Exploring Semi-Inclusive Two-Nucleon Emission in Neutrino Scattering: A Factorized Approximation Approach
Abstract
:1. Introduction
- We will study the more general five-fold cross-section by integrating over the energy of one of the final nucleons while keeping constant the emission angles and the energy of the other nucleon. This will allow us to compare with the calculations of [6] in the shell model, where MECs were considered without the current. Here, we can observe the effect of MEC separately.
- We are going to explore a factorized approximation as the product of a two-nucleon cross-section multiplied by an integrated spectral function. This will allow us to see if factorized models developed for electron scattering from correlated nuclei, where the cross-section is factored as the product of the one-body current using a combination of two-hole spectral functions, can be extended to the case of MEC [41,42]. We will see that in the RMF, the integrated spectral function admits an analytical formula, simplifying the calculations. We will demonstrate that the two-nucleon cross-section can be estimated using a prescription that fixes the average momenta of the holes.
- Using the factorized formula, we will be able to calculate the cross-section integrated over the outgoing muon and the angles of the final nucleons. This will allow us to compare with the calculation in Ref. [16], where a microscopic calculation of this observable was performed and compared with the result from the NEUT event generator.
- Finally, for all these observables, we will compare with the isotropic symmetric model and study the differences with our microscopic model.
2. Formalism
2.1. Semi-Inclusive 2p2h Cross-Section
2.2. Meson-Exchange Currents
2.3. Semi-Inclusive Hadronic Tensor
- First, calculate from .
- Then, calculate the holes’ energy in the CM, .
- Next, for each value of the angles, construct the vector
- Apply an inverse boost to the laboratory system to calculate .
- Calculate .
3. Factorization of the Semi-Inclusive 2p2h Hadronic Tensor
3.1. The Integrated Two-Hole Spectral Function
3.2. Factorized Approximation
3.3. Prescription for
3.4. Analytical Form of
4. Results
4.1. Integrated 2 h Spectral Function
4.2. Semi-Inclusive 2p2h Cross-Section Integrated over One Energy
4.3. Semi-Inclusive 2p2h Cross-Section Integrated over the Muon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MEC | Meson-exchange currents |
RFG | Relativistic Fermi gas |
RMF | Relativistic mean field |
Appendix A. Calculation of the Semi-Inclusive 2p2h Hadronic Tensor in the Center of Mass System of the Two Holes
- First, we prove the inequalityIn fact,On the other hand, we haveThis concludes the proof of (A2).
- If , then .In fact, we note that the product of delta functions inside the integral (A1) is zero unlessThis implies that
- From step #2 above, the integral (A1) can be equivalently expressed as
- The integral can be written in the equivalent formTo prove the formula, we just need to use the following result from special relativity:
- We perform the integral in the CM system of the two holes that move with momentum . We change variables:Thus the CM system moves with velocity . In fact the new component of in the direction of is given by the two-dimensional Lorentz transformation
- Since , we haveThen we can write the integral (A9) in the CM system, and again using Equation (A10), we arrive at the resultIntegrating over , we have and . Therefore
- To finish, we integrate over the energy using
Appendix B. Integration Limits of G(E,H)
References
- Martini, M.; Ericson, M.; Chanfray, G.; Marteau, J. Unified approach for nucleon knock-out and coherent and incoherent pion production in neutrino interactions with nuclei. Phys. Rev. C 2009, 80, 065501. [Google Scholar] [CrossRef]
