution for non-integer order, we use the absolute two-step error to verify the
accuracy of the proposed numerical results.

Keywords: multi-space fractional-order coupled Korteweg-de Vries equation; Shifted Vieta-Lucas
orthogonal polynomials; Vieta-Lucas spectral collocation method; operators of fractional calculus

1. Introduction

Mathematicians who delve into fractional calculus broaden the principles of differenti-
ation and integration to include orders that are non integer. Fractional calculus allows for
differentiation and integration to be performed using non-integer , rather than being con-
fined to whole numbers or integers [1–4]. In the 17th century, pioneers like Isaac Newton
and Gottfried Leibniz made early strides in advancing fractional calculus. However, it was
not until the 19th century that mathematicians such as Karl Weierstrass and Augustin-Louis
Cauchy embarked on the development of a structured theory for fractional calculus [3].

There are alternative approaches to defining fractional derivatives and integrals, which
encompass the Riemann-Liouville, Liouville-Caputo, and Grünwald-Letnikov definitions.
These definitions entail expanding the classical methods of integration and differentiation
to include orders that are not integer [5].

Fractional calculus has extensive use across various industries like engineering, physics,
finance, and signal processing. It offers an advanced approach to comprehend phenomena
like as anomalous diffusion, fractal time series, and, viscoelasticity, all of which exhibit
fractional or fractal characteristics [6–14]. In addition, fractional calculus provides a potent
mathematical tool for modeling and examining complex systems that cannot be entirely
elucidated by employing the standard methods of integer-order calculus [15].

When studying nonlinear dispersive waves, researchers often turn to the Korteweg-de
Vries (KdV) equations. For more information [16].

In 1895, Korteweg and de Vries formulated these equations with the aim of simulating
shallow water waves in a canal [17].

A nonlinear partial differential equation known as the coupled Korteweg-de Vries
(cKdV) equation describes the evolution of many broad, weakly nonlinear waves in a
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dispersed medium. It is a generalization of the well-known Korteweg-de Vries (KdV)
equation, which describes the behavior of an isolated single wave in particular. Hirota and
Satsuma first introduced the development of the linked KdV equation in a study identified
as [18].

The KdV equations elucidate the interaction between two lengthy waves characterized
by distinct dispersion relations [18,19].

It is important to highlight that the Korteweg-de Vries equations appear in diverse
fields within the physical sciences, ranging from plasmas and fluids to vibrations in low-
temperature crystal lattices. Although these applications may appear unrelated, they all
originate from a comprehensive physical model. When a particular aspect of the problem
is examined closely, they all lead to the Korteweg-de Vries equation. In this sense, the
Korteweg-de Vries equation is considered to have broad and universal applicability.

Vieta-Lucas polynomials are widely used in spectral methods used to solve partial
and ordinary differential equations [20]. These methods show fast exponential convergence
or spectral precision, particularly for problems in simple geometric contexts where the
solutions are smooth. These methods differ from finite difference techniques in that the
determination of the approximation coefficient entirely defines the solution at any specified
point within the interval. Therefore, utilizing operational matrix spectral methods that rely
on Vieta-Lucas polynomials for solving the system outlined in Equation (1) below is of
considerable significance [21–23]. For the application of spectral collocation method and
finite difference method, some powerful mathematical techniques have been used in recent
years by researchers [24–28].

The objective of this study is to offer numerical solutions for the multi-space fractional-
order coupled Korteweg-de Vries problem. Various kernels, Liouville-Caputo fractional
derivatives, Caputo-Fabrizio, and Atangana-Baleanu fractional derivatives are employed
in this work. The solution method integrates the Vieta-Lucas collocation method with the
nonstandard finite difference method to discretize the spatial fractional-order diffusion
equation. This results in a set of ordinary differential equations, simplifying the conditions
significantly. The nonstandard finite difference method (FDM) is then applied to solve this
set of ordinary differential equations. For more detailed information, refer to the provided
references [29–31].

The paper is organized as follows: In Section 2, we delve into function approximation
and the application of Vieta-Lucas polynomials. Section 3 demonstrates the use of the
spectral method to solve the multi-space fractional-order coupled Korteweg-de Vries
problem, employing Liouville-Caputo, Caputo-Fabrizio, and Atangana-Baleanu fractional
derivatives. Section 4 presents an explanation and numerical results for the multi-space
fractional-order coupled Korteweg-de Vries, incorporating the three kernels utilized in this
study. Finally, concluding remarks are provided in Section 5.

