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Abstract: Sylvester-polynomial-conjugate matrix equations unify many well-known versions and gen-
eralizations of the Sylvester matrix equation AX− XB = C which have a wide range of applications.
In this paper, we present a general approach to Sylvester-polynomial-conjugate matrix equations via
groupoids, vector spaces, and matrices over skew polynomial rings. The obtained results are applied
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1. Introduction

The Sylvester matrix equation is the equation AX − XB = C where all matrices are
complex, matrices A, B, C are given, and X is unknown. Special cases of the equation
already appear in introductory courses to linear algebra, e.g., as the matrix form Ax = b
of a system of linear equations, the equation Ax = 0 defining the nullspace of A, the
normal equation AT Ax = ATb determining the solution to a linear least squares problem,
the equation (A − λI)x = 0 defining eigenvalues and eigenvectors of A, the equation
AX = I defining an inverse of a square matrix A, and the equation AX− XA = 0 defining
commuting matrices (see [1] and [2], Chapter 16).

The Sylvester matrix equation has numerous applications in systems and control the-
ory, signal processing, image restoration, engineering, and differential equations
(see [3,4] and [5], Section 1, for a concise review of literature and methods for solving this
equation). To present a concrete example, let us consider the restoration of images, i.e., the
reconstruction or estimation of the original image on the base of its noised or degraded
version. As described in [6], in the presence of white Gaussian noise and under suitable
assumptions on a two-dimensional image, the minimum mean square error estimate F̂ of
the original image is a solution of a Sylvester’s matrix equation T−1

1 F̂ + F̂T2 = C, where
the matrix T1 is defined with the help of the covariance matrix of the vector of samples
from the image in the vertical direction, T2 is defined similarly but with respect to the
horizontal direction, and C is defined with the help of a vector of the noised image (see [6]
for particularities). An interesting and unexpected appearance of a Sylvester’s equation
in ring theory is presented in [7]. Recall that an element a of a unital and not necessarily
commutative ring R is said to be suitable if, for every left ideal L of the ring R such that
a− a2 ∈ L, there exists an idempotent e = e2 ∈ R with e− a ∈ L. The ring R is called an
exchange ring if all elements in R are suitable; the study of such rings is an important topic
of research in ring theory. In [7], Khurana, Lam, and Nielsen presented a new criterion for
the suitability of an element. They proved that an element A of the ring Rn×n of n-by-n
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matrices over R is suitable if and only if there exists an idempotent matrix B = B2 ∈ Rn×n

such that the Sylvester matrix equation XA− BX = I is solvable in Rn×n (in [7], the result
is presented in the case where n = 1). In [7], the authors expressed their “total surprise”
that studying the solvability of the Sylvester equation XA− BX = I with B idempotent
turned out to be precisely equivalent to studying when A is suitable over the ring R.

Also, conjugate versions and generalizations of the Sylvester matrix equation are
extensively studied (see, e.g., [8,9] for more information); in the rest of this paragraph and
the next one, we list some of them. The matrix equation AX− XB = C, where X denotes
the matrix obtained by taking the complex conjugate of each element of X, is called the
normal Sylvester-conjugate matrix equation. The matrix equation X − AXF = C is called
the Kalman–Yakubovich-conjugate matrix equation (also known as the Stein-conjugate matrix
equation, see [10]). The matrix equation X− AXF = BY is called the Yakubovich-conjugate
matrix equation ([11,12]).

For positive integers k and l, let Ck×l denote the set of k-by-l complex matrices. In [13],
Wu, Duan, Fu, and Wu studied the so-called generalized Sylvester-conjugate matrix equation

AX + BY = EXF + S, (1)

where A, E ∈ Cn×n, B ∈ Cn×r, F ∈ Cp×p and S ∈ Cn×p are known matrices, whereas
X ∈ Cn×p and Y ∈ Cr×p are the matrices to be determined. When B = 0 and
E = I, this matrix equation becomes the normal Sylvester-conjugate matrix equation; when
A = I and B = 0, it becomes the Kalman–Yakubovich-conjugate matrix equation; when
A = I and S = 0, it becomes the Yakubovich-conjugate matrix equation. Moreover, when
A = I, the matrix Equation (1) becomes the nonhomogeneous Yakubovich-conjugate matrix
equation X + BY = EXF + S investigated in [11]; when B = 0, the matrix Equation (1)
becomes the extended Sylvester-conjugate matrix equation AX = EXF + S investigated
in [14]; when E = I (and X is interchanged with X), the matrix Equation (1) becomes
the nonhomogeneous Sylvester-conjugate matrix equation AX + BY = XF + S investigated
in [8], Section 3, and furthermore, if S = 0, it becomes the homogeneous Sylvester-conjugate
matrix equation AX + BY = XF investigated in [8], Section 2. Hence, Equation (1) unifies
many important conjugate versions of the Sylvester matrix equation.

