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Abstract: The semi-inclusive cross-section of two-nucleon emission induced by neutrinos and an-
tineutrinos is computed by employing the relativistic mean field model of nuclear matter and the
dynamics of meson-exchange currents. Within this model, we explore a factorization approximation
based on the product of an integrated two-hole spectral function and a two-nucleon cross-section
averaged over hole pairs. We demonstrate that the integrated spectral function of the uncorrelated
Fermi gas can be analytically computed, and we derive a simple, fully relativistic formula for this
function, showcasing its dependency solely on both missing momentum and missing energy. A
prescription for the average momenta of the two holes in the factorized two-nucleon cross-section
is provided, assuming that these momenta are perpendicular to the missing momentum in the
center-of-mass system. The validity of the factorized approach is assessed by comparing it with the
unfactorized calculation. Our investigation includes the study of the semi-inclusive cross-section
integrated over the energy of one of the emitted nucleons and the cross-section integrated over the
emission angles of the two nucleons and the outgoing muon kinematics. A comparison is made
with the pure phase-space model and other models from the literature. The results of this analysis
offer valuable insights into the influence of the semi-inclusive hadronic tensor on the cross-section,
providing a deeper understanding of the underlying nuclear processes.

Keywords: neutrino scattering; semi-inclusive nuclear reactions meson-exchange currents; relativistic
mean field

1. Introduction

The investigation of two-nucleon emission in nuclear reactions induced by neutrinos
has gained significance, particularly in modeling the inclusive quasielastic cross-section
at intermediate and high energies. Various model calculations [1–9] have indicated that
multiparticle emissions contribute significantly, accounting for approximately 20% or more
of the quasielastic cross-section, which is primarily dominated by one-particle emission.
Consequently, the analysis of neutrino long-baseline experiments [10–15] requires the
consideration of two-particle two-hole (2p2h) emission events to accurately reconstruct the
neutrino energy [16].

In fact, commonly used Monte Carlo event generators such as GENIE [17], NEUT [18],
NUWRO [19,20], and GiBUU [21] have incorporated the 2p2h channel from different models
to account for this contribution. Typically, these generators include tables of the inclusive
hadronic tensor Wµν(q, ω) as a function of momentum q and energy transfer ω, which are cal-
culated using and provided by the theoretical groups. Models from Lyon [1], Valencia [4], and
Granada [22] are currently implemented in some of these generators, and although these
models may significantly differ depending on the kinematics, these differences prove useful in
refining the estimate of systematic errors in Monte Carlo (MC) outputs [23].

The implementation of the two-nucleon emission channel requires knowledge of the
distribution of the two outgoing nucleons as functions of their outgoing momenta p′

1 and
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p′
2, for the proton–proton (pp), proton–neutron (pn), and neutron–neutron (nn) channels. In

the absence of a model for the semi-inclusive 2p2h cross-section, a first approximation is to
assume isotropic symmetry in the center-of-mass (CM) system of the outgoing particles [24]
when the emitted pair of nucleons absorbs momentum q and energy ω. The corresponding
distribution is normalized using the inclusive cross-section [17]. However, angular symmetry
in the CM is broken due to the interaction, as the electroweak current matrix element depends
non-trivially on the moments of the initial and final particles [22]. To determine the extent
to which the isotropy is broken, a more realistic model for the semi-inclusive two-nucleon
emission reaction is needed, which should be relativistic given the momenta and energies
involved in neutrino experiments, on the order of 1 GeV.

In independent-particle nuclear models, the emission of two particles with neutrinos
requires two-body current operators. These currents are commonly modeled by assuming
meson exchange between nucleons, where the neutrino interacts with a pair of nucleons
exchanging a meson. These are known as meson-exchange currents (MECs) and involve a
series of diagrams describing interactions with the exchanged meson, possibly with the
excitation of a nucleon resonance ∆(1232), with vector and axial contributions [25,26]. Since
the MECs contain the excitation of an intermediate ∆, this extends the kinematic domain
of the 2p2h inclusive response, as a function of the energy transfer, from the quasielastic
peak and beyond, up to the ∆ peak [27]. In more realistic nuclear models, nucleon–nucleon
correlations also allow the emission of two particles with the one-body current, leading
to interferences between the one-body and two-body currents [7,28–30]. Nucleons within
a nucleus are strongly correlated with each other through nuclear short- and long-range
interactions. Consequently, when a nucleon is knocked out from within the nucleus, it inter-
acts with other nucleons. When the energy transfer is sufficiently high, this interaction may
result in the emission of multiple particles, with the expectation that the 2p2h contribution
will be dominant.

Until now, most models of 2p2h emission with neutrinos have focused on calculating
the inclusive reaction. The study of semi-inclusive processes has, until recently, predomi-
nantly focused on one-particle emission due to its major contribution to the quasielastic
cross-section [31–36]. Early attempts to compute a semi-inclusive cross-section with multin-
ucleon knockout were limited to the non-relativistic shell model, as seen in the work of [5,6],
and the calculation presented in [16] using the relativistic Fermi gas with a local density
approximation. In [6], a MEC model was employed for the two-body current, excluding the
∆ excitation current, and the final state interaction was considered with real single-particle
potential. Meanwhile, in [16], a relativistic model based on a many-body formalism was
applied, and the final-state interaction was modeled by the cascade model implemented in
the NEUT generator.

We have recently introduced a model for semi-inclusive two-nucleon emission
induced by neutrinos [37]. Our approach relies on the relativistic mean field of nuclear
matter (RMF) and incorporates relativistic MEC operators, including seagull, pion-
in-flight (pionic), pion-pole, and ∆ isobar currents. This model has been developed
across a series of works [8,38,39] to compute the inclusive cross-section in the 2p2h
channel in conjunction with the superscaling approach with relativistic effective mass
(SuSAM*). Our efforts culminated in a systematic analysis of the available experimental
quasielastic scattering data of neutrinos, demonstrating reasonable agreement with the
experimental results [9] similar to other different approaches [40].

The next logical step in this framework would be to extend the same MEC model
within the RMF to predict the semi-inclusive cross-section consistently with the inclusive
2p2h cross-section. Since the MEC model for the inclusive 2p2h cross-section leads us
to a reasonable agreement with the available neutrino data, it is expected that the same
model developed in this work will yield reasonable results for the semi-inclusive 2p2h
reaction, although the absence of experimental data prevents us from confirming this with
a direct comparison.
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In fact, we have already applied this approach to the semi-inclusive 2p2h reaction
in [37] for neutrino and antineutrino scattering, where we explored the one-fold and two-
fold cross-sections obtained by integrating over four or five of the variables associated
with the final momenta p′1 and p′2. In [37], we have detailed the implications of using
the RMF microscopic approach, which involves asymmetric distributions of nucleons in
the CM system of the final state, in contrast to oversimplified modeling, where isotropic
distributions are assumed. Clear differences have been observed, which should have
important implications for Monte Carlo analyses of neutrino reactions. Additionally, focus
was placed on the distributions of proton–proton, proton–neutron and neutron–neutron
pairs, and, again, important differences were observed for the microscopical approach
versus the results found in the naive symmetric modeling.