2. Vieta-Lucas Polynomials and Function Approximations

In this section, we furnish the definitions of the shifted Vieta-Lucas polynomials
(VLPs), along with their corresponding notations and key properties. This serves as a
foundational understanding for their application in the subsequent analyses [32]. Our
research has primarily focused on a specific category of orthogonal polynomials known
as the Vieta-Lucas polynomials. This family of orthogonal polynomials can be generated
through the utilization of recurrence relations and analytical equations associated with
these polynomials. Also we will introduce the convergence analysis and the nonstandard
finite difference scheme notations.

2.1. Shifted Vieta-Lucas Polynomials

The Vieta-Lucas polynomials Ψj(z), referred to as Lucas polynomials (VLPs), are
discussed along with their respective notations and properties as outlined by Vieta. Specif-
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ically, for polynomials of degree j ∈ N0, N0 = {0, 1, 2, 3...}, the definition is provided as
follows [32]:

Ψj(t) = 2 cos(j ψ), ψ = arccos(0.5 z), ψ ∈ [0, π], −2 ≤ z ≤ 2.

The following recurrence relation for Ψj(z) is easily demonstrated:

Ψj(z) = z Ψj−1(z)− Ψj−2(z), j = 2, 3, . . . , Ψ0(z) = 2, Ψ1(z) = z.

A set of orthogonal polynomials defined on the interval [0, 1] is established by incorporating
VLPs and z = 4α − 2. These polynomials will be represented by the symbol Φm(β), as
illustrated in: Φj(α) = Ψ(4 α − 2) = Ψ(2

√
α).

Φj(α) have the following recurrence relation:

Φj+1(α) = (4α − 2)Φj−1(α)− Φj−2(α), j = 2, 3, . . . ,

where, Φ0(α) = 2, Φ1(α) = 4α − 2. Also, we find Φj(0) = 2(−1)j and Φj(1) = 2,
j = 0, 1, 2, ... .

The analytical formula for Φj(α) is:

Φk(α) = 2j
k

∑
j=0

(−1)j 4k−j Γ(2k − j)
Γ(j + 1) Γ(2k − 2j + 1)

αk−j, k = 2, 3, . . . .

The polynomials Φk(α) are orthogonal polynomials on [0, 1] w.r.t. 1√
α−α2 , and so we have:

〈
Φk(α), Φj(α)

〉
=
∫ 1

0

Φk(α)Φj(α)√
α − α2

dα =


0, k ̸= j ̸= 0,
4π, k = j = 0,
2π, k = j ̸= 0.

Let Ω(α) ∈ L2[0, 1], then using Φk(α), we have:

Ω(α) =
∞

∑
k=0

ck Φk(α). (1)

To convert Ω(α) into terms of Φm(α), it is necessary to evaluate ck. This can be expressed
by considering only the first m + 1 terms of (1), we obtain that

Ωm(α) =
m

∑
k=0

ckΦk(α), (2)

The values of ck for k = 0, 1, 2, ..., m can be computed from:

c0 =
1

4π

∫ 1

0

ϕ(α)Φ0(α)√
α − α2

dα, ck =
1

2π

∫ 1

0

ϕ(α)Φk(α)√
α − α2

dα, k = 1, 2, 3, · · · . (3)

2.2. Convergence Analysis

Lemma 1. Assuming that the function Ωm(α) belongs to L2 [0, 1] with the weight function 1√
α−α2

and |Ω′′(α)| ≤ ε, for some constant ε, the series given by (2) uniformly converges to Ω(α) as
m → ∞. Furthermore, the estimates listed below are accomplished:

1. Equation (2) has a bounded series of coefficients, meaning

|ck| ≤
ε

4k(k2 − 1)
, k > 2.

2. The norm for the error estimate (L2 [0, 1]-norm) can be articulated as follows:
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∥Ω(α)− Ωm(α)∥ <
L

12
√

m3
.

3. If Ω(m)(α) ∈ C[0, 1], then the absolute error bound is satisfied

∥Ω(α)− Ωm(α)∥ ≤ ∆ Πm+1

(m + 1)!
√

π, ∆ = max
α∈[0,1]

Ω(m+1)(α), and Π = max{1 − α0, α0}.

For a more in-depth exploration of the convergence analysis and the use of polynomials to approximate
(2), readers may refer [33].