In [9], Wu, Feng, Liu, and Duan proposed a unified approach to solving a more
general class of Sylvester-polynomial-conjugate matrix equations that includes the matrix
Equation (1) and the Sylvester polynomial matrix equation (see [15]) as special cases. To
present the main result of [9], what is done in Theorem 1 below, we first recall some
definitions and notations introduced in [9,16] (alternatively, see [17], pp. 98, 99, 368, 389;
we refer the reader to [17], Chapter 10, for more detailed information on the Sylvester-
polynomial-conjugate matrix equations). These definitions and notations may look a bit
complicated at first glance, but we have to cite them in order to be able to present the main
result of [9], which was our motivation for this paper and which we generalize broadly
by putting it in a new context. In Section 3, we express these definitions and notation
in the language of matrices over skew polynomial rings, and from this new perspective,
they become clear and easy to understand. The reader who now does not wish to become
familiar with these specific objects can move to the paragraph after Theorem 1 and possibly
return to the skipped text later.

For any complex matrix V, square complex matrix F, and non-negative integer k, the

matrix V∗k is defined inductively by V∗k = V∗(k−1) with V∗0 = V, and the matrix F
←
k is

defined to be
F
←
k = Fk−2⌊ k

2 ⌋(FF)⌊
k
2 ⌋.

The set of polynomials over Cn×m in the indeterminate s is denoted by Cn×m[s], and
its elements are called complex polynomial matrices. Given T(s) = ∑t

i=0 Tisi ∈ Cn×r[s],
V ∈ Cr×p, and F ∈ Cp×p, the Sylvester-conjugate sum is defined as



Symmetry 2024, 16, 246 3 of 11

T(s)
F
⊞ V =

t

∑
i=0

TiV∗iF
←
i . (2)

For complex polynomial matrices A(s) = ∑m
i=0 Aisi ∈ Cp×q[s] and

B(s) = ∑n
j=0 Bjsj ∈ Cq×r[s], their conjugate product is defined as

A(s)⊛ B(s) =
m

∑
i=0

n

∑
j=0

AiB∗ij si+j. (3)

In [9], the authors investigated a general type of complex matrix equations, which
they called the Sylvester-polynomial-conjugate matrix equation,

ϕ1

∑
i=0

AiX∗iF
←
i +

ϕ2

∑
j=0

BjY∗jF
←
j =

ϕ3

∑
k=0

CkR∗kF
←
k , (4)

where Ai ∈ Cn×n, Bj ∈ Cn×r, Ck ∈ Cn×m, R ∈ Cm×p, and F ∈ Cp×p are known matrices,
and X ∈ Cn×p and Y ∈ Cr×p are the unknown matrices to be determined. It is easy to see
that by using the Sylvester-conjugate sum (2), Equation (4) can be written as

A(s)
F
⊞ X + B(s)

F
⊞ Y = C(s)

F
⊞ R, (5)

where A(s) = ∑
ϕ1
i=0 Aisi, B(s) = ∑

ϕ2
j=0 Bjsj and C(s) = ∑

ϕ3
k=0 Cksk. Let us note that if

A(s) = A− Es, B(s) = B and C(s) = I, then

A(s)
F
⊞ X = (A− Es)

F
⊞ X = AX∗0F

←
0 − EX∗1F

←
1 = AX− EXF,

B(s)
F
⊞ Y = B

F
⊞ Y = BY∗0F

←
0 = BY and C(s)

F
⊞ R = I

F
⊞ R = IR∗0F

←
0 = R,

and thus, for such A(s), B(s), and C(s), Equation (5) becomes the generalized Sylvester-
conjugate matrix Equation (1). Thus, each method for solving the polynomial matrix
Equation (5) automatically provides a method for solving the matrix Equation (1) and, hence,
the conjugate variants of the Sylvester matrix equation listed in the first four paragraphs of
this section.

Recall from [18] that polynomial matrices A(s) ∈ Cn×n[s] and B(s) ∈ Cn×r[s] are
left coprime in the frame of the conjugate product if there exists a polynomial matrix
U(s) ∈ C(n+r)×(n+r)[s] such that U(s) is invertible with respect to the conjugate prod-
uct ⊛ and [A(s) B(s)] ⊛ U(s) = [I 0]. Below, we recall the main result of [9], which
provides a complete solution of the Sylvester-polynomial-conjugate matrix Equation (5) in
the case where A(s) and B(s) are left coprime.