In this work, we continue this study by analyzing other aspects of semi-inclusive
cross-sections for two-nucleon emission:

1. We will study the more general five-fold cross-section by integrating over the energy
of one of the final nucleons while keeping constant the emission angles and the energy
of the other nucleon. This will allow us to compare with the calculations of [6] in
the shell model, where MECs were considered without the ∆ current. Here, we can
observe the effect of MEC separately.

2. We are going to explore a factorized approximation as the product of a two-nucleon
cross-section multiplied by an integrated spectral function. This will allow us to see if
factorized models developed for electron scattering from correlated nuclei, where the
cross-section is factored as the product of the one-body current using a combination
of two-hole spectral functions, can be extended to the case of MEC [41,42]. We will
see that in the RMF, the integrated spectral function admits an analytical formula,
simplifying the calculations. We will demonstrate that the two-nucleon cross-section
can be estimated using a prescription that fixes the average momenta of the holes.

3. Using the factorized formula, we will be able to calculate the cross-section inte-
grated over the outgoing muon and the angles of the final nucleons. This will allow
us to compare with the calculation in Ref. [16], where a microscopic calculation
of this observable was performed and compared with the result from the NEUT
event generator.

4. Finally, for all these observables, we will compare with the isotropic symmetric model
and study the differences with our microscopic model.

In Section 2, we summarize the formalism of semi-inclusive two-particle emission
in the RMF. In Section 3, we introduce the factorized approximation. In Section 4, we
present the results for the five-fold cross-section and for the cross-section integrated
over the final muon and the nucleon angles. In Section 5, we draw our conclusions. In
the appendix, we present some mathematical details on the derivation of the integrated
two-hole spectral function.

2. Formalism
2.1. Semi-Inclusive 2p2h Cross-Section

Here, we summarize the formalism used to describe the semi-inclusive charge-changing
(CC) reactions induced by neutrinos, (νµ, µ−N1N2), and antineutrinos, (νµ, µ+N1N2), in
which two nucleons are detected in coincidence with the muon. The residual daughter
A-2 nucleus state is not detected. This is why we use the convention to call this reaction
semi-inclusive, in contrast to the inclusive reaction in which only the lepton is detected, and
the exclusive reaction where the state of the daughter nucleus is also known, and therefore,
the hadronic final state is completely specified.

We closely follow the formalism of Ref. [37] that contains more details on the model.
The incident neutrino has four-momentum kµ = (ϵ, k), and the final muon has k′µ = (ϵ′, k′).
The energy transfer is ω = (ϵ − ϵ′), and the momentum transfer is q = (k − k′), with
Q2 = ω2 − |q|2 < 0. The corresponding differential cross-section for detecting a muon
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with kinetic energy Tµ within a solid angle Ωµ = (θµ, ϕµ) and two nucleons with momenta
p′

1 and p′
2 can be written as

dσN1 N2

dTµdΩµd3 p′1d3 p′2
= σ0LµνWµν

N1 N2
(p′

1, p′
2, q, ω) (1)

where the function σ0 is given by

σ0(k, k′) =
G2 cos2 θc

4π2
k′

k
(2)

In this equation, the Fermi constant is G = 1.166 × 10−11 MeV−2, and the cosine of
the Cabibbo angle is cos θc = 0.975.

In Equation (1), the leptonic tensor, Lµν, is given by

Lµν = kµk′ν + kνk′µ − kk′gµν ± iϵµναβkαk′β (3)

where the sign +(−) is for neutrino (antineutrino) scattering. Finally, in Equation (1), the
leptonic tensor is contracted with the semi-inclusive hadronic tensor, Wµν

N1 N2
(p′

1, p′
2, q, ω),

that contains the information about the nuclear model of the reaction for emitting a pair
of nucleons with charges N1, N2, and momenta (p′

1, p′
2), in an electroweak interaction that

transfers energy–momentum (ω, q). In this work, we will compute this tensor using the
RMF of nuclear matter.

In the RMF framework, the nucleons interact with scalar and vector potentials, repre-
sented as gsϕ0 and gvV0, respectively [43–45]. These potentials capture the strong interac-
tion forces among nucleons within the nuclear medium. The RMF model treats nucleons
as interacting with these potentials, resulting in effective masses for nucleons denoted as
m∗

N = mN − gsϕ0. The effective mass considers the modification of the nucleon’s mass
due to the scalar potential, while the vector potential contributes a repulsive vector energy,
Ev = gvV0. In the RMF formalism the on-shell energy of a nucleon with momentum p is
defined as

E =
√

p2 + m∗2
N , m∗

N = mN − gsϕ0, (4)

while the true total energy of the nucleon in the RMF is given by

ERMF = E + Ev = E + gvV0 (5)

In this approach, the single nucleon states are plane waves us(p)eip·r, where the
spinor us(p) is a solution to the Dirac equation with mass m∗

N . The ground state nuclear
wave function of the Fermi gas, |F⟩, is constructed as a Slater determinant with all levels
occupied below some Fermi momentum kF. Consequently, the action of a two-body
operator associated with the weak interaction can excite this ground state, generating
two-particle two-hole (2p2h) excitations and leading to the emission of two particles.

|F⟩ → |1′, 2′, 1−1, 2−1⟩ = a†
1′ a

†
2′ a1a2|F⟩. (6)

The operators a†
i′ and ai are the creation and annihilation operators for single-particle

states, where the states with and without prime correspond to particles and holes, respec-
tively, including spin and isospin indices

|i⟩ = |hi, si, ti⟩, |i′⟩ = |p′
i, s′i, t′i⟩, i = 1, 2. (7)

Applying the RMF model to the semi-inclusive two-particle emission results in the
following formula for the semi-inclusive hadronic tensor [37]:
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Wµν
N1 N2

(p′
1, p′

2, q, ω) =
V

(2π)9

∫
d3h1d3h2

(m∗
N)

4

E1E2E′
1E′

2
wµν

N1 N2
(p′

1, p′
2, h1, h2)δ(E′

1 + E′
2 − E1 − E2 − ω)

×δ(p′
1 + p′

2 − h1 − h2 − q)θ(p′1 − kF)θ(p′2 − kF)θ(kF − h1)θ(kF − h2), (8)

where wµν
N1 N2

(p′
1, p′

2, h1, h2) represents the elementary 2p2h hadronic tensor, and V/(2π)3 =

Z/( 8
3 πk3

F) for symmetric nuclear matter. The delta functions ensure energy–momentum
conservation in the 2p2h excitation

p′
1 + p′

2 = q + h1 + h2, E′
1 + E′

2 = ω + E1 + E2. (9)

In Equation (8), the product of step functions impose Pauli blocking restrictions on the
momenta of the particles and holes, ensuring that the final momenta (p′

i) are larger than the
Fermi momentum (kF), indicating that they are excited states above the Fermi surface, and
similarly, the momenta of the holes (h2) are smaller than the Fermi momentum, indicating
that they are occupied states below the Fermi surface.