2.3. Nonstandard Finite Difference Scheme Notations

We provide the following elucidation of the discrete first derivative:

dΩ
dβ

→ Ωs+1 − ψ1(h)Ωs

ψ2(h)
, (4)

where ψ1(h) and ψ2(h) are functions in the step-size discretization h = ∆(β) and

ψ1(h) = 1 + O
(
h2) and ψ2(h) = h + O

(
h2).

The term used to denote the first derivative in the nonstandard finite difference technique
is referred to as the presentation formula. Moreover, it is required that the denominator
function adheres to the condition that 0 < ψ1(h) < 1, h → 0. While the exact base function
ψ2(h) is not specified, commonly used functions in the non-standard finite difference
method can be introduced as follows: ψ2(h) = exp(h)− 1, ψ2(h) = h, ψ2(h) = sinh(h),
ψ2(h) =

1−exp(−λh)
λ , etc. (see [34]).

3. Spectral Method for Solving CMSKDV

This section is subdivided into three sections, each delineating the fractional deriva-
tives associated with distinct kernels. Recent works have investigated a fractional deriva-
tive based on the exponential decay rule, which can be described as a generalized power
law function. A more generalized version of the exponential function called the Mittag-
Leffler function served as the foundation for the fractional derivative with a non-local
kernel that Dumitru Baleanu and Abdon Atangana presented. The depiction of intricate
physical issues that follow the rules of power and exponential decay is made possible by
this derivative [35,36].

The coupled KdV equations in the classical case are given as follows:

ϕβ − c ϕααα − µ2 ϕ ϕα − µ1 φ φα = 0, (5)

and

φβ − c φααα + µ1ϕ φα = 0, (6)

where c, µ1 and µ2 are constant parameters.

3.1. CMSKDV via the Liouville-Caputo Fractional Derivative

When replacing the classical derivative of the coupled KdV equations with a fractional
derivative employing a power-law kernel or Liouville-Caputo fractional derivative (LC),
the resulting system of equations for the coupled KdV reads as follows:

ϕβ − c LCDν1
α ϕ − µ2 ϕLCDν2

α ϕ − µ1 φ LCDν2
α φ = 0 (7)
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and

φβ − c LCDν1
α φ + µ1ϕ LCDν2

α φ = 0, (8)

2 < ν1 ≤ 3, 0 < ν2 ≤ 1,

where LCDν1
α and LCDν2

α are the LC fractional derivatives of order ν1 and ν2, respectively for
the functions ϕ(α) and φ(α) that belong to H1(0, b) defined in the following form [37,38].

LCDν1
α φ(α) =

1
Γ(3 − ν1)

∫ α

0

φ(3)(τ)

(α − τ)ν1−2 dτ (α > 0), (9)

LCDν2
α φ(α) =

1
Γ(1 − ν2)

∫ α

0

φ(1)(τ)

(α − τ)ν2
dτ (α > 0). (10)

The following theorem provides an approximate formula for the fractional derivative
LCDν

αΩ(α), n − 1 < ν ≤ n, with the power-law kernel.

Theorem 1 (see [39]). The LC-fractional-order derivative of the function Ωm(α), as defined in
Equation (2), can be determined using the following approximate formula:

LCDν
α

(
Ωm(α)

)
=

m

∑
k=⌈ν⌉

k−µ

∑
ℓ=0

αk ϑk, ℓ Πν,ℓ
LC(α), (11)

where

ϑk, ℓ =
(−1)ℓ4k−ℓ2kΓ(2k − ℓ)

Γ(ℓ+ 1)Γ(2k − 2ℓ+ 1)
, (12)

and

Πν,ℓ
LC(α) =

Γ(k − ℓ+ 1)
Γ(k − ℓ− ν + 1)

αk−ℓ−ν. (13)

Subsequently, we move forward with solving Equations (7) to (8) using the Vieta-Lucas
spectral collocation technique, which is explained as follows:

ϕm(α, β) =
m

∑
k=0

ϕk(β)Φk(α) (14)

and

φm(α, β) =
m

∑
k=0

φk(β)Φk(α). (15)

The two Equations (7) through (8) can be represented as follows in accordance with
Theorem 1 and the expansions (14)–(15)



Symmetry 2024, 16, 242 6 of 17

m

∑
k=0

dϕk(β)

dβ
Φk(α) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

ϕk(β) ϑk, ℓΠν,ℓ
LC(α) + µ2

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

ϕk(β) ϑk, ℓΠθ,ℓ
LC(α)

