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Abstract: In this article, a robust index named first-order network coherence (FONC) for the multi-
agent systems (MASs) with layered lattice-like structure is studied via the angle of the graph spectra
theory. The union operation of graphs is utilized to construct two pairs of non-isomorphic layered
lattice-like structures, and the expression of the index is acquired by the approach of Laplacian
spectra, then the corresponding asymptotic results are obtained. It is found that when the cardinality
of the node sets of coronary substructures with better connectedness tends to infinity, the FONC of
the whole network will have the same asymptotic behavior with the central lattice-like structure in
the considered classic graph frameworks. The indices of the networks were simulated to illustrate
the the asymptotic results, as described in the last section.

Keywords: multi-agent system (MAS); consensus; graph operation; fan graph; Laplacian spectra

1. Introduction

Multi-agent systems (MASs) are widely studied in many kinds of real applied net-
works, such as robotic systems [1], traffic networks [2], and unmanned aerial vehicle (UAV)
networks. As an important MAS-related problem, the consensus problem refers to vertices
achieving a identical physical status in some dynamical networked systems.

The consensus problem has been widely studied in many valuable works through
various research factors [3–19] including but not limited to the system order (first or second
order [3–6]), graphical types (digraph [5] or undirected graph, fixed or switching topology),
continuity of the system (continuous or discrete time [7]), and type of control protocols
(adaptive control [8–11], intermittent control [9,11], impulsive control [11], or event-trigger
control [11,13]).

In the synchronization or consensus problems, the means of connecting the coordination-
related systems are always characterized by a topological structure [3–28], and the method
of algebraic graph theory is applied [3,14–25]. The enlightening research of Reference [14]
has given the system robustness from the Laplacian eigenvalues of several classic graphs.

The robust performance of the consensus networks can be characterized by network
coherence [15,16]. The articles mention that the performance index can be characterized by
mathematical expressions related to Laplacian eigenvalues. Reference [19] shows the changing
relationship between the consensus-related index in symmetric and asymmetric trees and
the number of leader nodes. Reference [20] obtains the recursive expressions of Laplacian
eigenvalues and further derives the exact results of first- and second-order coherence.

During the past decades, the multi-layer network [29] has become a leading topic
as a result of its expansive real-world applications. Many networks have layered struc-
tures [21–24,26,29,30]; however, in the research branch of coordination problems, articles
that incorporate the theory on Laplacian eigenvalues for consensus index of multi-layered
networks are relatively rare. The fan graph is a classic structure since it can be viewed as
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adhering connections between the leaves of the star graph, and the star graph is a classic
structure of sensor networks. The wheel graph can be interpreted to add a new node
and link it to each node of a cycle. There exist lots of wheel structure related research in
application problems and graph theory research problems.

Considering these classical structures, and inspired by enlightening articles, this paper
considers four sorts of MASs with layered lattice-like structures composed by graph operations.

The novelties of this article are listed as follows:

I. The union of graphs is introduced to form the novel non-isomorphic layered lattice-
like structures for the network, and the notion that the peripheral coronary sub-
structure need not be a single classic graph but can be a union of several subgraphs
is proposed.

II. The graph spectra theory combined with the double integral approach are applied to
derive the asymptotic results.

III. We find that when the cardinality of the node sets of coronary substructures with better
connectedness tends to infinity, the FONC of the whole network will have approxi-
mately asymptotic behavior with the central lattice-like structure in the considered
graph frameworks.

Section 2 gives the notations in basic graph theory, and the relation for the Laplacian
spectra and index are interpreted. In Section 3, according to the theory of graph spectra,
the topologies of the networks are proposed, and the asymptotic results are given. The
simulation examples are analyzed and compared in Section 4.

2. Preliminaries
2.1. Basic Notations in Graph Theory

The empty graph with h vertices is denoted by Eh. Let G be an undirected graph
with the vertex set V(G) = {v1, v2, . . . , vN}, and its edge set E(G) = {(vi, vj)|i, j =
1, 2, . . . , N; i ̸= j}. For any vi, vj ∈ V(G), (vi, vj) is in E(G) if and only if vi is adjacent to vj.
A(G) = [aij]N is the adjacency matrix, where the elements aij satisfy aij = aji. In this article,
it is supposed that aij = 1, if (vi, vj) ∈ E(G); otherwise, aij = 0. The Laplacian matrix is
defined as L(G) = D(G)−A(G), where D(G) = diag(d1, d2, . . . , dN) with di = ∑

j ̸=i
aij. The

Laplacian spectrum of G is defined as SL(G) =

(
ρ1(G) ρ2(G) . . . ρr(G)

l1 l2 . . . lr

)
, where

ρ1(G) < ρ2(G) < · · · < ρr(G) are the eigenvalues of L(G), and l1, l2, . . . , lr are the multi-
plicities of the eigenvalues [31].