- Martini, M.; Ericson, M.; Chanfray, G.; Marteau, J. Neutrino and antineutrino quasielastic interactions with nuclei. Phys. Rev. C 2010, 81, 045502. [Google Scholar] [CrossRef]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Williamson, C.F. Meson-exchange currents and quasielastic neutrino cross-sections in the SuperScaling Approximation model. Phys. Lett. B 2011, 696, 151. [Google Scholar] [CrossRef]
- Nieves, J.; Simo, I.R.; Vacas, M.J.V. Inclusive charged-current neutrino-nucleus reactions. Phys. Rev. C 2011, 83, 045501. [Google Scholar] [CrossRef]
- Van Cuyck, T.; Jachowicz, N.; Gonzalez-Jimenez, R.; Martini, M.; Pandey, V.; Ryckebusch, J.; Van Dessel, N. Influence of short-range correlations in neutrino-nucleus scattering. Phys. Rev. C 2016, 94, 024611. [Google Scholar] [CrossRef]
- Van Cuyck, T.; Jachowicz, N.; Gonzalez-Jimenez, R.; Ryckebusch, J.; Van Dessel, N. Seagull and pion-in-flight currents in neutrino-induced 1N and 2N knockout. Phys. Rev. C 2017, 95, 054611. [Google Scholar] [CrossRef]
- Rocco, N.; Barbieri, C.; Benhar, O.; De Pace, A.; Lovato, A. Neutrino-Nucleus cross-section within the Extended Factorization Scheme. Phys. Rev. C 2019, 99, 025502. [Google Scholar] [CrossRef]
- Martinez-Consentino, V.L.; Amaro, J.E.; Simo, I.R. Semiempirical formula for electroweak response functions in the two-nucleon emission channel in neutrino-nucleus scattering. Phys. Rev. D 2021, 104, 113006. [Google Scholar] [CrossRef]
- Martinez-Consentino, V.L.; Amaro, J.E. Charged-current quasielastic neutrino scattering from 12C in an extended superscaling model with two-nucleon emission. Phys. Rev. D 2023, 108, 113006. [Google Scholar] [CrossRef]
- Gallagher, H.; Garvey, G.; Zeller, G.P. Neutrino-nucleus interactions. Ann. Rev. Nucl. Part. Sci. 2011, 61, 355–378. [Google Scholar] [CrossRef]
- Morfin, J.G.; Nieves, J.; Sobczyk, J.T. Recent Developments in Neutrino/Antineutrino–Nucleus Interactions. Adv. High Energy Phys. 2012, 2012, 934597. [Google Scholar] [CrossRef]
- Formaggio, J.A.; Zeller, G.P. From eV to EeV: Neutrino cross-sections Across Energy Scales. Rev. Mod. Phys. 2012, 84, 1307–1341. [Google Scholar] [CrossRef]
- Alvarez-Ruso, L.; Hayato, Y.; Nieves, J. Progress and open questions in the physics of neutrino cross-sections at intermediate energies. New J. Phys. 2014, 16, 075015. [Google Scholar] [CrossRef]
- Mosel, U. Neutrino interactions with nucleons and nuclei: Importance for long-baseline experiments. Ann. Rev. Nucl. Part. Sci. 2016, 66, 171. [Google Scholar] [CrossRef]
- Athar, M.S.; Fatima, A.; Singh, S.K. Neutrinos and their interactions with matter. Prog. Part. Nucl. Phys. 2023, 129, 104019. [Google Scholar] [CrossRef]
- Sobczyk, J.E.; Nieves, J.; Sanchez, F. Exclusive-final-state hadron observables from neutrino-nucleus multinucleon knockout. Phys. Rev. C 2020, 102, 024601. [Google Scholar] [CrossRef]
- Dolan, S.; Megias, G.D.; Bolognesi, S. Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements. Phys. Rev. D 2020, 101, 033003. [Google Scholar] [CrossRef]
- Hayato, Y. A Neutrino Interaction Simulation Program Library Neut. Acta Phys. Pol. B 2009, 40, 2477. [Google Scholar] [CrossRef]
- Juszczak, C. NuWro Monte Carlo generator of neutrino interactions—First electron scattering results. Acta Phys. Pol. B 2009, 40, 2507. [Google Scholar]
- Stowell, P. NEUT/NuWro cross-section modelling at low three-momentum transfer. J. Phys. Conf. Ser. 2017, 888, 012170. [Google Scholar] [CrossRef]
- Lalakulich, O.; Gallmeister, K.; Mosel, U. Many-Body Interactions of Neutrinos with Nuclei–Observables. Phys. Rev. C 2012, 86, 014614, Erratum in Phys. Rev. C 2014, 90, 029902. [Google Scholar] [CrossRef]
- Simo, I.R.; Amaro, J.E.; Barbaro, M.B.; De Pace, A.; Caballero, J.A.; Donnelly, T.W. Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering. J. Phys. G 2017, 44, 065105. [Google Scholar] [CrossRef]