)
+ µ1

(
m

∑
k=0

φk(β)Φk(α)

)

·
(

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φk(β) ϑk, ℓΠθ,ℓ
LC(α)

)
(16)

and

m

∑
k=0

dφk(β)

dβ
Φk(α) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φk(β) ϑk, ℓΠν,ℓ
LC(α)− µ1

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν⌉

φk(β) ϑk, ℓΠθ,ℓ
LC(α)

)
. (17)

For the Equations (16) and (17), we will evaluate them at m points αp (p = 0, 1, · · · , m − 1)
as outlined below:

m

∑
k=0

dϕk(β)

dβ
Φk(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

ϕk(β) ϑk, ℓΠθ,ℓ
LC(αp) + µ2

(
m

∑
k=0

ϕk(β)Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

ϕk(β) ϑk, ℓΠθ,ℓ
LC(αp)

)
+ µ1

(
m

∑
k=0

φk(β)Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠθ,ℓ
LC(αp)

)
, (18)

m

∑
k=0

dφk(β)

dβ
Φk(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φk(β) ϑk, ℓΠν,ℓ
LC(αp)p − µ1

(
m

∑
k=0

ϕk(β)Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠθ,ℓ
LC(αp)

)
. (19)

Moreover, through substitution from Equation (2), we can articulate the corresponding
boundary conditions, leading to the ensuing set of equations:

m

∑
k=0

(−1)kϕk(β) = g1(β),
m

∑
k=0

(−1)k φk(β) = h1(β), (20)

m

∑
k=0

ϕk(β) = g2(β),
m

∑
k=0

φk(β) = h2(β) (21)

and

m

∑
k=0

2k2ϕk(β) = g3(β) and
m

∑
k=0

2k2 φk(β) = h3(β). (22)
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Ultimately, applying the nonstandard finite difference approach as described in [39] leads
us to a set of nonlinear algebraic equations, we obtain

m

∑
k=0

ϕ
p
k − ϕ

p−1
k

0.5(exp(2h)− 1)
Φk(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

ϕ
p
k ϑk, ℓΠθ,ℓ

LC(αp) + µ2

(
m

∑
k=0

ϕ
p
k Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

ϕ
p
k ϑk, ℓΠθ,ℓ

LC(αp)

)
+ µ1

(
m

∑
k=0

φ
p
k Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φ
p
k ϑk, ℓΠθ,ℓ

LC(αp)

)
= 0, (23)

m

∑
k=0

φ
p
k − φ

p−1
k

0.5(exp(2h)− 1)
Φk(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φ
p
k ϑk, ℓΠν,ℓ

LC(αp)− µ1

(
m

∑
k=0

ϕ
p
k Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φ
p
k ϑk, ℓΠθ,ℓ

LC(αp)

)
. (24)

These can be solved using well-known methods such as the Newton-Raphson tech-
nique, enabling us to ascertain the values of ϕ

p
k and φ

p
k for k = 0, 1, · · · , m.

3.2. CMSKDV via the Caputo-Fabrizio Fractional Derivative

By replacing the classical derivative with the fractional derivative incorporating either
the exponential-decay kernel or the Caputo-Fabrizio (CF),the coupled (KdV) equations can
be represented in the following manner:

ϕβ − c CFDν1
α ϕ − µ2 ϕCFDν2

α ϕ − µ1 φ CFDν2
α φ = 0 (25)

and

φβ − c CFDν1
α φ + µ1ϕ CFDν2

α φ = 0. (26)

The fractional derivative operator CFDν
α ( ν might be ν1 or ν2) of order n < ν < n + 1, which

incorporates the exponential-decay kernel, is defined as follows [40]:

CFDν
a+φ(α) = CFDκ

a+(Dn φ(α)) =
M(κ)

1 − κ

∫ α

a
φ(n+1)(τ)e−

κ(α−τ)
1−κ dτ, (27)

where n = ⌊ν⌋= the floor of ν (that is, the integer part) and κ = ⌈ν⌉= the ceiling of ν (that
is, the decimal part) and M(κ) is the normalization function.