To describe the layered lattice-like structures, the corona operation of two graphs is
denoted by ‘◦’ [32–35], the Cartesian product by ‘□’ [36–38], and the union operation by
‘∪’ [31,36].

Lemma 1 ([31,33]). If two graphs G1 and G2 have c and d vertices, respectively, then the Laplacian
eigenvalues of G1□G2 are given as: κi(G1) + κj(G2), (i = 1, 2 . . . , c; j = 1, 2, . . . , d), where
κi(G1) and κj(G2) are the L-eigenvalues of G1 and G2.

2.2. The Mathematical Description for FONC

Referring to References [14–20], the first-order MASs with additive noise is described by

ẋ(t) = −Lx(t) + ϕ(t), (1)

where x(t) ∈ RN , L is the Laplacian matrix, and ϕ(t) ∈ RN is a vector of uncorrelated noise.
Referring to [15,16], the first-order network coherence (FONC) is defined as:

H = lim
t→∞

1
N

N

∑
i=1

Var
{

xi(t)−
1
N

N

∑
j=1

xj(t)
}

.



Symmetry 2024, 16, 243 3 of 13

The FONC can be given by the Laplacian eigenvalues, i.e.,

H =
1

2N

N

∑
i=2

1
ρi

. (2)

This expression shares similarities with the Kirchhoff index [33,39–41] and other
network indices [42].

3. Main Results

The system topologies in this research are interpreted as a class of layered lattice-like
structure consisting of several classic subgraph copies, and they will be characterized in
Sections 3.1–3.4.

3.1. The FONC for Network F1

In this subsection, a sort of layered lattice-like topology based on the wheel and fan
graph is considered. As shown in Figure 1, the structure can be seen as a wheel graph
in each layer, and the links among each layer are designed to form the fan graph. By
the graph operation, the structure is defined by F1(p, q, a, b) := (Wp□Fq) ◦ (Ka ∪ Eb) and
abbreviated as F1, where p, q denotes the cardinality of the node sets of the wheel and fan
substructure; a denotes the number of vertices of the complete subgraph in the peripheral
coronary substructure; b denotes the number of vertices of degree one in one corona copy,
i.e., (Ka ∪Eb) (see Figure 2; the example P3 ◦ (K4 ∪ E3) is to explain the peripheral coronary
structure); and the corresponding network with disturbance is denoted as F1.

Figure 1. A graph example of Wp□Fq, p = 4, q = 4.

Figure 2. An example of the coronary substructure: P3 ◦ (K4 ∪ E3).

Since SL(Kn) =

(
0 n
1 n − 1

)
,

SL(Wp) =

(
0 p 1 + 4sin2( iπ

p−1 )

1 1 1

)
, where i = 1, 2, . . . , p − 2.

SL(Fq) =

(
0 q 1 + 4sin2( jπ

2(q−1) )

1 1 1

)
, where j = 1, 2, . . . , p − 2.

Therefore, according to Lemma 1 (on the L-spectrum of the Cartesian product of two
graphs [31,33]), SL(Wp□Fq) has the following characterization:
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(1). 0, q, p, p + q ∈ SL(Wp□Fq) with multiplicity 1;

(2). 1 + 4sin2( jπ
2(q−1) ), p + 1 + 4sin2( jπ

2(q−1) ) ∈ SL(Wp□Fq) with multiplicity 1, where
j = 1, 2 . . . , q − 2.

(3). 1 + 4sin2( iπ
(p−1) ), q + 1 + 4sin2( iπ

(p−1) ) ∈ SL(Wp□Fq) with multiplicity 1,
where i = 1, 2, . . . , p − 2.

