Investigation into Detection Efficiency Deviations in Aviation Soot and Calibration Particles Based on Condensation Particle Counting
Abstract
:1. Introduction
2. Experimental System and Data Processing
2.1. Fundaments of Condensation Particle Counting
2.2. Experimental Setup
2.2.1. Particle Generator
2.2.2. The Differential Mobility Analyzer
2.2.3. The Aerosol Electrometer
2.3. Data Analysis
3. Results and Discussion
3.1. Verification of Detection Performance of BH-CPC
3.2. Comparison of Detection Efficiency between Aviation Soot and Calibration Particles
3.3. Impact of the Operating Temperature on Detection Efficiency for Aviation Soot
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Wang, J. Development and validation of a soot mechanism for RP-3 aviation fuel. Chem. Res. Appl. 2022, 34, 1872–1879. [Google Scholar]
- You, Q.; Li, H.; Bo, X.; Zheng, Y.; Chen, S.B. Air pollution and CO2 emission inventory of Chinese civil aviation airport. China Environ. Sci. 2022, 42, 4517–4524. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change 2007; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Meas. Tech. Phys. 2013, 13, 1853–1877. [Google Scholar] [CrossRef]
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Han, X.; Liu, J. Research and calibration technology of condensation particle counter. Chin. J. Sci. Instrum. 2021, 42, 1–13. [Google Scholar]
- Sakurai, H.; Murashima, Y.; Iida, K.; Wälchli, C.; Auderset, K.; Vasilatou, K. Traceable methods for calibrating condensation particle counters at concentrations down to 1 cm−3. Metrologia 2023, 60, 055012. [Google Scholar] [CrossRef]
- Krasa, H.; Kupper, M.; Schriefl, M.A.; Bergmann, A. Toward a simplified calibration method for 23 nm automotive particle counters using atomized inorganic salt particles. Aerosol Sci. Technol. 2023, 57, 329–341. [Google Scholar] [CrossRef]
- Hermann, M.; Wehner, B.; Bischof, O.; Han, H.-S.; Krinke, T.; Liu, W.; Zerrath, A.; Wiedensohler, A. Particle counting efficiencies of new TSI condensation particle counters. J. Aerosol Sci. 2007, 38, 674–682. [Google Scholar] [CrossRef]
- Wang, X.; Caldow, R.; Sem, G.J.; Hama, N.; Sakurai, H. Evaluation of a condensation particle counter for vehicle emission measurement: Experimental procedure and effects of calibration aerosol material. J. Aerosol Sci. 2010, 41, 306–318. [Google Scholar] [CrossRef]
- Liu, P.S.K.; Deshler, T. Causes of Concentration Differences Between a Scanning Mobility Particle Sizer and a Condensation Particle Counter. Aerosol Sci. Technol. 2003, 37, 916–923. [Google Scholar] [CrossRef]
- Sem, G.J. Design and performance characteristics of three continuous-flow condensation particle counters: A summary. Atmos. Res. 2002, 62, 267–294. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, L.; Chang, L.; Zhang, C.; Li, G.; Li, Y. Development of an optical particle counter for high particle number concentration. In Proceedings of the Third International Conference on Optics and Image Processing (ICOIP 2023), Hangzhou, China, 14–16 April 2023; pp. 143–147. [Google Scholar]
- Fan, F.; Yang, L.; Yuan, Z. Progress and prospect in the study of heterogeneous nucleation of vapor on fine particles. Chem. Ind. Eng. Prog. 2009, 28, 1496–1500. [Google Scholar]
- Kuang, C. A diethylene glycol condensation particle counter for rapid sizing of sub-3 nm atmospheric clusters. Aerosol Sci. Technol. 2018, 52, 1112–1119. [Google Scholar] [CrossRef]
- Lauri, A.J. Theoretical and Computational Approaches on Heterogeneous Nucleation; Helsingin yliopisto: Helsinki, Finland, 2006. [Google Scholar]
- Yoo, S.-J.; Kwon, H.-B.; Hong, U.-S.; Kang, D.-H.; Lee, S.-M.; Han, J.; Hwang, J.; Kim, Y.-J. Microelectromechanical-system-based condensation particle counter for real-time monitoring of airborne ultrafine particles. Atmos. Meas. Tech. Phys. 2019, 12, 5335–5345. [Google Scholar] [CrossRef]
- Ambaum, M.H.P. Accurate, simple equation for saturated vapour pressure over water and ice. Q. J. R. Meteorol. Soc. 2020, 146, 4252–4258. [Google Scholar] [CrossRef]
- Ziese, F.; Maret, G.; Gasser, U. Heterogeneous nucleation and crystal growth on curved surfaces observed by real-space imaging. J. Phys. Condens. Matter 2013, 25, 375105. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, J.; Xu, J.; Yin, J. Effects of surface topography of SiO2 particles on the heterogeneous condensation process observed by environmental scanning electron microscopy. Aerosol Sci. Technol. 2021, 55, 920–929. [Google Scholar] [CrossRef]
- Lu, J.; Lin, F.; Zhang, A. Discussion on calibration methods of condensation particle counters. Shanghai Meas. Test. 2021, 48, 18–20. [Google Scholar]
- Xu, X.; Zhao, W.; Fang, B.; Gu, X.; Zhang, W. Development and performance evaluation of a standard aerosol generation system. Acta Sci. Circumstantiae 2016, 36, 2355–2361. [Google Scholar]
- Le, K.C.; Pino, T.; Pham, V.T.; Henriksson, J.; Tӧrӧk, S.; Bengtsson, P.-E. Raman spectroscopy of mini-CAST soot with various fractions of organic compounds: Structural characterization during heating treatment from 25 °C to 1000 °C. Combust. Flame 2019, 209, 291–302. [Google Scholar] [CrossRef]
- Moore, R.H.; Ziemba, L.D.; Dutcher, D.; Beyersdorf, A.J.; Chan, K.; Crumeyrolle, S.; Raymond, T.M.; Thornhill, K.L.; Winstead, D.L.; Anderson, B.E. Mapping the operation of the miniature combustion aerosol standard (Mini-CAST) soot generator. Aerosol Sci. Technol. 2014, 48, 467–479. [Google Scholar] [CrossRef]
- Saffaripour, M.; Tay, L.-L.; Thomson, K.A.; Smallwood, G.J.; Brem, B.T.; Durdina, L.; Johnson, M. Raman spectroscopy and TEM characterization of solid particulate matter emitted from soot generators and aircraft turbine engines. Aerosol Sci. Technol. 2017, 51, 518–531. [Google Scholar] [CrossRef]
- Marhaba, I.; Ferry, D.; Laffon, C.; Regier, T.Z.; Ouf, F.-X.; Parent, P. Aircraft and MiniCAST soot at the nanoscale. Combust. Flame 2019, 204, 278–289. [Google Scholar] [CrossRef]
- Anderson, B.E.; Beyersdorf, A.J.; Hudgins, C.H.; Plant, J.V.; Thornhill, K.L.; Winstead, E.L.; Ziemba, L.D.; Howard, R.; Corporan, E.; Miake-Lye, R.C.; et al. Alternative Aviation Fuel Experiment (AAFEX); National Aeronautics and Space Administration: Washington, DC, USA, 2011.