Theorem 2 (see [30,40]). The left-hand side features a fractional derivative employing an exponential-
decay kernel with an order ν ∈ (n, n + 1)

φ(α) = αp (p ≧ ⌈ν⌉)

can be represented in the following manner:

CFDν
0+αp =

M(κ)Γ(p + 1)
1 − κ

p−n−1

∑
i=0

(−1)i αp−n−1−i

Γ(p − n − i)
(

κ
1−κ

)i+1 +
(−1)p−n(

κ
1−κ

)p−n e−
κ α

1−κ

. (28)

The formula in Theorem 1 of [40] when a = 0 corresponds to a specific case of
the Formula (28). For additional details regarding the definitions and characteristics of
fractional CF-derivatives, refer to [40].
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The following theorem provides the approximation formula of CFDν
0+Ωm(x) by means

of (1).

Theorem 3 (see [30]). The CFDν
α

(
Ωm(α)

)
can be written as follows:

CFDν
0+
(
Ωm(α)

)
=

m

∑
k=⌈ν⌉

k

∑
ℓ=⌈ν⌉

akϑk, ℓΠk,ℓ,κ
CF(α), (29)

where

Πk,ℓ,κ
CF(α) =

(
M(κ)

1 − κ

)(
(−1)ℓ−n(

κ
1−κ

)ℓ−n e−
κ α

1−κ +
ℓ−n−1

∑
p=0

(−1)p αℓ−n−1−p

Γ(ℓ− n − p)
(

κ
1−κ

)p+1

)
. (30)

By using Equations (25) and (26), (29) and the Formula (2) with CF, we obtain

m

∑
k=0

dϕk(β)

dβ
Φk(α) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

ϕk(β) ϑk, ℓΠk,ℓ,κ
CF(α) + µ2

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

ϕk(β) ϑk, ℓΠk,ℓ,κ
CF(α)

)
+ µ1

(
m

∑
k=0

φk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠk,ℓ,κ
CF(α) αk−ℓ−θ

)
, (31)

m

∑
k=0

dφk(β)

dβ
Φj(α) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φk(β) , ϑk, ℓΠk,ℓ,κ
CF(α)− µ1

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk,ℓΠk,ℓ,κ
CF(α)

)
. (32)

To obtain the ultimate expressions denoted as (31) and (32), we will assess them at m specific
points αp; (p = 0, 1, · · · , m − 1) according to the following procedure:

m

∑
k=0

ϕ
p
k − ϕ

p−1
k

0.5(exp(2h)− 1)
Φk(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

ϕk(β) , ϑk, ℓΠk,ℓ,κ
CF(αp) + µ2

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

ϕk(β) ϑk, ℓΠk,ℓ,κ
CF(αp)

)
+ µ1

(
m

∑
k=0

φk(β)Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠk,ℓ,κ
CF(αp)

)
, (33)

and

m

∑
k=0

φ
p
k − φ

p−1
k

0.5(exp(2h)− 1)
Φj(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φk(β) ϑk, ℓΠk,ℓ,κ
CF(αp)− µ1

(
m

∑
k=0

ϕk(β)Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠk,ℓ,κ
CF(αp)

)
. (34)
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In Equations (33) to (34),the nonstandard finite difference approach as described in [39]
was utilized to compute the derivative concerning with β. Consequently, the equations
were transformed into a set of algebraic equations.

One can solve (33) to (34) using established methods like the Newton-Raphson tech-
nique, allowing us to determine the values of ϕ

p
k and φ

p
k for k = 0, 1, · · · , m.

3.3. CMSKDV via the Atangana-Baleanu-Caputo Fractional Derivative

When we replace the classical derivative with the fractional derivative incorporating
either the Mittag-Leffler kernel or the Atangana-Baleanu-Caputo fractional-order deriva-
tive (ABC), the resultant coupled Korteweg-de Vries system of equations is represented
as follows:

ϕβ − c ABCDν1
α ϕ − µ2ϕ ABCDν2

α ϕ − µ1 φ ABCDν2
α φ = 0 (35)

and

φβ − c ABCDν1
α φ + µ1ϕ ABCDν2

α φ = 0. (36)

The fractional derivative ABC
a Dν (ν can be ν1 or ν2.) of order n < ν ≦ n + 1 is defined

by [36,41].

ABC
0 D

ν
φ(α) = ABC

0 D
κ
(Dn φ(α))

=
M(κ)

1 − κ

∫ α

0
φ(n+1)(τ) Eκ

(
− κ

1 − κ
(α − τ)κ

)
dτ,

where n = ⌊ν⌋= the floor of ν (that is, the integer part) and κ = ⌈ν⌉= the ceiling of ν (that
is, the decimal part).