(4). 2 + 4sin2( iπ
(p−1) ) + 4sin2( jπ

2(q−1) ) ∈ SL(Wp□Fq) with multiplicity 1, where i = 1, 2, . . . ,
p − 2, j = 1, 2 . . . , q − 2.

The L-spectrum of the subgraph (Ka ∪ Eb) can be described as:

SL(Ka ∪ Eb) =

(
0 a

b + 1 a − 1

)
;

Then, according to the theorem on the corona operation [32,33], the characterization
of SL(F1) can be listed as follows:

(1). 0 and a + b + 1 ∈ SL(F1) with multiplicity 1;

(2). (q+a+b+1)±
√

(q+a+b+1)2−4q
2 ∈ SL(F1) with multiplicity 1; (p+a+b+1)±

√
(p+a+b+1)2−4p
2 ∈

SL(F1) with multiplicity 1; (p+q+a+b+1)±
√

(p+q+a+b+1)2−4(p+q)
2 ∈ SL(F1) with multi-

plicity 1.

(3).
(2+4sin2(

jπ
2(q−1) )+a+b)±

√
(2+4sin2(

jπ
2(q−1) )+a+b)2−4(1+4sin2(

jπ
2(q−1) ))

2 ∈ SL(F1) with multiplic-
ity 1, where j = 1, 2, . . . , q − 2.

(4).
(p+2+4sin2(

jπ
2(q−1) )+a+b)±

√
(p+2+4sin2(

jπ
2(q−1) )+a+b)2−4(p+1+4sin2(

jπ
2(q−1) ))

2 ∈ SL(F1) with mul-
tiplicity 1, where j = 1, 2, . . . , q − 2.

(5).
(2+4sin2( iπ

p−1 )+a+b)±
√
(2+4sin2( iπ

p−1 )+a+b)2−4(1+4sin2( iπ
p−1 ))

2 ∈ SL(F1) with multiplicity 1,
where i = 1, 2, . . . , p − 2.

(6).
(q+2+4sin2( iπ

p−1 )+a+b)±
√
(q+2+4sin2( iπ

p−1 )+a+b)2−4(q+1+4sin2( iπ
p−1 ))

2 ∈ SL(F1) with multiplic-
ity 1, where i = 1, 2, . . . , p − 2.

(7).
(3+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) )+a+b)±

√
(3+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) )+a+b)2−4(2+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) ))

2
∈ SL(F1) with multiplicity 1, where i = 1, 2, . . . , p − 2; j = 1, 2, . . . , q − 2.

(8). 1 ∈ SL(F1) repeated bpq times; a + 1 ∈ SL(F1) repeated pq(a − 1) times.

Therefore, the FONC of F1 is:

H(F1) =
1

2N

N

∑
k=2

1
ρk

=
1

2(pq + pq(a + b))

(
1

a + b + 1
+

q + a + b + 1
q

+
q−2

∑
j=1

2 + 4sin2( jπ
2(q−1) ) + a + b

1 + 4sin2( jπ
2(q−1) )

+
p + a + b + 1

p
+

p + q + a + b + 1
p + q

+
q−2

∑
j=1

p + 2 + 4sin2( jπ
2(q−1) ) + a + b

p + 1 + 4sin2( jπ
2(q−1) )

+
p−2

∑
i=1

2 + 4sin2( iπ
(p−1) ) + a + b

1 + 4sin2( iπ
(p−1) )

+
p−2

∑
i=1

q + 2 + 4sin2( iπ
(p−1) ) + a + b

q + 1 + 4sin2( iπ
(p−1) )

+
q−2

∑
j=1

p−2

∑
i=1

3 + 4sin2( iπ
(p−1) ) + 4sin2( jπ

(2(q−1)) ) + a + b

2 + 4sin2( iπ
(p−1) ) + 4sin2( jπ

2(q−1) )
+ bpq +

pq(a − 1)
a + 1

)
.

Therefore, we have
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lim
p,q→∞

H(F1) =
1

2(1 + a + b)
+

1
2

∫ 1

0

∫ 1

0

1
2 + 4sin2(πx) + 4sin2(πy

2 )
dxdy

+
b

2(1 + a + b)
+

a − 1
2(1 + a + b)(a + 1)

=
2a + ab + b

2(1 + a + b)(a + 1)
+ 0.096.