The elementary 2p2h hadronic tensor describes the transitions between two holes and
two particles

|1, 2⟩ −→ |1′, 2′⟩ (10)

produced by the two-body current operator with matrix elements [46]

⟨1′2′|Jµ(q, ω)|12⟩ = (2π)3

V2
(m∗

N)
2√

E′
1E′

2E1E2

δ(p′
1 + p′

2 − h1 − h2 − q)jµ(1′, 2′, 1, 2), (11)

where the current functions jµ(1′, 2′, 1, 2) are described below. The elementary 2p2h
hadronic tensor is defined by

wµν
N1 N2

(p′
1, p′

2, h1, h2) =
1
2 ∑

s1s2s′1s′2

jµ(1′, 2′, 1, 2)∗A jν(1′, 2′, 1, 2)A . (12)

where we sum over all possible spin projections of the spin-1/2 nucleons in the 2p2h
excitation, as we consider the non-polarized case where the nucleon spins are not measured.
The factor 1/2 in Equation (12) is included to avoid double counting when summing over
spin, due to the antisymmetry of the two-body wave function with respect to the pp or nn
pair. The two-body current matrix element is antisymmetrized with respect to identical
particles. For the specific process νµnn → µ−pn, the antisymmetrization is as follows:

jµ(1′, 2′, 1, 2)A = jµ(1′, 2′, 1, 2)− jµ(1′, 2′, 2, 1), (13)

and for νµ pn → µ−pp,

jµ(1′, 2′, 1, 2)A = jµ(1′, 2′, 1, 2)− jµ(2′, 1′, 1, 2). (14)

There are similar expressions for the antineutrino case.

2.2. Meson-Exchange Currents

It is widely recognized that a nucleus not only consists of individual nucleons but
also contains mesons, isobars, and other nucleon resonances. This observation particularly
suggests the presence of meson-exchange currents. In this work, we use the electroweak
MEC model described by the nine Feynman diagrams depicted in Figure 1. The two-body
current matrix elements jµ(1′, 2′, 1, 2) corresponding to this model enter into the calculation
of the elementary 2p2h hadronic tensor, Equation (12). The different contributions have
been taken from the pion weak production model of Ref. [47]. The MEC is the sum of
four two-body operators: seagull (diagrams a, b), pion in flight (c), pion-pole (d, e), and
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∆(1232) excitation forward (f, g) and backward (h, i). In the MEC model, we do not include
the correlation currents that follow from the nucleon pole diagrams of [47]: those currents
present divergence problems due to the double pole in the nucleon propagator [48,49] and
do not properly account for nuclear correlations realistically because they only involve
the exchange of one pion. A more realistic description of short-range correlations (SRCs)
requires using an effective nucleon–nucleon interaction [4,50]. Alternatively, in Ref. [39], a
theoretical description of correlation currents has been proposed, requiring solving the
Bethe–Goldstone equation with a realistic nucleon–nucleon interaction, a challenge that
needs further work and will be presented elsewhere. For this work, we focus on the
genuine MEC 2p2h responses to connect with our previous works on inclusive 2p2h
response [8,9,38].

h1 h2

p′1 p′2

Q

(a)

h1 h2

p′1 p′2

Q

(b)

h1 h2

p′1 p′2

Q

(c)

h1 h2

p′1 p′2

Q

(d)

h1 h2

p′1 p′2

Q

(e)

h1 h2

p′1 p′2

Q

(f)
h1 h2

p′1 p′2

Q

(g)
h1 h2

p′1 p′2
Q

(h)
h1 h2

p′1 p′2
Q

(i)

Figure 1. Feynman diagrams of meson-exchange currents considered in the present work:
seagull (diagrams a,b), pion in flight (c), pion-pole (d,e), and ∆(1232) excitation forward (f,g) and
backward (h,i).

The relativistic MEC model for neutrino reactions was introduced in ref. [22] to study
the 2p2h-inclusive responses in the RFG and later extended in [8,38] to the RMF, including
the effective mass and the vector energy. Following Ref. [22], we explicitly separate the
isospin matrix elements from the spatial and spin dependence. This compact form will be
useful, as we will see later, for interpreting the results of semi-inclusive pn emission. The
MEC depend on isospin across the three operators [22]

τ(1), τ(2), IV ≡ i
[
τ(1) × τ(2)

]
, (15)

that is, the isospin of the first and second particles and their vector product. Then neutrino
or antineutrino CC scattering involves the ± components

τ
(1)
± = τ

(1)
x ± iτ(1)

y (16)

τ
(2)
± = τ

(2)
x ± iτ(2)

y (17)

IV± = (IV)x ± i(IV)y. (18)
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The MEC can be decomposed accordingly as a sum of at most three contributions. For
neutrino scattering, we have

jµ
sea = ⟨t′1t′2|IV±(K

µ
S1 − Kµ

S2)|t1t2⟩, (19)

jµ
π = ⟨t′1t′2|IV±Kµ

π |t1t2⟩, (20)

jµpole = ⟨t′1t′2|IV±(K
µ
P1 − Kµ

P2)|t1t2⟩, (21)

jµ∆F = ⟨t′1t′2|
1√
6

[
2τ

(2)
± KF1 + 2τ

(1)
± KF2 − IV±(KF1 − KF2)

]
|t1t2⟩, (22)

jµ∆B = ⟨t′1t′2|
1√
6

[
2τ

(2)
± KB1 + 2τ

(1)
± KB2 + IV±(KB1 − KB2)

]
|t1t2⟩, (23)

where the subindex ± is “+” for neutrino and “-” for antineutrino scattering. The nine
functions Kµ

S1, Kµ
S2, Kµ

π , Kµ
P1, Kµ

P1, Kµ
F1, Kµ

F2, Kµ
B1, Kµ

B2, only depend on momenta and spins
(p′

1s′1, p′
2s′2, h1s1, h2s2). They are given by

Kµ
S1(p

′
1s′1, p′

2s′2, h1s1, h2s2) =
f 2
πNN
m2

π
Vs′1s1

πNN(p
′
1, h1)FπNN(k2

1)ūs′2
(p′

2)

[
FV

1 (Q2)γ5γµ +
Fρ

(
k2

2
)

gA
γµ

]
us2(h2), (24)

Kµ
S2(p

′
1s′1, p′

2s′2, h1s1, h2s2) = Kµ
S1(p

′
2s′2, p′

1s′1, h2s2, h1s1), (25)

Kµ
π(p′

1s′1, p′
2s′2, h1s1, h2s2) =

f 2
πNN
m2

π
FV

1 (Q2)Vs′1s1
πNN(p

′
1, h1)V

s′2s2
πNN(p

′
2, h2)

(
kµ

1 − kµ
2

)
, (26)