Theorem 1 ([9], Theorem 2). Let A(s) ∈ Cn×n[s] and B(s) ∈ Cn×m[s] be left coprime in the
framework of the conjugate product. Hence, there exist polynomial matrices P(s) ∈ Cn×n[s],
G(s) ∈ Cn×m[s], D(s), Q(s) ∈ Cm×n[s], H(s), W(s) ∈ Cm×m[s] such that

A(s)⊛ P(s) + B(s)⊛ Q(s) = In, D(s)⊛ G(s) + W(s)⊛ H(s) = Im, A(s)⊛ G(s) + B(s)⊛ H(s) = 0.

Then, for any polynomial matrix C(s) ∈ Cn×m[s] and matrices F ∈ Cp×p and R ∈ Cm×p,
a pair (X, Y) ∈ Cn×p × Cm×p satisfies the equation

A(s)
F
⊞ X + B(s)

F
⊞ Y = C(s)

F
⊞ R (6)

if and only if
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 X = (P(s)⊛ C(s))
F
⊞ R + G(s)

F
⊞ Z

Y = (Q(s)⊛ C(s))
F
⊞ R + H(s)

F
⊞ Z,

where Z ∈ Cm×p is an arbitrarily chosen parameter matrix.

Throughout the paper, the set of positive integers is denoted by N, the imaginary unit
of the field C of complex numbers is denoted by i, and the imaginary basis elements of the
division ring H of quaternions are denoted by i, j, k.

In this paper, we put the Sylvester-conjugate matrix Equation (6) in a much more
general context of matrices over skew polynomial rings. Recall that if R is a ring (not
necessarily commutative) and σ : R → R is an endomorphism of the ring R, then the
skew polynomial ring R[s; σ] consists of polynomials over R in one indeterminate s (i.e.,
polynomials of the form ∑n

i=0 aisi with ai ∈ R) that are added in an obvious way and
multiplied formally subject to the rule sa = σ(a)s for any a ∈ R, along with the rules of
distributivity and associativity. Clearly, if σ is the identity map idR of R, then the ring
R[s; σ] coincides with the usual polynomial ring R[s], and thus, the usual polynomial ring is
a special case of the skew polynomial ring construction. Skew polynomial rings are a well-
known tool in algebra to provide examples of lacking symmetry between many ring objects
defined by multiplication from the left and their counterparts defined by multiplication
from the right.

The main advantage of our approach to Sylvester-conjugate matrix equations via skew
polynomial rings lies in the freedom of choosing both the ring R and its endomorphism σ.
For instance, as we see in Section 4, to obtain matrix Equation (4), it suffices to take R = C
and σ as the complex conjugation (i.e., σ(z) = z). On the other hand, by taking R = C with
σ = idC, we obtain the non-conjugate version of (4) and non-conjugate versions of all the
matrix equations mentioned in the first four paragraphs of this section. Moreover, to obtain
j-conjugate versions of these Sylvester-like matrix equations (which are well studied in the
literature; see Section 4), it suffices that R is the division ring of quaternions H and σ is the
j-conjugation (i.e., σ(h) = −jhj).

The paper is organized as follows. In Section 2, we present a general approach to
equations of the form (6) based on groupoids and vector spaces. In Section 3, we apply the
result of Section 2 to matrices over skew polynomial rings, obtaining Theorem 3, which
describes all solutions to equations of the form (6) in the case where A(s) and B(s) are
left coprime. As immediate consequences, in Section 4, we obtain Theorem 1 along with
its version for the Sylvester-polynomial-j-conjugate matrix equation over quaternions. In
particular, we develop some ideas of [9].

2. Main Result

Recall that a groupoid is a set M together with a binary operation ⊕ on M. If M, N are
groupoids, then a map φ : M → N is called a groupoid homomorphism if
φ(s⊕ t) = φ(s)⊕ φ(t) for any s, t ∈ M.

Let M11, M12 be groupoids (soon, it will become clear why they are doubly indexed)
and V1, V2 be vector spaces over a field K. Assume that for any j ∈ {1, 2}, an operation
⊠ : M1j ×Vj → V1 is given whose value for a pair (s, v) ∈ M1j ×Vj is denoted by s ⊠ v. In
this section, we consider the following problem of solving equations of the form of (5):

(∗) Problem: Given a ∈ M11, b ∈ M12, and c ∈ V1, find all x ∈ V1 and y ∈ V2 such that

a ⊠ x + b ⊠ y = c.