It can be seen that if the cardinality of the coronary complete substructure, i.e., a, is
large enough, the performance index will tend to 0.096, and if b tends to infinity, then the
asymptotic index will be 0.596.

3.2. The Performance Index for F2

In this subsection, a class of lattice-like star-fan composed network is designed. The
vertices in the peripheral subgraph are required to be disconnected with other layers.
The layered lattice-like structure is defined by F2(p, q, a, b) := (Wp□Fq) ◦ (Pa ∪ Eb) and
abbreviated as F2, where p, q denote the number of vertices in the wheel and fan graph
of the lattice-like central structure (see Figure 1), and the corresponding noisy network is
denoted as F2. Figure 3 gives an example to show the partial coronary substructure, i.e., Pa.
It is designed to form a fan graph copy during the graph operation, and the other part of
the peripheral substructure is designed to be a star graph copy.

Figure 3. An example of the coronary substructure: P3 ◦ (P3 ∪ E3).

Since SL(Pa) = (0, 4sin2( kπ
2a )), k = 1, 2, . . . , a − 1,

SL(Pa ∪ Eb) =

(
0 4sin2(mπ

2a )
b + 1 a − 1

)
, where m = 1, 2, . . . , a − 1.

According to lemmas on the coronary graph operation [32,33], the L-spectrum SL(F2)
has the characterization as follows:

(1). 0 and a + b + 1 ∈ SL(F2) with multiplicity 1;

(2). (q+a+b+1)±
√

(q+a+b+1)2−4q
2 ∈ SL(F2) with multiplicity 1; (p+a+b+1)±

√
(p+a+b+1)2−4p
2 ∈

SL(F2) with multiplicity 1; (p+q+a+b+1)±
√

(p+q+a+b+1)2−4(p+q)
2 ∈ SL(F2) with multi-

plicity 1.

(3).
(2+4sin2(

jπ
2(q−1) )+a+b)±

√
(2+4sin2(

jπ
2(q−1) )+a+b)2−4(1+4sin2(

jπ
2(q−1) ))

2 ∈ SL(F2) with multiplic-
ity 1, where j = 1, 2, . . . , q − 2.

(4).
(p+2+4sin2(

jπ
2(q−1) )+a+b)±

√
(p+2+4sin2(

jπ
2(q−1) )+a+b)2−4(p+1+4sin2(

jπ
2(q−1) ))

2 ∈ SL(F2) with mul-
tiplicity 1, where j = 1, 2, . . . , q − 2.

(5).
(2+4sin2( iπ

p−1 )+a+b)±
√
(2+4sin2( iπ

p−1 )+a+b)2−4(1+4sin2( iπ
p−1 ))

2 ∈ SL(F2) with multiplicity 1,
where i = 1, 2, . . . , p − 2.

(6).
(q+2+4sin2( iπ

p−1 )+a+b)±
√
(q+2+4sin2( iπ

p−1 )+a+b)2−4(q+1+4sin2( iπ
p−1 ))

2 ∈ SL(F2) with multiplic-
ity 1, where i = 1, 2, . . . , p − 2.

(7).
(3+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) )+a+b)±

√
(3+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) )+a+b)2−4(2+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) ))

2
∈ SL(F2) with multiplicity 1, where i = 1, 2, . . . , p − 2; j = 1, 2, . . . , q − 2.

(8). 1 ∈ SL(F2) repeated bpq times; 4sin2(mπ
2a ) + 1 ∈ SL(F2) repeated pq times, where

m = 1, 2, . . . , a − 1.
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It can be seen that the only difference of L-spectrum between F1 and F2 is the item (8)
above; that is, 4sin2(mπ

2a ) + 1 ∈ SL(F2) repeated pq times.
Therefore, similarly, the FONC of F2 can be obtained, and it is omitted here. When

p, q → ∞, the asymptotic difference of FONC between F2 and F1, denoted by ▽F12, can
be obtained:

▽F12 → 1
2(a + b + 1)

[ a−1

∑
m=1

1
4sin2(mπ

2a ) + 1
− a − 1

a + 1

]
. (3)

Hence, it can be determined that the asymptotic difference tends to
√

5
10 as a tends to

infinity, and the asymptotic value of H(F2) is larger than that of H(F1); when b is large
enough, they have the same asymptotic index, and it can be interpreted as the asymptotic
result of the difference above being closed when b tends to infinity.