M(κ) is the normalization function such that M(0) = M(1) = 1 and

Eν(α) =
∞

∑
k=0

αk

Γ(kν + 1)

is the Mittag-Leffler function [42] Section 4.

Theorem 4 (see [31]). The ABC-derivative of order ν ∈ (n, n + 1] of the following function:

φ(α) = αp (p ≧ ⌈ν⌉)

is given by

ABC
0 D

ν
αp =

M(κ)Γ(p + 1)
1 − κ

∞

∑
i=0

(
− κ

1 − κ

)i αp+iκ−n

Γ(p + iκ − n + 1)
. (37)

In the following theorem, we present the fundamental approximation formula for
ABC

0 DνΩm(α) by utilizing the approximation (2).

Theorem 5 (see [31]). The ABC-derivative ABC
0 Dν(Ωm(α)

)
can be expressed as follows:

ABC
0 D

ν(
Ωm(α)

)
=

m

∑
k=⌈ν⌉

k−⌈ν⌉

∑
ℓ=⌈ν⌉

αkϑk, ℓ Πk,ℓ,κ
ABC(α), (38)
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where

Πk,ℓ,κ
ABC(α) =

M(κ)Γ(ℓ+ 1)
1 − κ

∞

∑
s=0

(
− κ

1−κ

)s
αℓ+pκ−n

Γ(ℓ+ sκ − n + 1)
. (39)

It can be readily noticed that

m

∑
k=0

dϕk(β)

dβ
Φk(α) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

ϕk(β) ϑk, ℓΠk,ℓ,κ
ABC(α) + µ2

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

ϕk(β) ϑk, ℓΠk,ℓ,κ
ABC(α)

)
+ µ1

(
m

∑
k=0

φk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠk,ℓ,κ
ABC(α) αk−ℓ−θ

)
, (40)

m

∑
k=0

dφk(β)

dβ
Φk(α) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φk(β) , ϑk, ℓΠk,ℓ,κ
ABC(α)− µ1

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk,ℓΠk,ℓ,κ
ABC(α)

)
. (41)

To derive the final formulations indicated as (40) and (41), we will evaluate them at m
distinct points αp; (p = 0, 1, · · · , m − 1) following the outlined procedure:

m

∑
k=0

ϕ
p
k − ϕ

p−1
k

0.5(exp(2h)− 1)
Φk(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

ϕk(β) , ϑk, ℓΠk,ℓ,κ
ABC(αp) + µ2

(
m

∑
k=0

ϕk(β)Φk(α)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

ϕk(β) ϑk, ℓΠk,ℓ,κ
ABC(αp)

)
+ µ1

(
m

∑
k=0

φk(β)Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠk,ℓ,κ
ABC(αp)

)
, (42)

and

m

∑
k=0

ϕ
p
k − ϕ

p−1
k

0.5(exp(2h)− 1)
Φk(αp) = c

m

∑
k=⌈ν1⌉

k−⌈ν1⌉

∑
ℓ=⌈ν1⌉

φk(β) ϑk, ℓΠk,ℓ,κ
ABC(αp)− µ1

(
m

∑
k=0

ϕk(β)Φk(αp)

)

·
(

m

∑
k=⌈ν2⌉

k−⌈ν2⌉

∑
ℓ=⌈ν2⌉

φk(β) ϑk, ℓΠk,ℓ,κ
ABC(αp)

)
. (43)

These equations can be resolved utilizing well-known approaches such as the Newton-
Raphson technique, enabling us to calculate the values of ϕ

p
k and φ

p
k for k = 0, 1, · · · , m.

4. Numerical Results and Discussion

In this section, we utilize the three previously mentioned approaches to perform a nu-
merical evaluation of the multi-space fractional-order coupled Korteweg-de Vries equation,
incorporating three different kernels. Figures 1–9 are included to visually represent the
numerical results. The numerical results provided in this section will be computed using
the designated values: c = −1, µ1 = −6, µ2 = 7, and a = 1.
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In Figure 1, a comparison is made between the exact solution and the approximate
solution of (7) and (8) in the case of the LC-derivative, as specified above with ν1 = 2.8, and
ν2 = 0.8.