- Delhaye, D.; Ouf, F.-X.; Ferry, D.; Ortega, I.K.; Penanhoat, O.; Peillon, S.; Salm, F.; Vancassel, X.; Focsa, C.; Irimiea, C.; et al. The MERMOSE project: Characterization of particulate matter emissions of a commercial aircraft engine. J. Aerosol Sci. 2017, 105, 48–63. [Google Scholar] [CrossRef]
- Brem, B.T.; Durdina, L.; Siegerist, F.; Beyerle, P.; Bruderer, K.; Rindlisbacher, T.; Rocci-Denis, S.; Andac, M.G.; Zelina, J.; Penanhoat, O.; et al. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine. Environ. Sci. Technol. 2015, 49, 13149–13157. [Google Scholar] [CrossRef]
- Moore, R.H.; Thornhill, K.L.; Weinzierl, B.; Sauer, D.; D’Ascoli, E.; Beaton, B.; Beyersdorf, A.J.; Bulzan, D.; Corr, C.; Crosbie, E. Biofuel blending reduces aircraft engine particle emissions at cruise conditions. Nature 2017, 543, 411. [Google Scholar] [CrossRef]
- Li, K.; Yuan, F.; Liu, Y.; Chen, C. Contrastive research on simulation of miniaturized cylindrical DMA and parallel DMA. Transducer Microsyst. Technol. 2022, 41, 14–17. [Google Scholar]
- Rose, D.; Gunthe, S.S.; Mikhailov, E.; Frank, G.P.; Dusek, U.; Andreae, M.O.; Pöschl, U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Meas. Tech. Phys. 2008, 8, 1153–1179. [Google Scholar] [CrossRef]
- Sun, S.; Qi, T.; Xiao, J.; Hu, X.; Liu, J. Development and Calibration of High Accuracy Aerosol Electrometer. Metrology Science and Technology. 2021, 2, 54–58. [Google Scholar]
- Fletcher, R.A.; Mulholland, G.W.; Winchester, M.R.; King, R.L.; Klinedinst, D.B. Calibration of a Condensation Particle Counter Using a NIST Traceable Method. Aerosol Sci. Technol. 2009, 43, 425–441. [Google Scholar] [CrossRef]
- Bezantakos, S.; Biskos, G. Temperature and pressure effects on the performance of the portable TSI 3007 condensation particle counter: Implications on ground and aerial observations. J. Aerosol Sci. 2022, 159, 105877. [Google Scholar] [CrossRef]
- Buckley, A.J.; Wright, M.D.; Henshaw, D.L. A Technique for Rapid Estimation of the Charge Distribution of Submicron Aerosols under Atmospheric Conditions. Aerosol Sci. Technol. 2008, 42, 1042–1051. [Google Scholar] [CrossRef]
- Nicosia, A.; Manodori, L.; Trentini, A.; Ricciardelli, I.; Bacco, D.; Poluzzi, V.; Di Matteo, L.; Belosi, F. Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements. Particuology 2018, 37, 99–106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhou, Q.; Li, G.; Chang, L.; Chen, L.; Li, Y. Investigation into Detection Efficiency Deviations in Aviation Soot and Calibration Particles Based on Condensation Particle Counting. Symmetry 2024, 16, 244. https://doi.org/10.3390/sym16020244
Chen L, Zhou Q, Li G, Chang L, Chen L, Li Y. Investigation into Detection Efficiency Deviations in Aviation Soot and Calibration Particles Based on Condensation Particle Counting. Symmetry. 2024; 16(2):244. https://doi.org/10.3390/sym16020244
Chicago/Turabian StyleChen, Liang, Quan Zhou, Guangze Li, Liuyong Chang, Longfei Chen, and Yuanhao Li. 2024. "Investigation into Detection Efficiency Deviations in Aviation Soot and Calibration Particles Based on Condensation Particle Counting" Symmetry 16, no. 2: 244. https://doi.org/10.3390/sym16020244
APA StyleChen, L., Zhou, Q., Li, G., Chang, L., Chen, L., & Li, Y. (2024). Investigation into Detection Efficiency Deviations in Aviation Soot and Calibration Particles Based on Condensation Particle Counting. Symmetry, 16(2), 244. https://doi.org/10.3390/sym16020244