Remark 1. In fact, if the layered lattice-like structure is changed to (Fp□Fq) ◦ (Pa ∪ Eb), then the
same asymptotic results with the above section can be obtained. These results are omitted here.

Remark 2. The construction design of this coronary structure implies that the peripheral substruc-
ture of each layer may not simply be a star or fan graph but may be a graph composed of several
different classic subgraphs. The lattice-like structure in the middle can be interpreted as consisting
of the hub nodes with the highest degree.

3.3. The Performance Index for F3

The network structure in this subsection is described as follows. From a vertical view,
the counterpart nodes with a higher degree of different layers are designed to form the fan
graph, and the coronary substructure is a balanced complete k-partite graph. The graph
is characterized by F3(p, q, a, m) := (Wp□Fq) ◦ (K(a, m)) and abbreviated as F3, where
the definition of p, q is the same as that of Section 3.2, and a, m means the multipartite
substructure being acted on has a partition of vertex set and each part has m vertices.
The related noisy network is denoted by F3. Figure 4 gives an example of the coronary
substructures placed on each node of P3.

Figure 4. An example of the coronary substructure: P3 ◦ (K(2, 3)).

The L-spectrum of K(a, m) can be characterized by:

SL(K(a, m)) =

(
0 am (a − 1)m
1 a − 1 am − a

)
Thus, the Laplacian spectrum of F3 can be described as follows:

(1). 0 and am + 1 ∈ SL(F3) with multiplicity 1;

(2). (q+am+1)±
√

(q+a+b+1)2−4q
2 ∈ SL(F3) with multiplicity 1; (p+am+1)±

√
(p+am+1)2−4p
2 ∈

SL(F3) with multiplicity 1; (p+q+am+1)±
√

(p+q+am+1)2−4(p+q)
2 ∈ SL(F3) with multi-

plicity 1.

(3).
(2+4sin2(

jπ
2(q−1) )+am)±

√
(2+4sin2(

jπ
2(q−1) )+am)2−4(1+4sin2(

jπ
2(q−1) ))

2 ∈ SL(F3) with multiplicity
1, where j = 1, 2, . . . , q − 2.
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(4).
(p+2+4sin2(

jπ
2(q−1) )+am)±

√
(p+2+4sin2(

jπ
2(q−1) )+am)2−4(p+1+4sin2(

jπ
2(q−1) ))

2 ∈ SL(F3) with mul-
tiplicity 1, where j = 1, 2, . . . , q − 2.

(5).
(2+4sin2( iπ

p−1 )+am)±
√
(2+4sin2( iπ

p−1 )+am)2−4(1+4sin2( iπ
p−1 ))

2 ∈ SL(F3) with multiplicity 1,
where i = 1, 2, . . . , p − 2.

(6).
(q+2+4sin2( iπ

p−1 )+am)±
√
(q+2+4sin2( iπ

p−1 )+am)2−4(q+1+4sin2( iπ
p−1 ))

2 ∈ SL(F3) with multiplic-
ity 1, where i = 1, 2, . . . , p − 2.

(7).
(3+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) )+am)±

√
(3+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) )+am)2−4(2+4sin2( iπ

p−1 )+4sin2( jπ
2(q−1) ))

2
∈ SL(F3) with multiplicity 1, where i = 1, 2, . . . , p − 2; j = 1, 2, . . . , q − 2.

(8). am + 1 ∈ SL(F3) repeated (a − 1)pq times; (a − 1)m + 1 ∈ SL(F3) repeated
(am − a)pq times.

Hence, the FONC of F3 can be derived as:

H(F3) =
1

2N

N

∑
k=2

1
ρk

=
1

2(pq + pqam)

(
1

am + 1
+

q + am + 1
q

+
q−2

∑
j=1

2 + 4sin2( jπ
2(q−1) ) + am

1 + 4sin2( jπ
2(q−1) )

+
p + am + 1

p
+

p + q + am + 1
p + q

+
q−2

∑
j=1

p + 2 + 4sin2( jπ
2(q−1) ) + am

p + 1 + 4sin2( jπ
2(q−1) )

+
p−2

∑
i=1

2 + 4sin2( iπ
(p−1) ) + am

1 + 4sin2( iπ
(p−1) )

+
p−2

∑
i=1

q + 2 + 4sin2( iπ
(p−1) ) + am

q + 1 + 4sin2( iπ
(p−1) )

+
q−2

∑
j=1

p−2

∑
i=1

3 + 4sin2( iπ
(p−1) ) + 4sin2( jπ

(2(q−1)) ) + am

2 + 4sin2( iπ
(p−1) ) + 4sin2( jπ

2(q−1) )
+

1
am + 1

(a − 1)pq

+
1

(a − 1)m + 1
(am − a)pq

)
.