Obviously, the structure consisting of groupoids M11, M12 and vector spaces V1, V2, for
which we have formulated Problem (∗), is too poor to provide a satisfactory solution. In the
theorem below, we enrich the structure appropriately, obtaining a solution to Problem (∗).
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Theorem 2. Let M11, M12, M21, M22 be groupoids with operations commonly denoted by ⊕, and
let V1, V2 be finite-dimensional vector spaces over a field K. Assume that for any i, j, k ∈ {1, 2},
operations ⊠ : Mij ×Vj → Vi and ⊙ : Mij ×Mjk → Mik are given such that

(1) The operation ⊠ induces groupoid homomorphisms with respect to the first operand and linear
maps with respect to the second operand, that is,

(a) (s⊕ t)⊠ v = s ⊠ v + t ⊠ v for any i, j ∈ {1, 2}, s, t ∈ Mij and v ∈ Vj;
(b) s ⊠ (ku + lv) = k(s ⊠ u) + l(s ⊠ v) for any i, j ∈ {1, 2}, s ∈ Mij, k, l ∈ K and

u, v ∈ Vj;

(2) s ⊠ (t ⊠ v) = (s⊙ t)⊠ v for any i, j, k ∈ {1, 2}, s ∈ Mij, t ∈ Mjk and v ∈ Vk.

Let a ∈ M11 and b ∈ M12 be such that for some p ∈ M11, g ∈ M12, d, q ∈ M21, and
h, w ∈ M22, the following conditions hold:

(i) ((a⊙ p)⊕ (b⊙ q))⊠ v = v for any v ∈ V1;
(ii) ((d⊙ g)⊕ (w⊙ h))⊠ u = u for any u ∈ V2;
(iii) ((a⊙ g)⊕ (b⊙ h))⊠ u = 0 for any u ∈ V2.

Then, for any c ∈ V1, a pair (x, y) ∈ V1 ×V2 satisfies the equation

a ⊠ x + b ⊠ y = c (7)

if and only if (x, y) = (p ⊠ c + g ⊠ z, q ⊠ c + h ⊠ z) f or some z ∈ V2.

Proof. To prove the result, we consider the following two maps:

α : V1 ×V2 → V1, α(x, y) = a ⊠ x + b ⊠ y; β : V2 → V1 ×V2, β(z) = (g ⊠ z, h ⊠ z).

Let us note that α(x, y) is just the left side of Equation (7) that we want to solve, and by
(1)(b), both α and β are linear maps. For any c ∈ V1, by using (i), (1)(a), and (2), we obtain

c = ((a⊙ p)⊕ (b⊙ q))⊠ c = (a⊙ p)⊠ c + (b⊙ q)⊠ c = α(p ⊠ c, q ⊠ c), (8)

and thus, (x, y) = (p ⊠ c, q ⊠ c) is a particular solution of Equation (7).
To find all solutions of (7), we first note that β is an injection. Indeed, if z ∈ kerβ, then

(g ⊠ z, h ⊠ z) = (0, 0), and thus, by using (ii), (1)(a), (2) and (1)(b), we obtain

z = ((d⊙ g)⊕ (w⊙ h))⊠ z = (d⊙ g)⊠ z + (w⊙ h)⊠ z = d ⊠ (g ⊠ z) + w ⊠ (h ⊠ z) = d ⊠ 0 + w ⊠ 0 = 0 + 0 = 0,

as desired.
Next, we show that imβ = kerα. Note that for any z ∈ V2, by using (2), (1)(a), and (iii),

we obtain

αβ(z) = α(g ⊠ z, h ⊠ z) = a ⊠ (g ⊠ z) + b ⊠ (h ⊠ z) = (a⊙ g)⊠ z + (b⊙ h)⊠ z = ((a⊙ g)⊕ (b⊙ h))⊠ z = 0,

and imβ ⊆ kerα follows. Furthermore, since β is injective, and α is surjective (by (8)), and
V1, V2 are finite-dimensional, we obtain

dim imβ = dim V2 − dim kerβ = dim V2 = dim V1 ×V2 − dim V1 = dim V1 ×V2 − dim imα = dim kerα.