Kµ
P1(p

′
1s′1, p′

2s′2, h1s1, h2s2) =
f 2
πNN
m2

π

Fρ

(
k2

1
)

gA
FπNN(k2

2)
Qµūs′1

(p′
1) ̸Qus1(h1)

Q2 − m2
π

Vs′2s2
πNN(p

′
2, h2), (27)

Kµ
P2(p

′
1s′1, p′

2s′2, h1s1, h2s2) = Kµ
P1(p

′
2s′2, p′

1s′1, h2s2, h1s1), (28)

Kµ
F1(p

′
1s′1, p′

2s′2, h1s1, h2s2) =
f ∗ fπNN

m2
π

Vs′2s2
πNN(p

′
2, h2)FπN∆(k2

2)ūs′1
(p′

1)k
α
2Gαβ(h1 + Q)Γβµ(Q)us1(h1), (29)

Kµ
F2(p

′
1s′1, p′

2s′2, h1s1, h2s2) = Kµ
F1(p

′
2s′2, p′

1s′1, h2s2, h1s1), (30)

Kµ
B1(p

′
1s′1, p′

2s′2, h1s1, h2s2) =
f ∗ fπNN

m2
π

Vs′2s2
πNN(p

′
2, h2)FπN∆(k2

2)ūs′1
(p′

1)k
β
2 Γ̂µα(Q)Gαβ(p′1 − Q)us1(h1), (31)

Kµ
B2(p

′
1s′1, p′

2s′2, h1s1, h2s2) = Kµ
B1(p

′
2s′2, p′

1s′1, h2s2, h1s1), (32)

where kµ
i = (p′i − hi)

µ is the four momenta transferred to the i-th nucleon. In these
equations, we have defined the following function describing the propagation and emission
(or absorption) of the exchanged pion,

Vs′1s1
πNN(p

′
1, h1) ≡ FπNN(k2

1)
ūs′1

(p′
1) γ5 ̸ k1 us1(h1)

k2
1 − m2

π
, (33)

where FπNN is a strong form factor given by [48,51]

FπNN(k2
1) =

Λ2 − m2
π

Λ2 − k2
1

. (34)

with Λ = 1300 MeV. The coupling constants appearing in the currents are fπNN = 1,
gA = 1.26, and f ∗ = 2.13. The electroweak form factors are FV

1 = Fp
1 − Fn

1 in the seagull
vector and pion-in-flight currents, for which we use Galster parametrization, and the ρ
form factor Fρ in the axial seagull and pion-pole currents is taken from [47].

In the case of the forward ∆ current, Γβµ is the N → ∆ transition vertex

Γβµ(Q) =
CV

3
mN

(
gβµ ̸Q − Qβγµ

)
γ5 + CA

5 gβµ, (35)
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and for the backward current,

Γ̂µα(Q) = γ0[Γαµ(−Q)]†γ0 . (36)

We use the vector and axial form factors in the ∆ vertices from Ref. [47]

CV
3 (Q

2) =
2.13

(1 − Q2/M2
V)

2
1

1 − Q2

4M2
V

, CA
5 (Q2) =

1.2
(1 − Q2/M2

A∆)
2

1

1 − Q2

4M2
A∆

, (37)

where MV = 0.84 GeV and MA∆ = 1.05 GeV. In the ∆ current, strong form factors are also
applied. We use the πN∆ strong form factor from Ref. [52]

FπN∆(k2
2) =

Λ2
∆

Λ2
∆ − k2

2
(38)

where Λ∆ = 1150 MeV.
Finally the ∆ propagator, including the ∆ decay width, is given by

Gαβ(P) =
Pαβ(P)

P2 − M2
∆ + iM∆Γ∆(P2) + Γ∆(P2)2

4

, (39)

and the projector Pαβ(P) over spin- 3
2 on-shell particles is given by

Pαβ(P) = −( ̸P + M∆)

[
gαβ −

1
3

γαγβ −
2
3

PαPβ

M2
∆

+
1
3

Pαγβ − Pβγα

M∆

]
. (40)

In the RMF, the spinors us′i
(p′

i) and usi (hi) are the solutions of the Dirac equation with
relativistic effective mass m∗

N and with on-shell energy, Equation (4). However, the total
nucleon energy in the RMF (5) includes the vector energy, Ev. This vector energy cancels
out in the terms of the currents that depend on the vectors kµ

i . But it is not canceled in the
∆ propagator, which is the only place where Ev appears explicitly [8,38].

In this work, we do not include medium corrections to the intermediate ∆ particle.
In Refs. [8,9], we studied the effect of considering the interaction of the ∆ with the RMF
using an effective mass and a vector energy for the ∆. It was found that the effect of this
interaction significantly modifies the inclusive response. However, the properties of the ∆
in the medium have uncertainties and are not unambiguously determined. Therefore, in
the absence of a definitive theory, these studies serve as a measure of the uncertainty in
the MEC response, among the many that exist. Thus, in this work, the calculations will be
performed with the properties of the ∆ in a vacuum, which is consistent with the inclusive
responses of Refs. [8,9,38].

2.3. Semi-Inclusive Hadronic Tensor

The calculation of the semi-inclusive hadronic tensor of Equation (8) first requires
evaluating the elementary 2p2h hadronic tensor, from Equation (12), by performing the
sums over the spin. As in previous works [22], these sums are computed numerically
because the analytical calculation in terms of the traces of gamma matrices is extremely
cumbersome and not practical, and it does not provide any advantage in terms of compu-
tation time. On the other hand, the integration over holes in Equation (8) can be reduced
to a two-dimensional integral due to the Dirac delta functions of energy and momentum.
In our case, the integration of the energy delta is performed in the center-of-mass system
of the two initial particles, where the problem is reduced to an integral over the relative
angles of the hole pair.
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Considering a semi-inclusive event where p′
1, p′

2, q, ω are known, we can compute the
total momentum and energy of the two holes

H = p′
1 + p′

2 − q, (41)

E = E′
1 + E′

2 − ω. (42)

Then, the semi-inclusive 2p2h hadronic tensor can be written:

Wµν
N1 N2

(p′
1, p′

2, q, ω) = θ(p′1 − kF)θ(p′2 − kF)
V

(2π)9
(m∗

N)
4

E′
1E′

2

∫ d3h1

E1

d3h2

E2
wµν

N1 N2
(p′

1, p′
2, h1, h2)

×δ(E1 + E2 − E)δ(h1 + h2 − H)θ(kF − h1)θ(kF − h2), (43)

The deltas of energy and momentum inside the integral imply that only the holes
such that h1 + h2 = H and E1 + E2 = E contribute to the integral. Therefore, we can
perform the integral by going to the center of mass of the two holes that move with velocity
v = H/E. We denote with a double prime the coordinates in the CM. Then, in this system,
H′′ = h′′

1 + h′′
2 = 0 and E′′ =

√
E2 − H2. The two holes move back to back, h′′

2 = −h′′
1 ,

and have the same energy, E′′
1 = E′′

2 = E′′/2. In Appendix A, we demonstrate in detail
how the integral transforms when moving to the center of mass through a boost (change of
variables). Applying these results to the case of the hadronic tensor, we can write