Therefore, we have

lim
p,q→∞

H(F3) =
1

2(1 + am)
+

1
2

∫ 1

0

∫ 1

0

1
2 + 4sin2(πx) + 4sin2(πy

2 )
dxdy

+
a − 1

2(1 + am)2 +
am − a

2(1 + am)(am − m + 1)

=
am + a

2(1 + am)2 +
am − a

2(1 + am)(am − m + 1)
+ 0.096.

We can see that if the parameter a or m is large enough, the coherence index will
approximate to 0.096.

Remark 3. When p, q and m are fixed, and if the parameter a → +∞ is considered, we can find that
the asymptotic result of H(F3) is irrelevant to m, and we have H(F3) → 1

2pq2 +
1

2p2q +
1

2pq(p+q) +

1
2pq

[
∑

q−2
j=1

1
1+4sin2(

jπ
2(q−1) )

+ ∑
p−2
j=1

1
1+4sin2(

jπ
(p−1) )

+ ∑
q−2
j=1

1
p+1+4sin2(

jπ
2(q−1) )

+∑
p−2
j=1

1
q+1+4sin2(

jπ
(p−1) )

+ ∑
q−2
j=1 ∑

p−2
i=1

1
2+4sin2( iπ

(p−1) )+4sin2(
jπ

2(q−1) )

]
. Similarly, when m tends to

infinity, the limitation is irrelevant to the parameter a, and we omit the result here.
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3.4. The Performance Index for F4

In this subsection, a lattice-like structure with a sort of multi-fan composed graph as
the coronary peripheral structure (see Figure 5) is considered. Intuitively speaking, the
structure’s formation can be seen as adhering copied multi-paths to each nodes of the
lattice-like structure. Thus, F4 := (Wp□Fq) ◦ (∪aPm).

Figure 5. An example of the coronary substructure for F4: P3 ◦ (∪3(P3)).

The L-spectrum of SL(∪aPm) =

(
0 4sin2 kπ

2m
a a

)
, where k = 1, 2, . . . , m − 1.

Hence, the L-spectrum of F4 has the following description:
The conclusions (1)–(7) are the same as those of SL(F3), and the item (8) has changed

into 1 ∈ SL(F4) repeated (a − 1)pq times and 4sin2 kπ
2m + 1 ∈ SL(F4) with multiplicity apq,

where k = 1, 2, . . . m − 1.
Therefore, the FONC of F4 is:

H(F4) =
1

2N

N

∑
k=2

1
ρk

=
1

2(pq + pqam)

(
1

am + 1
+

q + am + 1
q

+
q−2

∑
j=1

2 + 4sin2( jπ
2(q−1) ) + am

1 + 4sin2( jπ
2(q−1) )

+
p + am + 1

p
+

p + q + am + 1
p + q

+
q−2

∑
j=1

p + 2 + 4sin2( jπ
2(q−1) ) + am

p + 1 + 4sin2( jπ
2(q−1) )

+
p−2

∑
i=1

2 + 4sin2( iπ
(p−1) ) + am

1 + 4sin2( iπ
(p−1) )

+
p−2

∑
i=1

q + 2 + 4sin2( iπ
(p−1) ) + am

q + 1 + 4sin2( iπ
(p−1) )

+
q−2

∑
j=1

p−2

∑
i=1

3 + 4sin2( iπ
(p−1) ) + 4sin2( jπ

(2(q−1)) ) + am

2 + 4sin2( iπ
(p−1) ) + 4sin2( jπ

2(q−1) )
+ (a − 1)pq

+
m−1

∑
k=1

1
4sin2 kπ

2m + 1
apq
)

.