- Valverde, M.; Amaro, J.E.; Nieves, J. Theoretical uncertainties on quasielastic charged-current neutrino–nucleus cross-sections. J. Phys. Lett. B 2006, 638, 325. [Google Scholar] [CrossRef]
- Sobczyk, J.T. Intercomparison of lepton-nucleus scattering models in the quasielastic region. Phys. Rev. C 2012, 86, 015504. [Google Scholar] [CrossRef]
- Towner, I.S. Quenching of spin matrix elements in nuclei. Phys. Rep. 1987, 155, 263–377. [Google Scholar] [CrossRef]
- Riska, D.O. Exchange currents. Phys. Rep. 1989, 181, 207. [Google Scholar] [CrossRef]
- Maieron, C.; Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Williamson, C.F. Superscaling of non-quasielastic electron-nucleus scattering. Phys. Rev. C 2009, 80, 035504. [Google Scholar] [CrossRef]
- Rocco, N.; Nakamura, S.X.; Lee, T.S.H.; Lovato, A. Electroweak Pion-Production on Nuclei within the Extended Factorization Scheme. Phys. Rev. C 2019, 100, 045503. [Google Scholar] [CrossRef]
- Benhar, O.; Lovato, A.; Rocco, N. Contribution of two-particle–two-hole final states to the nuclear response. Phys. Rev. C 2015, 92, 024602. [Google Scholar] [CrossRef]
- Benhar, O.; Mariani, C. Towards a unified model of neutrino-nucleus interactions. Eur. Phys. J. A 2023, 59, 85. [Google Scholar] [CrossRef]
- Franco-Patino, J.M.; Gonzalez-Rosa, J.; Caballero, J.A.; Barbaro, M.B. Semi-inclusive charged-current neutrino-nucleus cross-sections in the relativistic plane-wave impulse approximation. Phys. Rev. C 2020, 102, 064626. [Google Scholar] [CrossRef]
- Franco-Patino, J.M.; Barbaro, M.B.; Caballero, J.A.; Megias, G.D. Theoretical description of semi-inclusive T2K, MINERνA and MicroBooNE neutri-no-nucleus data in the relativistic plane wave impulse approximation. Phys. Rev. D 2021, 104, 073008. [Google Scholar] [CrossRef]
- Barbaro, M.B. Towards (semi) exclusive cross-section measurements and modelling. In Proceedings of the Science 2022, NuFact2021, Cagliari, Italy, 6–11 September 2021. [Google Scholar] [CrossRef]
- Franco-Patino, J.M.; Gonzalez-Jimenez, R.; Dolan, S.; Barbaro, M.B.; Caballero, J.A.; Megias, G.D.; Udias, J.M. Final state interactions in semi-inclusive neutrino-nucleus scattering: Applications to the T2K and MINERνA experiments. Phys. Rev. D 2022, 106, 113005. [Google Scholar] [CrossRef]
- Franco-Patino, J.M.; Barbaro, M.B.; Caballero, J.A.; Megias, G. Semi-inclusive charged-current neutrino-nucleus reactions: Analysis of data in the Relativistic Plane-Wave Impulse Approximation. In Proceedings of the Science 2022, NuFact2021, Cagliari, Italy, 6–11 September 2021. [Google Scholar] [CrossRef]
- JFranco-Patino, M.; Dolan, S.; Gonzalez-Jimenez, R.; Barbaro, M.B.; Caballero, J.A.; Megias, G.D. Study of semi-inclusive charged-current electron and muon neutrino scattering from 40Ar in the energy range of the MicroBooNE experiment. arXiv 2023, arXiv:2304.01916. [Google Scholar]
- Martinez-Consentino, V.L.; Cantizani, A.M.; Amaro, J.E. Semi-inclusive two-nucleon emission in (anti) neutrino CC scattering within the relativistic mean field framework. Phys. Rev. C 2024, 109, 015502. [Google Scholar] [CrossRef]
- Martinez-Consentino, V.L.; Simo, I.R.; Amaro, J.E. Meson-exchange currents and superscaling analysis with relativistic effective mass of quasielastic electron scattering from 12C. Phys. Rev. C 2021, 104, 025501. [Google Scholar] [CrossRef]
- Martinez-Consentino, V.L.; Amaro, J.E.; Casale, P.R.; Simo, I.R. Extended superscaling with two-particle emission in electron and neutrino scattering. Phys. Rev. D 2023, 108, 013007. [Google Scholar] [CrossRef]
- Megias, G.D.; Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies. Phys. Lett. B 2013, 725, 170–174. [Google Scholar] [CrossRef]