Wµν
N1 N2

(p′
1, p′

2, q, ω) = θ(E2 − H2 − 4m∗2
N )θ(p′1 − kF)θ(p′2 − kF)

V
(2π)9

(m∗
N)

4

E′
1E′

2

× h′′1
2E′′

1

∫
dΩ′′

1 wµν
N1 N2

(p′
1, p′

2, h1, h2)θ(kF − h1)θ(kF − h2), (44)

where dΩ′′
1 = d cos θ′′1 dϕ′′

1 and θ′′1 , ϕ′′
1 are the angles of the first hole in the CM system. Note

that the integral is performed over relative angles in the CM system of the two holes, but
the momenta h1, h2 in the elementary 2p2h hadronic tensor and in the step functions are
evaluated in the Lab system. The steps to calculate the integral are the following:

1. First, calculate (H, E) from p′
1, p′

2, q, ω.
2. Then, calculate the holes’ energy in the CM, E′′

1 = E′′/2 =
√

E2 − H2/2.
3. Next, for each value of the angles, construct the vector

h′′
1 = h′′1 (cos ϕ′′

1 sin θ′′1 , sin ϕ′′
1 sin θ′′1 , cos θ′′1 ). (45)

4. Apply an inverse boost to the laboratory system to calculate h1.
5. Calculate h2 = H − h1.

The boost is performed as follows. The CM frame is characterized by a velocity
v = H/E, where the unit vector u = v/v specifies its direction. To transform a CM vector
(E′′

1 , h′′
1 ) to the Lab system, we employ the Lorentz factor γ = 1/

√
1 − v2 and perform the

following boost:

h1u = γ(vE′′
1 + h′′1u) (46)

h1⊥ = h′′
1⊥ (47)

Here, h1u = h1 ·u is the component of h1 along the direction of u, while h1⊥ denotes the
component perpendicular to u, which is an invariant quantity under the boost. Therefore,
h1 = h1uu + h1⊥, and we can compute it as follows:

h1 = γ(vE′′
1 + h′′1u)u + h′′

1⊥
= (γvE′′

1 + (γ − 1)h′′1u)u + h′′
1 . (48)
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The derived equation, Equation (44), represents the key outcome for the semi-inclusive
2p2h hadronic tensor, expressed as a two-dimensional integral over relative angles, neces-
sitating numerical methods for evaluation. This concise formula encapsulates the exact
hadronic tensor within the RMF or the RFG when the mean field is disconnected. In the
results section, we showcase the outcomes and conduct comparisons with the factorized ap-
proximation introduced in the subsequent section, shedding light on the intricate dynamics
of semi-inclusive two-nucleon emission reactions in neutrino scattering.

3. Factorization of the Semi-Inclusive 2p2h Hadronic Tensor

In this section, we introduce a factorized approximation for the semi-inclusive two-
nucleon emission response. While we have developed an exact model for the semi-inclusive
hadronic tensor, represented by a straightforward two-dimensional integral of the elemen-
tary 2p2h hadronic tensor, a factorized approximation can prove beneficial under certain
circumstances. For instance, when calculating observables integrated over the angles of
the outgoing nucleons and the outgoing muon, an eight-dimensional integral would be
required, demanding more intensive computational efforts. This is particularly significant
as the elementary 2p2h tensor needs to be evaluated within the integral for all contributing
events. Therefore, in this work, we aim to investigate the validity of a factorized approxima-
tion. In this approach, the elementary tensor wµν(p′

1, p′
2, h1, h2) is factorized by evaluating

it at averaged values for the two holes. Additionally, this exploration connects with other
formalisms describing two-nucleon emission. For example, in reactions like (e, e′pp) in
the presence of correlations, in a plane wave approximation, the exclusive cross-section
is factorized as the product of a single-nucleon cross-section multiplied by a combination
of two-hole (2h) spectral functions [41,42]. We aim to determine if a similar factorized
approximation can be applied in the case of MEC. However, as MEC is produced by a
two-body current, it is not clear whether a unique two-nucleon cross-section that factorizes
unequivocally exists. Thus, our investigation serves as a preliminary exploration of this
intriguing possibility.

3.1. The Integrated Two-Hole Spectral Function

First, we will show that an exact factorized formula can be obtained by defining an
average of the elementary 2p2h hadronic tensor from Equation (43). Indeed, we first define
the function

G(E, H) =
∫

d3h1d3h2
(m∗

N)
2

E1E2
θ(kF − h1)θ(kF − h2)δ(E1 + E2 − E)δ(h1 + h2 − H). (49)

Now, we can use this function to define an averaged value of the elementary 2p2h
hadronic tensor as follows:

⟨wµν
N1 N2

(p′
1, p′

2, q, ω)⟩ ≡ 1
G(E, H)

∫
d3h1d3h2

(m∗
N)2

E1E2
wµν

N1 N2
(p′

1, p′
2, h1, h2)θ(kF − h1)θ(kF − h2)δ(E1 + E2 − E)δ(h1 + h2 − H), (50)

where, as before, E = E′
1 + E′

2 − ω, and H = p′
1 + p′

2 − q. With this definition we can write
the semi-inclusive two-nucleon hadronic tensor, Equation (43), in exact factorized form

Wµν
N1 N2

(p′
1, p′

2, q, ω) = θ(p′1 − kF)θ(p′2 − kF)
V

(2π)9
(m∗

N)
2

E′
1E′

2
⟨wµν

N1 N2
(p′

1, p′
2, q, ω)⟩G(E, H) (51)

The function G(E, H) holds significant physical meaning as it is intricately connected
to the 2h spectral function within the Fermi gas model. In the non-relativistic context, this
spectral function is given by [42]

S2hFG(h1, h2, Em) = θ(kF − h1)θ(kF − h2)δ(Em +
h2

1
2mN

+
h2

2
2mN

) (52)
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where Em represents the missing energy and Em = ω − T′
1 − T′

2 and T′
i are the kinetic energy

of the final particles. It is clear that in the nonrelativistic case, the total kinetic energy of
the holes is minus the missing energy E = T1 + T2 = −Em. The association of the G(E, H)
function with the 2h spectral function becomes evident, establishing a clear link between
the two. This connection is rooted in the integral of the 2h spectral function, Equation (49),
subject to the constraint h1 + h2 = H.

3.2. Factorized Approximation

The exact factorization expressed in Equation (51) is not practically applicable, as the
calculation of the averaged elementary 2p2h tensor still requires an exact computation. The
factorized approximation assumes that we can approximate this average by evaluating the
tensor at specific hole momenta, ⟨h1⟩ and ⟨h2⟩, representing average values for the holes
involved in the reaction.