The exact solutions of the coupled Korteweg-de Vries equation under classical condi-
tions are given as follows:

ϕ(α, β) = φ(α, β) =
4c2 exp

(
c
(
α − βc2))

(exp(c(α − βc2)) + 1)2 . (44)

In order to apply the initial condition in the exact solution for the coupled Korteweg-de
Vries equation, we set β = 0. Subsequently, we acquire the initial values as follows:

ϕ(α) = φ(α) =
4c2 exp(c(α))

(exp(c(α)) + 1)2 (45)

Additionally, the boundary conditions, once α = 0 and α = 1 are set, are expressed
as follows:

ϕ(0, β) = φ(0, β) =
4c2 exp

(
c
(
−βc2))

(exp(c(−βc2)) + 1)2 , (46)

ϕ(1, β) = φ(1, β) =
4c2 exp

(
c
(
1 − βc2))

(exp(c(1 − βc2)) + 1)2 , (47)

ϕα(0, β) = φα(0, β) =
4c3ec(β(−c2))(
ec(β(−c2)) + 1

)2 − 8c3e2c(β(−c2))(
ec(β(−c2)) + 1

)3
.

(48)

In all calculations conducted in this study, the initial and boundary conditions mentioned
earlier will be utilized.

In Figure 2, we display the absolute discrepancy between the precise solution (44) and
the numerical solution (7) and (8) for the identical set of parameters as depicted in Figure 1.

Given the absence of an exact solution for the fractional-order equation in this scenario,
we will assess the absolute error between two consecutive steps.

Figure 3 illustrates the plot of the discrepancy between two consecutive stages.
Based on the data presented in the preceding three figures, it is evident that the

numerical solutions we have presented exhibit high accuracy with a remarkably low error
rate. Our emphasis on fractional-order equations stems from their effectiveness in gauging
the error between two consecutive phases, aligning with the primary objective of our study.

For the LC-derivative, we have carried out the necessary calculations and generated
the corresponding data representations.

We conducted a comparable investigation to that of LC, as depicted in Figures 4–6,
but this time incorporating the CF-derivative operator.

We have also examined the numerical solutions of Equations (42)–(43) in Figures 7–9,
this time employing the ABC-derivative operator.

Based on this analysis, we have noted a relatively minimal numerical calculation error.
As a result, this study’s findings can be extended and applied to other fractional-order
equations and systems.
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Figure 1. In the case of the LC-derivative, a graph comparing the exact solution to the approximation
of (7) in (a) and (8) in (b) for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.
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Figure 2. In the case of the LC-derivative, a graph of the absolute error of (7) in (a) and (8) in (b) for
ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.
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Figure 3. In the case of the LC-derivative, a graph of the absolute error of two step of (7) in (a) and (8)
in (b) for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.
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Figure 4. In the case of the CF-derivative, a graph comparing the exact solution to the approximation
of (25) in (a) and (26) in (b) for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.



Symmetry 2024, 16, 242 13 of 17

0.0 0.2 0.4 0.6 0.8 1.0
0

5.´ 10-6

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

Α

A
b
so

lu
te

er
ro

r

HaL

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00005

0.00010

0.00015

0.00020

Α

A
b
so

lu
te

er
ro

r

HbL

Figure 5. In the case of the CF-derivative, a graph, of the absolute error of (25) in (a) and (26) in (b)
for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.
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Figure 6. In the case of the CF-derivative, a graph of the absolute error of two step of (25) in (a) and
(26) in (b) for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.
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Figure 7. In the case of the ABC-derivative, a graph comparing the exact solution to the approximation
of (40) in (a) and (41) in (b) for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.00001

0.00002

0.00003

Α

A
b
so

lu
te

er
ro

r

HaL

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00005

0.00010

0.00015

Α

A
b
so

lu
te

er
ro

r

HbL

Figure 8. In the case of the ABC-derivative, a graph of the absolute error of (40) in (a) and (41) in (b)
for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.
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Figure 9. In the case of the ABC-derivative, a graph of the absolute error of two step of (40) in (a) and
(41) in (b) for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.

In Tables 1–3, the tables illustrate the absolute error between the approximate solutions
of two equations under the LC-derivative, CF-derivative, and ABC-derivative. Additionally,
the tables provide insights into the extent of absolute error between consecutive steps when
encountering a non-integer order for the LC-derivative, CF-derivative, and ABC-derivative.
The results from these tables indicate that the order of the error is notably minimal. This
observation serves as a strong indication of the precision and efficacy of the approach
presented in this study.

Table 1. The absolute error between Equations (7) and (8) and the exact solution (44) is represented
by the first column and the second column while the absolute error of two steps of (7) and (8) is
represented by the third column and the fourth column for ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6,
and a = 1.