Thus, the desired equality imβ = kerα follows.
Now, for any (x, y) ∈ V1 ×V2 , by using (8) and the equality kerα = imβ, we obtain

the following equivalences:

a ⊠ x + b ⊠ y = c⇔ α(x, y) = c⇔ α(x, y) = α(p ⊠ c, q ⊠ c)⇔ (x, y)− (p ⊠ c, q ⊠ c) ∈ kerα

⇔ (x, y) = (p ⊠ c, q ⊠ c) + β(z) f or some z ∈ V2 ⇔ (x, y) = (p ⊠ c + g ⊠ z, q ⊠ c + h ⊠ z) f or some z ∈ V2,

which completes the proof.
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3. An Application to Matrices over Skew Polynomial Rings

Let R be a (possibly noncommutative) ring with unity, and let σ : R → R be a ring
endomorphism of R. Then the set of polynomials over R in one indeterminate s, with the
usual addition of polynomials and multiplication subject to the rule sa = σ(a)s for any a ∈
R (along with distributivity and associativity), is a ring, called the skew polynomial ring and
denoted by R[s; σ] (see, e.g., [19], p. 10). Thus, elements of R[s; σ] are polynomials of the
form ∑n

i=0 aisi with usual addition, i.e., coefficientwise, and multiplication given by

( n

∑
i=0

aisi
)( m

∑
j=0

bjsj
)
=

n

∑
i=0

m

∑
j=0

aiσ
i(bj)si+j. (9)

For any n, m ∈ N and A = [aij] ∈ Rn×m, we put σ(A) = [σ(aij)], i.e., σ(A) ∈ Rn×m

is the matrix obtained by taking the value of σ of each element of A. We denote by
Rn×m[s; σ] the set of polynomials over Rn×m in the indeterminate s with usual addition of
polynomials and with multiplication of any polynomials A(s) = ∑

p
i=0 Aisi ∈ Rn×m[s; σ]

and B(s) = ∑
q
j=0 Bjsj ∈ Rm×k[s; σ] performed analogously as in (9), i.e.,

A(s)B(s) =
p

∑
i=0

q

∑
j=0

Aiσ
i(Bj)si+j ∈ Rn×k[s; σ]. (10)

Let us note that for any matrix A = [aij] ∈ Rn×m, the monomial Ask can be seen
as the matrix of monomials [aijsk] ∈ (R[s; σ])n×m, and thus, Rn×m[s; σ] can be viewed
as the set of n × m matrices over the skew polynomial ring R[s; σ], with addition and
multiplication induced by those in the ring R[s; σ]; this is why elements of Rn×m[s; σ] are
called polynomial matrices.

Let T be a ring, let n, m ∈ N, and let A ∈ Tn×n and B ∈ Tn×m. We say the matrices A
and B are left coprime if there exists an invertible matrix U ∈ T(n+m)×(n+m) such that for the
block matrix [A B] ∈ Tn×(n+m) we have (cf. [17], Theorem 9.20)

[A B] U = [In 0].

Let us partition U and U−1 as U =
[

P G
Q H

]
and U−1 =

[
F Z
D W

]
with P, F ∈ Tn×n,

G, Z ∈ Tn×m, Q, D ∈ Tm×n and H, W ∈ Tm×m. Hence,

[A B]
[

P G
Q H

]
= [In 0] and

[
F Z
D W

] [
P G
Q H

]
=

[
In 0
0 Im

]
,

which implies that AP + BQ = In, DG + WH = Im and AG + BH = 0.
By the foregoing discussion, if polynomial matrices A(s) ∈ Rn×n[s; σ],

B(s) ∈ Rn×m[s; σ] are left coprime, then there exist polynomial matrices P(s) ∈ Rn×n[s; σ],
G(s) ∈ Rn×m[s; σ], D(s), Q(s) ∈ Rm×n[s; σ], and H(s), W(s) ∈ Rm×m[s; σ] such that

A(s)P(s) + B(s)Q(s) = In, D(s)G(s) +W(s)H(s) = Im, A(s)G(s) + B(s)H(s) = 0. (11)

We use this observation in the following theorem, which solves Problem (∗) for left
coprime matrices over a skew polynomial ring.

Theorem 3. Let R be a ring with an endomorphism σ such that R is a finite-dimensional vector
space over a field K. Let n, m, p ∈ N, and assume that for any i, j ∈ {n, m} an operation
⊠ : Ri×j[s; σ]× Rj×p → Ri×p is given with the following properties:

(1) (a) (S(s) + T(s)) ⊠ V = S(s) ⊠ V + T(s) ⊠ V for any i, j ∈ {n, m},
S(s), T(s) ∈ Ri×j[s; σ] and V ∈ Rj×p.