⟨wµν
N1 N2

(p′
1, p′

2, q, ω)⟩ ≃ wµν
N1 N2

(p′
1, p′

2, ⟨h1⟩, ⟨h2⟩) (53)

Then, the factorized formula for the semi-inclusive two-nucleon hadronic tensor reads

Wµν
N1 N2

(p′
1, p′

2, q, ω) ≃ θ(p′1 − kF)θ(p′2 − kF)
V

(2π)9
(m∗

N)
2

E′
1E′

2
wµν

N1 N2
(p′

1, p′
2, ⟨h1⟩, ⟨h2⟩)G(E, H) (54)

This introduces a simplification that, if valid, could streamline the calculation while
providing valuable insights into the semi-inclusive two-nucleon emission process induced
by neutrinos.

For the factorized approximation to be useful, it is crucial to find a prescription
for the averaged hole momenta that is suitable. A mandatory requirement is that these
moments must comply with energy–momentum conservation. This implies that the frozen
approximation, assuming h1 = h2 = 0, cannot be taken, as these values may not hold for
all kinematics. Therefore, we turn to the results of the previous section, which describes
how the vector h1 is constructed through a boost from the CM system. Indeed, we have
seen that, given E and H, the value of h′′1 in the CM system is fixed, as its energy is
E′′

1 = E′′/2 =
√

E2 − H2. The only remaining specification is the angles θ′′1 , ϕ′′
1 of ⟨h′′

1 ⟩ in
the CM system, followed by the boost back to the Lab system. This procedure ensures
that the averaged hole momenta are consistent with energy–momentum conservation,
providing a viable approach to implement the factorized approximation.

To define the angles of ⟨h′′
1 ⟩, it is necessary to establish a reasonable prescription or

algorithm, followed by a posteriori validation through comparison with the exact result. A
sensible prescription is to choose the vector ⟨h′′

1 ⟩ in the CM system so that it is perpendicular
to both H and q. This approach is based on geometric and symmetry considerations, which
are explained next.

3.3. Prescription for ⟨h1⟩
In Equation (46), the value of h1u is obtained through the boost from the CM to the

Lab. Let us write the corresponding equation for the energy E1 provided by the Lorentz
transformation.

E1 = γ(E′′
1 + vh′′1u). (55)

On the other hand, the energy of the second hole can be obtained by replacing h′′1u
with h′′2u = −h′′1u because in the CM, the two holes are moving back-to-back.

E2 = γ(E′′
1 − vh′′1u). (56)
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Both energies E1 and E2 must be below the Fermi energy EF for h1 and h2 to contribute
to the semi-inclusive response. In other words, these two inequalities must be satisfied
simultaneously.

γ(E′′
1 + vh′′1u) ≤ EF, (57)

γ(E′′
1 − vh′′1u) ≤ EF, (58)

where

|h′′1u| ≤
EF − γE′′

1
γv

. (59)

This inequality establishes the possible values of the component h′′1u in the direction
of u = H/H in the CM system that contribute to the semi-inclusive hadronic tensor.
Alternatively, if θ is the angle between u and h′′

1 , we have a maximum possible value for
| cos θ|.

| cos θ| ≤ EF − γE′′
1

γvh′′1
. (60)

Then, it follows that the average value of cos θ is ⟨cos θ⟩ = 0, and this gives ⟨h′′1u⟩ = 0.
That is, h′′

1 is perpendicular to u, i.e., perpendicular to H. Furthermore, the above inequality
provides a condition for the existence of solutions, which is that the right-hand side must
be positive,

0 ≤ EF − γE′′
1 , (61)

and otherwise, the semi-inclusive hadronic tensor is zero. But

γE′′
1 =

1
2

γ
√

E2 − H2 =
1
2

γE
√

1 − H2/E2 =
1
2

γE
√

1 − v2 =
E
2

(62)

Therefore, the condition (61) is equivalent to

E < 2EF (63)

Therefore, the condition for there to be allowed values of h1 is that the sum of the
energy of the two holes, given by E′

1 + E′
2 − ω, must be less than twice the Fermi energy.

This is consistent with the model, and if it holds, solutions perpendicular to H in the
CM are always possible. This gives consistency to the factorized approximation, as the
prescription for ⟨h′

1⟩ will always provide solutions compatible with energy–momentum
conservation and below the Fermi level. On the other hand, in the case where E > 2EF,
both the integrated spectral function and the hadronic tensor are zero in this model, and
therefore, it is not necessary to impose the condition explicitly in the factorized formula, as
it is implicitly included in the function G(E, H).

Still, we need to specify a choice for the perpendicular component h′′
1⊥ since all

possibilities are valid and compatible with energy and momentum conservation. We must
then turn to symmetry considerations, leading us to choose h′′

1⊥ in such a way that it is
perpendicular to both H and q simultaneously, i.e., in the direction of u × q. Then, our
prescription is

⟨h′′
1 ⟩ = h′′1

H × q
Hq

(64)

The reason for this choice lies in the fact that inclusive responses are known to have
azimuthal symmetry around q when it is chosen along the z-axis. Here, geometrical
intuition guides us based on the search for a similar symmetry with respect to q in the
semi-inclusive hadronic tensor, so that ⟨h′′

1 ⟩ and ⟨h′′
2 ⟩, which would be symmetrically

placed with respect to q, are both perpendicular to q.
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3.4. Analytical Form of G(E, H)

The interpretation of the function G as an integrated 2h spectral function in the RFG,
and extended to the RMF, deepens our insight into the characteristics of the emitted nucleon
pair. In the factorized approximation, this function serves as a comprehensive descriptor
of the joint energy and momentum distribution of the two holes and therefore plays a
crucial role in characterizing the spectral aspects of the semi-inclusive two-nucleon emission
process induced by neutrinos. Additionally, the integrated 2h spectral function possesses an
analytical formula in the RFG, providing an added utility to the factorized approximation.
Next, we will detail the demonstration of this analytical formula.

To calculate the integrated spectral function, we follow an alternative method to the
one used above, where we changed to the CM system of the two holes. We are motivated
by the fact that the one-body response function of the RFG, written in the way (except for a
constant factor)

R(ω, q) =
∫

d3h1d3h2
(m∗

N)
2

E1E2
θ(kF − h1)θ(h2 − kF)δ(E2 − E1 − ω)δ(h2 − h1 − q), (65)

transform into the function G(E, H), Equation (49), if we identify the four-momentum
transfer (ω, q) with the four-momentum of the nucleon pair (E, H), and change

E1 −→ −E1, h1 −→ −h1, θ(h2 − kF) −→ θ(kF − h2). (66)

In this sense, the function G could be formally seen as a kind of analytic continuation
of the one-body response function to the time-like channel Q2 = ω2 − q2 > 0.

By following the same notation employed, for example, in [53] for the response
function of the RFG, we will arrive at a very similar result formally for the integrated
2h spectral function. We start with Equation (49). We first integrate over h2 using the
momentum delta function.