α |ϕ(α, β)− ϕLC(αn, βn)| |φ(α, β)−φLC(αn, βn)| |ϕLC,n − ϕLC,n+1| |φLC,n −φLC,n+1|

0 1.11022 × 10−16 1.11022 × 10−16 4.97499 × 10−11 4.97495 × 10−11

0.2 8.30951 × 10−5 2.35526 × 10−5 1.12725 × 10−6 4.48712 × 10−7

0.4 1.35067 × 10−4 4.38737 × 10−5 1.69840 × 10−6 7.35767 × 10−7

0.6 2.28422 × 10−4 9.50490 × 10−5 2.41060 × 10−6 1.11918 × 10−6

0.8 3.85878 × 10−4 1.56810 × 10−4 4.12192 × 10−6 1.81449 × 10−6

1 1.11022 × 10−16 1.11022 × 10−16 3.63416 × 10−7 3.63416 × 10−7

Table 2. In the case of the CF-derivative, the absolute error between Equations (25) and (26) and
the exact solution (44) is represented by the first column and the second column while the absolute
error of two steps of (25) and (26) is represented by the third column and the fourth column for
ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.

α |ϕ(α, β)− ϕCF(αn, βn)| |φ(α, β)−φCF(αn, βn)| |ϕCF,n − ϕCF,n+1| |φCF,n −φCF,n+1|

0 1.92593 × 10−34 0 4.97498 × 10−11 4.97501 × 10−11

0.2 2.75570 × 10−5 1.59500 × 10−4 3.27900 × 10−7 1.07397 × 10−6

0.4 1.89708 × 10−4 4.38737 × 10−5 2.55455 × 10−7 1.27453 × 10−6

0.6 2.49232 × 10−6 1.04730 × 10−4 1.94268 × 10−7 8.70804 × 10−7

0.8 8.67747 × 10−6 1.73810 × 10−4 2.06507 × 10−7 1.54168 × 10−6

1 3.851860 × 10−34 1.11022 × 10−16 3.63417 × 10−7 3.63417 × 10−7
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Table 3. In the case of the ABC-derivative, the absolute error between Equations (40) and (41) and
the exact solution (44) is represented by the first column and the second column while the absolute
error of two steps of (40) and (41) is represented by the third column and the fourth column for
ν1 = 2.8, ν2 = 0.8, c = 1, µ1 = 7, µ2 = −6, and a = 1.

α |ϕ(α, β)− ϕABC(αn, βn)| |φ(α, β)−φABC(αn, βn)| |ϕCF,n − ϕABC,n+1| |φCF,n −φABC,n+1|

0 1.11022 × 10−16 0 4.97496 × 10−11 4.97498 × 10−11

0.2 1.75119 × 10−5 1.50089 × 10−4 1.29273 × 10−7 1.11919 × 10−6

0.4 2.283092244170781 × 10−5 1.54883 × 10−4 5.88663 × 10−8 1.09897 × 10−6

0.6 1.41835 × 10−6 3.42845 × 10−6 1.25380 × 10−7 1.04458 × 10−7

0.8 3.190648624473713 × 10−5 1.29585 × 10−5 3.09597 × 10−8 1.75898 × 10−7

1 0 0 3.63415 × 10−7 3.63417 × 10−7

5. Conclusions

The problem of multi-space fractional-order coupled Korteweg-de Vries, which in-
volves various kernels, was successfully converted into a system of differential equations.
Subsequently, these equations were converted into algebraic forms employing the non-
standard finite difference approach.

We employed the commonly used numerical technique, often referred to as the
Newton-Raphson method, to address the resultant set of nonlinear algebraic equations.
The precision of the examined approximations was confirmed by computing the absolute
error between the exact solutions and the approximations. Additionally, we determined
the absolute error between successive approximations in the scenario of non-integer orders.

We verified the accuracy of the analyzed approximations by calculating the abso-
lute discrepancy between the exact solutions and the approximations. Furthermore, we
assessed the absolute error between consecutive approximations in cases involving non-
integer orders.

In future work, the current study’s findings can be extended to analyze the behavior
of positive solutions [43,44]. The scope of the investigation may also be broadened to
encompass space-time. Furthermore, the study discussed in this paper can be extended
to cover other special functions, such as Legendre and Chebyshev polynomials. In this
context, recent research has been conducted on the subject of fractional derivatives and
special functions, as in [45–48].
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