(b) S(s) ⊠ (kU + lV) = k(S(s) ⊠ U) + l(S(s) ⊠ V) for any i, j ∈ {n, m},
S(s) ∈ Ri×j[s; σ], k, l ∈ K and U, V ∈ Rj×p.
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(2) (Ssα)⊠ ((Tsβ)⊠ V) = (Sσα(T)sα+β)⊠ V for any i, j, k ∈ {n, m}, S ∈ Ri×j, T ∈ Rj×k,
V ∈ Rk×p and α, β ∈ N∪ {0}.

(3) Ii ⊠ V = V for any i ∈ {n, m} and V ∈ Ri×p.

Let polynomial matrices A(s) ∈ Rn×n[s; σ] and B(s) ∈ Rn×m[s; σ] be left coprime. Hence,
there exist polynomial matrices P(s) ∈ Rn×n[s; σ], G(s) ∈ Rn×m[s; σ], D(s), Q(s) ∈ Rm×n[s; σ],
H(s), W(s) ∈ Rm×m[s; σ] satisfying the Equation (11). Then, for any matrix C ∈ Rn×p, a pair
(X, Y) ∈ Rn×p × Rm×p satisfies the equation

A(s)⊠ X + B(s)⊠Y = C

if and only if (X, Y) = (P(s)⊠ C + G(s)⊠ Z, Q(s)⊠ C + H(s)⊠ Z) for some Z ∈ Rm×p.

Proof. We apply Theorem 2 with M11 = Rn×n[s; σ], M12 = Rn×m[s; σ],
M21 = Rm×n[s; σ], M22 = Rm×m[s; σ], V1 = Rn×p, V2 = Rm×p, with ⊕ being the usual
addition of polynomial matrices and ⊙ being the skew multiplication (10) of polynomial
matrices. We only need to show that assumption (2) of Theorem 2 is satisfied, since clearly
so are all other assumptions of Theorem 2. For that, let S(s) = ∑

p
α=0 Sαsα ∈ Ri×j[s; σ],

T(s) = ∑
q
β=0 Tβsβ ∈ Rj×k[s; σ], and V ∈ Rk×p. Below, using properties (1) and (2) along

with the Formula (10), we derive the desired equality

S(s)⊠ (T(s)⊠ V) =
( p

∑
α=0

Sαsα
)
⊠

(( q

∑
β=0

Tβsβ
)
⊠ V

)
=

p

∑
α=0

q

∑
β=0

(
(Sαsα)⊠ ((Tβsβ)⊠ V)

)

=
p

∑
α=0

q

∑
β=0

(
(Sασα(Tβ)sα+β)⊠ V

)
=

( p

∑
α=0

q

∑
β=0

Sασα(Tβ)sα+β
)
⊠ V = (S(s)T(s))⊠ V,

which completes the proof.

We present examples of operations ⊠ on matrices over skew polynomial rings to
which Theorem 3 can be applied.

Example 1. Let R be a ring with an endomorphism σ such that R is a vector space over a field K.
Let � : R[s; σ]× R→ R be an operation with the following properties:

(1) (a) (S(s) + T(s))� v = S(s)� v + T(s)� v for any S(s), T(s) ∈ R[s; σ] and v ∈ R;
(b) S(s)� (ku + lv) = k(S(s)� u) + l(S(s)� v) for any S(s) ∈ R[s; σ], k, l ∈ K and

u, v ∈ R;
(2) (Ssα)� ((Tsβ)� v) = (Sσα(T)sα+β)� v for any S, T, v ∈ R and α, β ∈ N∪ {0};
(3) 1 � v = v for any v ∈ R.

Let i, j, and p be positive integers. Below, we show how one can extend the operation � to an
operation ⊠ : Ri×j[s; σ]× Rj×p → Ri×p satisfying conditions (1)–(3) of Theorem 3.

Let T(s) = ∑l
k=0 Aksk ∈ Ri×j[s; σ] be a polynomial with matrices Ak = [a(k)mr ] ∈ Ri×j as coef-

ficients (i.e., a(k)mr is the (m, r)-entry of Ak). For each m and r, let
Tmr(s) = ∑l

k=0 a(k)mr sk ∈ R[s; σ]. Now, for any V = [vrn] ∈ Rj×p, we define T(s)⊠ V to be
the matrix in Ri×p whose (m, n)-entry is equal to ∑

j
r=1(Tmr(s)� vrn). It is easy to verify that the

extended operation ⊠ : Ri×j[s; σ]× Rj×p → Ri×p satisfies conditions (1)–(3) of Theorem 3.