G(E, H) =
∫

d3h1
(m∗

N)
2

E1E2
θ(kF − h1)θ(kF − h2)δ(E1 + E2 − E) (67)

with h2 = H − h1 and

E2
2 = (m∗

N)
2 + (H − h1)

2 = E2
1 + H2 − 2Hh1 cos θ1. (68)

Hence, for fixed E1, the values of E2 are in the interval EH−h1 ≤ E2 ≤ EH+h1 , with

EH−h1 =
√
(m∗

N)
2 + (H − h1)2, EH+h1 =

√
(m∗

N)
2 + (H + h1)2. (69)

Since the function G(E, H) only depends on the modulus of H, we choose H in the
z-axis and change from spherical coordinates (h1, θ1, ϕ1) to energy coordinates (E1, E2, ϕ).
The volume element transforms as [53]

d3h1 = h2
1dh1d cos θ1dϕ =

E1E2

H
dE1dE2dϕ. (70)

Then, we can write the integral (67) as

G(E, H) =
2π(m∗

N)
2

H

∫ EF

m∗
N

dE1

∫ EH+h1

EH−h1

dE2δ(E1 + E2 − E)θ(EF − E2). (71)

Integrating over E2 using the energy delta function, we have E2 = E − E1, and

G(E, H) =
2π(m∗

N)
2

H

∫ EF

m∗
N

dE1θ(E − E1 − EH−h1)θ(EH+h1 − E + E1)θ(EF − E + E1) (72)
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Following the notation of Ref. [53], we define the dimensionless variables:

λ =
E

2m∗
N

, κ =
H

2m∗
N

, τ = κ2 − λ2 =
H2 − E2

4(m∗
N)

2 , (73)

ϵ =
E1

m∗
N

, ϵF =
EF
m∗

N
, ηF =

kF
m∗

N
. (74)

In terms of these variables, the integral (72) can be written

G(E, H) =
π(m∗

N)
2

κ
θ(λ − 1)θ(ϵF − λ)θ(−1 − τ)

∫ ϵB

ϵA

dϵ (75)

The step functions are introduced because 2m∗
N ≤ E1 + E2 = E ≤ 2EF and therefore

1 < λ < ϵF. On the other hand, E2 − H2 > (2m∗
N)

2 implies τ < −1.
The integration limits of the integral (75) are obtained in Appendix B and are given by

ϵA = Max

{
λ − κ

√
1 +

1
τ

, 2λ − ϵF, 1

}
(76)

ϵB = Min

{
λ + κ

√
1 +

1
τ

, ϵF

}
(77)

Finally, we can write the integrated 2h spectral function as

G(E, H) =
π(m∗

N)
2

κ
θ(λ − 1)θ(ϵF − λ)θ(−1 − τ)θ(ϵB − ϵA)(ϵB − ϵA). (78)

This simple and compact expression for the integrated 2h spectral function of the RMF
is the main result of this section. This can be considered a universal function, similar to the
Lindhard function, which provides the spectral distribution in the emission of two particles
simply by kinematic considerations; that is, the phase space. Additionally, it is relativistic
and contains the effect of interaction with the mean field through the effective mass. The
particular case of the RFG is obtained by taking m∗

N = mN . According to Equation (51), the
semi-inclusive hadronic tensor is equal to the function G(E, H) multiplied by the averaged
elementary 2p2h tensor. If this tensor is slowly varying, it is expected that the cross-section
globally follows the distribution marked by G, with small modifications due to the hadronic
tensor. This is seen more explicitly in the factorized approximation of the cross-section

dσN1 N2

dTµdΩµd3 p′1d3 p′2
=

V
(2π)9

(m∗
N)

2

E′
1E′

2
θ(p′1 − kF)θ(p′2 − kF) σ0Lµνwµν

N1 N2
(p′

1, p′
2, ⟨h1⟩, ⟨h2⟩)G(E′

1 + E′
2 − ω, |p′

1 + p′
2 − q|). (79)

In the next section, we present results for several observables obtained from the semi-
inclusive 2p2h cross-section, and for the integrated spectral function, using this formalism.

4. Results

We present numerical predictions for the semi-inclusive two-nucleon emission reaction
of 12C induced by neutrinos and antineutrinos. The model parameters employed in our
calculations include kF = 225 MeV/c and M∗ = m∗

N/mN = 0.8, which were determined
in previous studies [38,54] based on the investigation of the scaling properties of the (e, e′)
cross-section. Subsequently, m∗

N = 750 MeV is used as the effective nucleon mass. The
vector energy is Ev = 141 MeV.

With the same model, we have previously presented results for the inclusive 2p2h
reaction in references [8,9,38,39], which are consistent with the findings presented here.
Additionally, in [37], we provided predictions using this model for semi-inclusive 2p2h
cross-sections integrated over four or five variables, complementing those results with
additional observables in this work. Our calculations primarily utilize the factorized model,
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and we assess its validity by comparing it with exact calculations. We also examine the
more simplified case of the phase space model, similar to the one used in Monte Carlo
generators, where it is assumed that the two-particle distribution does not depend on the
elementary hadronic tensor.

4.1. Integrated 2 h Spectral Function

In Figure 2, we present the integrated spectral function G(H, E) calculated using
the analytical formula from Equation (78). The results are compared to a numerical
calculation in the CM frame of the two particles. G(E, H) is plotted as a function
of the total 2h energy E for various values of H ranging from zero to close to 2kF .
Note that the accessible values of E lie between Emin = 2m∗

N and Emax = 2EF , with

EF =
√

k2
F + (m∗

N)2 = 783 MeV. For H = 0, all values of E are allowed, and G(E, H)

increases continuously from zero at Emin to its maximum value. Indeed, for H = 0, nu-
cleon pairs moving back-to-back in the laboratory frame with any energy can contribute.
As H increases, the value of Emin also increases, and below this value, G is zero. This
means that if the nucleon pair does not have a certain energy, it is not possible for their
momenta to sum up to H. As H approaches 2kF , the spectral function is nonzero only
when nucleons have energy close to the Fermi energy. For intermediate values of H,
the function G(E, H) smoothly increases with energy until it reaches a point where its
derivative is discontinuous. After this point, it decreases linearly until it reaches zero at
E = 2EF . The discontinuity in the derivative is due to Pauli blocking when the value of
ϵA changes abruptly in Equation (77).

H=425MeV/c
H=400MeV/c
H=300MeV/c
H=200MeV/c
H=100MeV/c
H=50MeV/c
H=0MeV/c

E [MeV]

G
(E

,H
)
[G

eV
2
]

15701560155015401530152015101500

1.2

1

0.8

0.6

0.4

0.2

0

Figure 2. The integrated 2h spectral function G(E, H) for various values of momentum H as a
function of energy E. The Fermi momentum is kF = 225 MeV/c. Each curve corresponds to a specific
value of momentum H. The dashed lines represent the exact analytical result. The solid lines are
numerical calculations in the center-of-mass system.