Similar to the FONC of F3, it can be derived that H(F4) → a
2(1+am)

(1 + ∑m−1
k=1

1
4sin2 kπ

2m +1
) + 0.096; thus, H(F4) tends to

√
5

5 + 0.096 when the parameter m

is large enough, and meanwhile the difference between the FONC of F3 and F4 is equal to√
5

5 , and we also find that whether a or m is large enough, H(F3) < H(F4) holds.

Remark 4. It is supposed that the coronary copy of F3 and F4 has the same cardinality of vertex
sets of partition; only the connection structures within each partition and the links among all
partition sets are different. Thus, the coronary linking structure of F3 and F4, which is located at
the edge of the graph, has the same number of nodes; that is, |V(K(a, m))| = |V(∪aPm)|. These
two graph classes both have a parts, and each part has m vertices. One can see that when m is large
enough (tends to infinity), H(F4) is 0.5 larger than H(F3), and when a tends to infinity, H(F4) is
(1 + ∑m−1

k=1
1

4sin2 kπ
2m +1

)/2m larger than H(F3).
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Remark 5. The asymptotic results can be applied to analyze or improve the first-order network
robustness. The layered lattice-like structure in this paper can be a reference for the research of
layered weighted complex networks.

4. Simulation

The coherence indices of the MASs with layered lattice-like graph are simulated and
compared in this section.

As a simulation example for the changing relation of the coherence H(F1) and the
other graph parameters, Figure 6 describes the change in coherence index with p and q
when a and b are both fixed to 3.

When p and q both tend to infinity, H(F1) → 0.417 (see the point (46,43,0.4176)). This
coincides with the calculation results of Section 3.1.

From Figure 6, one can also see that when one of p and q is fixed to a relatively
small value, the change in p has a greater effect on the change in H. When p and q are
both large enough, the robustness of the network is better than the case that one of p, q is
relatively small.

Figure 7 describes the change surface of H(F2) with the parameters p and q when
a = b = 3. It implies that the point (46,43,0.4355) is in accordance with the tendency
H(F2) → 0.4347 as p, q → ∞, and similar results to Figure 6 can be acquired. In Figure 8,
the comparison of H(F1) and H(F2) with the change in p and q is given. From the point
(49,49,0.4355) and (49,49,0.4176), we can see that the difference of the two function values
is equal to 0.0179, which is consistent with the result (3) on page 6 . Figure 9 shows the
variance of H(F3) with the change in a and m. Through Figure 9, we can see that when p, q
are both relatively small, H(F3) is larger than that in the case where at least one of p, q is
relatively large. The two pair of points (45, 100, 0.09928), (70, 100, 0.09921) and (100, 85,
0.09919), (100, 28, 0.09942) imply that when a or m tends to infinity, H(F3) will decrease
monotonously to the constant 0.099, and the value is only relevant to p and q, which is
consistent with Remark 3. Figure 10 shows the changing curve of H(F4) with a and m,
p = q = 3. Compared with Figures 9 and 10, and combined with the result in Section 3.4,
we find that when p, q are fixed to the same value for H(F3) and H(F4), the inequality
H(F3) < H(F4) always holds. When m , p, q are fixed, the coherence H(F4) will increase
monotonously to a constant.
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Figure 6. The change surface of H(F1) with p and q, a = 3, b = 3.



Symmetry 2024, 16, 243 10 of 13

0

10

20

30

40

50

0

10

20

30

40

50

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

X: 43

Y: 6

Z: 0.4397

q

X: 46

Y: 43

Z: 0.4355

p

X: 6

Y: 39

Z: 0.4449
H

Figure 7. The change in H(F2) with p and q, a = 3, b = 3.
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Figure 8. The comparison of H(F1) and H(F2) with the change in p and q, a, b = 3.
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Figure 9. The variance of H(F3) with the change in a and m, where p = q = 3.
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Figure 10. The variance of H(F4) with the change in a and m, where p = q = 3.

5. Conclusions

This article mainly studied the FONC of the layered noisy systems. To be specific, the
methods of graph spectra were utilized to analyze the layered lattice-like graph, then the
specific mathematical expressions for FONC were derived, and novel asymptotic results
were acquired. We find that when the cardinality of the node sets of coronary substructures
with better connectedness tends to infinity, the FONC of the whole network will have
approximate asymptotic behavior with the central lattice-like structure in the considered
classic graph frameworks.
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