Example 2. Let R be a ring with an endomorphism σ such that R is a vector space over a field K,
and let @ : R× R→ R be an operation with the following properties:

(1) (a) (S + T) @ v = S @ v + T @ v for any S, T, v ∈ R;
(b) S @ (ku + lv) = k(S @ u) + l(S @ v) for any k, l ∈ K and S, u, v ∈ R;

(2) S @ (T @ v) = (ST) @ v for any S, T, v ∈ R;
(3) 1 @ v = v for any v ∈ R.
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Let φ : R → R be a K-linear map such that φ(T @ v) = σ(T) @ φ(v) for any T, v ∈ R.
We extend the operation @ : R × R → R to an operation � : R[s; σ] × R → R by setting
(∑n

i=0 Tisi) � v = ∑n
i=0(Ti @ φi(v)). It is easy to verify that the extended operation

� : R[s; σ]× R → R satisfies conditions (1)–(3) listed in Example 1, so by the method described
in Example 1, � can be further extended to an operation ⊠ : Ri×j[s; σ]× Rj×p → Ri×p satisfying
conditions (1)–(3) of Theorem 3.

Example 3. Let f , g, h ∈ R be such that f 2 + gh + 1 = 0. We define an operation @ : C×C→ C
by setting for any complex numbers T = a + bi, v = c + di (written in the algebraic form) that

T @ v = ac + bc f + bdh + (ad + bcg− bd f )i.

Then, for R = C, K = R, and σ the complex conjugation, the conditions (1)–(3) of
Example 2 hold, and thus, by using (as described in Example 2) the map φ : C → C defined
by φ(x + yi) = xr + ys + (xt− yr)i with r, s, t ∈ R such that 2 f r + gs + ht = 0, the operation
@ : C × C → C can be extended to an operation ⊠ : Ci×j[s; σ] × Cj×p → Ci×p satisfying
assumptions of Theorem 3.

Example 4. Let R be a ring with an endomorphism σ, and let K ⊆ R be a field such that kr = rk
for any k ∈ K and r ∈ R. For T(s) = ∑t

m=0 Tmsm ∈ Ri×j[s; σ] and V ∈ Rj×p, we define

T(s)⊠ V = T0V.

It is clear that the operation ⊠ : Ri×j[s; σ] × Rj×p → Ri×p satisfies conditions (1)–(3)
of Theorem 3.

Example 5. Let R be a ring with an endomorphism σ, F ∈ Rp×p, and let K ⊆ R be a field such
that σ(k) = k and kr = rk for any k ∈ K and r ∈ R. For T(s) = ∑t

m=0 Tmsm ∈ Ri×j[s; σ] and
V ∈ Rj×p, we define

T(s)⊠ V = T0V +
t

∑
m=1

Tmσm(V)σm−1(F) · · · σ1(F)σ0(F).

One can verify that the operation ⊠ : Ri×j[s; σ]× Rj×p → Ri×p satisfies assumptions (1)–(3)
of Theorem 3.

4. Solution to the Sylvester-Polynomial-Conjugate Matrix Equations over Complex
Numbers and Quaternions

In Section 1, we recalled Theorem 1, which is the main result of [9], which gives the
complete solution to the Sylvester-polynomial-conjugate matrix Equation (6) in the case
where A(s) and B(s) are left coprime. Below, we obtain Theorem 1 as a direct corollary of
Theorem 3.

Proof of Theorem 1. Let σ be the complex conjugation. Referring to the notation recalled in
Section 1, it is easy to see that V∗k = σk(V) and the conjugate product ⊛ is just the skew mul-

tiplication (10) of polynomial matrices. Furthermore, F
←
k = σk−1(F)σk−2(F) · · · σ(F)σ0(F),

and thus, the Sylvester-conjugate sum
F
⊞ is a special case of the operation ⊠ in Example 5.

Hence, Theorem 1 is an immediate consequence of Theorem 3.