- Geurts, W.J.W.; Allaart, K.; Dickhoff, W.H.; Muther, H. Two-nucleon spectral function of O-16 at high momenta. Phys. Rev. C 1996, 54, 1144–1157. [Google Scholar] [CrossRef]
- Benhar, O.; Fabrocini, A. Two nucleon spectral function in infinite nuclear matter. Phys. Rev. C 2000, 62, 034304. [Google Scholar] [CrossRef]
- Rosenfelder, R. Quasielastic electron scattering from nuclei. Ann. Phys. 1980, 128, 188. [Google Scholar] [CrossRef]
- Serot, B.D.; Walecka, J.D. Advances in Nuclear Physics; Negele, J.W., Vogt, E., Eds.; Plenum: New York, NY, USA, 1986; Volume 16. [Google Scholar]
- Wehrberger, K. Electromagnetic response functions in quantum hadrodynamics. Phys. Rep. 1993, 225, 273. [Google Scholar] [CrossRef]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Molinari, A. Gauge and Lorentz invariant one pion exchange currents in electron scattering from a relativistic Fermi gas. Phys. Rep. 2002, 368, 317–407. [Google Scholar] [CrossRef]
- Hernandez, E.; Nieves, J.; Valverde, M. Weak Pion Production off the Nucleon. Phys. Rev. D 2007, 76, 033005. [Google Scholar] [CrossRef]
- Alberico, W.M.; Ericson, M.; Molinari, A. The Role of Two Particles—Two Holes Excitations in the Spin–Isospin Nuclear Response. Annals Phys. 1984, 154, 356. [Google Scholar] [CrossRef]
- Amaro, J.E.; Maieron, C.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Pionic correlations and meson-exchange currents in two-particle emission induced by electron scatter-ing. Phys. Rev. C 2010, 82, 044601. [Google Scholar] [CrossRef]
- Gran, R.; Nieves, J.; Sanchez, F.; Vacas, M.J.V. Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV. Phys. Rev. D 2013, 88, 113007. [Google Scholar] [CrossRef]
- Sommer, B. Deuteron electrodisintegration at high energy and momentum transfer. Nucl. Phys. A 1978, 1994, 308. [Google Scholar] [CrossRef]
- Dekker, M.J.; Brussaard, P.J.; Tjon, J.A. Relativistic meson exchange and isobar currents in electron scattering: Noninteracting Fermi gas anal-ysis. Phys. Rev. C 1994, 49, 2650–2670. [Google Scholar] [CrossRef] [PubMed]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Gonzalez-Jimenez, R.; Megias, G.D.; Simo, I.R. Electron- versus neutrino-nucleus scattering. J. Phys. G 2020, 47, 124001. [Google Scholar] [CrossRef]
- Amaro, J.E.; Martinez-Consentino, V.L.; Arriola, E.R.; Simo, I.R. Global Superscaling Analysis of Quasielastic Electron Scattering with Relativistic Effective Mass. Phys. Rev. C 2018, 98, 024627. [Google Scholar] [CrossRef]
- Casale, P.R.; Amaro, J.E.; Ruiz Arriola, E.; Simo, I.R. Center of mass momentum dependence of short-range correlations with the coarse-grained Granada potential. Phys. Rev. C 2023, 108, 054001. [Google Scholar] [CrossRef]
Kin. | [MeV] | [MeV] | [MeV/c] | [deg.] | [deg.] | ||
---|---|---|---|---|---|---|---|
A | 750 | 550 | 278 | 0 | 172 | 341 | |
B | 750 | 550 | 278 | 0 | 140 | 330 | |
C | 950 | 600 | 400 | 250 | 355 | ||
D | 950 | 600 | 400 | 0 | 50 | 285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Consentino, V.L.; Amaro, J.E. Exploring Semi-Inclusive Two-Nucleon Emission in Neutrino Scattering: A Factorized Approximation Approach. Symmetry 2024, 16, 247. https://doi.org/10.3390/sym16020247
Martinez-Consentino VL, Amaro JE. Exploring Semi-Inclusive Two-Nucleon Emission in Neutrino Scattering: A Factorized Approximation Approach. Symmetry. 2024; 16(2):247. https://doi.org/10.3390/sym16020247
Chicago/Turabian StyleMartinez-Consentino, Victor L., and Jose E. Amaro. 2024. "Exploring Semi-Inclusive Two-Nucleon Emission in Neutrino Scattering: A Factorized Approximation Approach" Symmetry 16, no. 2: 247. https://doi.org/10.3390/sym16020247
APA StyleMartinez-Consentino, V. L., & Amaro, J. E. (2024). Exploring Semi-Inclusive Two-Nucleon Emission in Neutrino Scattering: A Factorized Approximation Approach. Symmetry, 16(2), 247. https://doi.org/10.3390/sym16020247