Let H be the skew field of quaternions, that is, H = R ⊕ Ri ⊕ Rj ⊕ Rk, with the
multiplication performed subject to the rules ij = −ji = k and i2 = j2 = k2 = −1. For a
quaternion matrix A ∈ Hm×n, the matrix Â = −jAj is called the j-conjugate of A (in [20],
where the notion of the j-conjugate of a quaternion matrix was introduced, it is denoted by
Ã, whereas in [21], it is denoted by

←→
A ). Similarly to Sylvester-conjugate-matrix equations,

their counterparts for matrices over quaternions are intensively studied. For instance, the
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normal Sylvester-j-conjugate matrix equation AX− X̂B = C was investigated in [22–25], the
Kalman–Yakubovich-j-conjugate matrix equation X− AX̂B = C was investigated in [22,26–29],
and the homogenous Sylvester-j-conjugate matrix equation AX̂ + BY = XF was investigated
in [30]. Furthermore, the homogeneous Yakubovich-j-conjugate matrix equation X + BY = EX̂F
was investigated in [28], and the nonhomogeneous Yakubovich-j-conjugate matrix equation
X + BY = EX̂F + S was investigated in [31]. The two-sided generalized Sylvester matrix
equation A1XB1 + A2YB2 = C over H was investigated in [32].

In [21], Wu, Liu, Li, and Duan defined the notion of the j-conjugate product of
quaternion polynomial matrices. First, for any quaternion matrix A and positive inte-

ger k, they defined inductively the quaternion matrix A◦k by setting A◦k = Â◦(k−1) and
A◦0 = A. For two quaternion polynomial matrices A(s) = ∑m

i=0 Aisi ∈ Hp×q[s] and
B(s) = ∑n

j=0 Bjsj ∈ Hq×r[s], their j-conjugate product is defined as

A(s)⊛ B(s) =
m

∑
i=0

n

∑
j=0

AiB◦ij si+j. (12)

Let σ : H → H be the map defined by σ(h) = −jhj for any h ∈ H. Then, σ is an
automorphism of the division ring H, and for any B ∈ Hq×r and nonegative integer i, we
have that B◦i = σi(B). Hence, the j-conjugate product (12) is simply the product of matrices
over the skew polynomial ring H[s; σ]. Given T(s) = ∑t

i=0 Tisi ∈ Hn×r[s], V ∈ Hr×p, and
F ∈ Hp×p, analogously as in [9], we define the Sylvester-j-conjugate sum as

T(s)
F
⊞ V = T0V +

t

∑
m=1

Tmσm(V)σm−1(F) · · · σ1(F)σ0(F).

Similarly as in the second paragraph of Section 1, one can easily see that each of the
aforementioned j-conjugate matrix equations is a special case of the polynomial equation

A(s)
F
⊞ X + B(s)

F
⊞ Y = C,

where A(s) ∈ Hn×n[s], B(s) ∈ Hn×m[s], F ∈ Hp×p, C ∈ Hn×p are given and X ∈ Hn×p,
Y ∈ Hm×p are unknown. Since σ(r) = r and rh = hr for any r ∈ R and h ∈ H, with the
use of the argument of Example 5, we can apply Theorem 3 to matrices over the skew
polynomial ring H[s; σ], obtaining the following result as a direct corollary.

Theorem 4. Let A(s) ∈ Hn×n[s] and B(s) ∈ Hn×m[s] be left coprime in the framework of the
j-conjugate product ⊛. Hence, there exist polynomial matrices P(s) ∈ Hn×n[s], G(s) ∈ Hn×m[s],
D(s), Q(s) ∈ Hm×n[s], H(s), W(s) ∈ Hm×m[s] such that

A(s)⊛ P(s) + B(s)⊛ Q(s) = In, D(s)⊛ G(s) + W(s)⊛ H(s) = Im, A(s)⊛ G(s) + B(s)⊛ H(s) = 0.

Then for any matrices F ∈ Hp×p and C ∈ Hn×p, a pair (X, Y) ∈ Hn×p ×Hm×p satisfies
the equation

A(s)
F
⊞ X + B(s)

F
⊞ Y = C

if and only if  X = P(s)
F
⊞ C + G(s)

F
⊞ Z

Y = Q(s)
F
⊞ C + H(s)

F
⊞ Z,

where Z ∈ Hm×p is an arbitrarily chosen parameter matrix.

5. Conclusions

This study focuses on Sylvester-polynomial-conjugate matrix equations, which unify
many known versions and generalizations of the Sylvester matrix equation and have many
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applications, such as in systems and control theory, signal processing, image restoration,
engineering, and differential equations. In this paper, we propose a new general approach
to Sylvester-polynomial-conjugate matrix equations, using algebraic structures, such as
groupoids, vector spaces, and skew polynomial rings. The novelty and broad scope of our
approach to Sylvester-polynomial-conjugate matrix equations using skew polynomial rings
lie mainly in the freedom of choosing both the ring of coefficients and its endomorphism
for the construction of a skew polynomial ring and, then, the polynomial matrices structure
appearing in Sylvester-polynomial-conjugate matrix equations.
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