In Figure 3, a three-dimensional plot of G(E, H) is presented, revealing the charac-
teristic structure of this universal function for the Fermi gas. The function is nonzero
only in regions allowed by kinematics, that is, in the phase space allowed for two holes
with momentum H and energy E. It is expected that in a more realistic model of a finite
nucleus, this function would be modified and exhibit signs of a shell structure, while the
maximum momentum would extend beyond 2kF = 450 MeV. However, this structure
is averaged out and smeared in neutrino experiments where energy transfer cannot be
measured and when integrating over some of the variables of the final particles. On
the other hand, the factorized approximation allows for modifying the function G by
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replacing it with a more realistic function calculated using other methods. This is another
advantage of the factorized model.
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Figure 3. Three-dimensional representation of the integrated 2h spectral function G(E, H).

4.2. Semi-Inclusive 2p2h Cross-Section Integrated over One Energy

The coordinate system and kinematics for the description of semi-inclusive 2p2h is
shown in Figure 4. We choose the z-axis in the direction of the incident neutrino. The
neutrino and the final muon directions define the scattering plane (x, z). The directions of
the two final momenta p′

i and the z axis define the two reaction planes that form angles ϕ′
1

and ϕ′
2, respectively, with the scattering plane. The angles between p′

i and the z-axis are θ′i .

x

z

y

ν

µ

θµ

~q

p′1

θ′1

φ′
1

p′2
θ′2

φ′
2

Figure 4. Coordinate system and kinematics in the semi-inclusive two-nucleon emission reaction.
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In Figures 5 and 6, results for the semi-inclusive 2p2h cross-section for neutrino
scattering are presented, integrated over the energy of the second nucleon and summed
over pp and pn pairs.

dσ

dTµdΩµdT′
1dΩ′

1dΩ′
2
=

dσpp

dTµdΩµdT′
1dΩ′

1dΩ′
2
+

dσpn

dTµdΩµdT′
1dΩ′

1dΩ′
2

. (80)

Thus, particle 1 corresponds to a proton, and particle 2 can be a proton or neutron. The
neutrino energy is fixed at Eν = 750 MeV, muon angle θµ = 15 degrees, and muon energy
is 550 MeV. The kinetic energy of the first proton is fixed at T′

1 = 50 MeV. The kinematics
are coplanar, meaning that the two nucleons exit in the scattering plane. In Figure 5, the
cross-section is plotted as a function of the angles of the two particles (θ′1, θ′2), both ranging
from 0 to 2π. This means that we are simultaneously plotting the four cases ϕ′

1, ϕ′
2 = 0, π.

When θ′i > π, the corresponding angle ϕ′
i = π. This case has been chosen explicitly to

allow for comparison with the calculation of Van Cuyck et al. [6] in the shell model, which
is the only available calculation of this reaction in 12C. In the shell model of Van Cuyck,
both the initial and final states of the nucleus are represented as Slater determinants. This
model employs mean-field single-particle wave functions obtained from a Hartree–Fock
calculation, and the MEC operators utilized are non-relativistic.

In Figure 5 we show the separate contributions of each of the currents: seagull, pionic,
pion pole, ∆, and the total, while in Figure 6, we present the interferences between pairs of
currents. In Figure 7, we depict a slice of Figure 5 at a fixed value of θ′2to provide a clearer
illustration of the varying contributions from the MEC. In Ref. [6], the contribution of the ∆
was not computed. Comparing with Figure 4 in Ref. [6], we see that the agreement with the
shell model is quite good, considering that we are using a Fermi gas and that the momentum
transfer is relatively low (q = 265 MeV/c) for this kinematics, while ω = 200 MeV. Since
the quasielastic peak for this value of q is approximately ωQE = q2/2mN ≃ 37 MeV, we are
in the energy transfer region well above the quasielastic peak, close to the photon point,
where the 2p2h MEC contribution is most important.

Comparing the magnitude of the separate cross-sections with Figure 4 of Ref. [6], we
note that in the case of the seagull and pionic currents, our cross-section is somewhat larger
than in the calculations of Ref. [6]. Specifically, the maxima of the seagull, pion in flight,
and pion pole cross-section are (σS, σπ , σP) ∼ (2.2,1.2,0.2) u in the RMF, close to the values
∼ (1.8, 1, 0.25) u obtained in the shell model, in units of u = 10−45 cm2/MeV2.

The structure of the two peaks observed in Figure 5 is also similar to that of the shell
model, with approximately the same angular positions, although in the shell model, they
are apparently somewhat wider. This can be understood given that, in the finite nucleus
model, the momenta are extended and are not limited above the Fermi momentum. In our
case, we used the factorized formula (79). This indicates that the integrated 2 h spectral
function captures well the momentum and energy dependence of the semi-inclusive cross-
section in more realistic models. Additionally, the averaged values of the hole momenta in
the elementary 2p2h tensor are approximately suitable.

One reason for the agreement with the shell model is that the process is semi-inclusive,
and we are integrating over the energy of the second particle. In the shell model, a sum
over the occupied shells has been performed. The integral over energy and sum over shells
produce a smearing of the 2 h spectral distribution. Similarly, in the RMF, we are integrating
over holes, producing a similar effect of smearing.
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Figure 5. The sum of semi-inclusive 12C(νµ, µ−pp) plus 12C(νµ, µ−pn) cross-sections computed with
the factorized model for in-plane kinematics of the two final particles. Incident neutrino energy is
Eν = 750 MeV, muon energy Eµ = 550 MeV, muon angle θµ = 15o, and kinetic energy of the first
particle (a proton) fixed to T′

1 = 50 MeV. The energy of the second nucleon is integrated. In each
panel, one of the seagull, pionic, pole, ∆, and total MEC contributions is shown.
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Figure 6. The same as Figure 5 for the interferences between the different MEC contributions. Each
panel of this figure shows a different interference pattern corresponding to ∆-pionic, ∆-pole, ∆-seagull,
pionic-pole, seagull-pionic, and seagull-pole.
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Figure 7. The same as Figure 5 showing a two-dimensional slice for θ′2 = 330 degrees as a function of
θ′1, showing the contribution of each separate MEC contribution.

Another reason for the good agreement with the shell model is that we have performed
the correct energy–momentum balance in the kinematics. This includes taking into account
that the given kinetic energy T′

1 in the semi-inclusive process is the asymptotic energy
when the nucleon is detected. In the shell model, it is the total final energy of the particle
when it is far from the nucleus, where the nuclear potential is zero. In the case of the RMF,
the total energy must include the vector energy. Asymptotically, this must be equal to the
nucleon mass plus the asymptotic kinetic energy. Thus, the correct energy balance for the
first particle is

E′
1 + Ev = mN + T′

1 =⇒ E′
1 = mN + T′

1 − Ev. (81)

Taking into account that Ev = 141 MeV, this gives E′
1 = 848 MeV. From Equation (81),

it follows that the momentum of the particle in the RMF must be computed as

(p′1)
2 = (mN + T′

1 − Ev)
2 − (m∗

N)
2 (82)

which gives p′1 = 393 MeV/c. Or, assuming nonrelativistic kinematics for the case of
Figure 5,

m∗
N +

(p′1)
2

2m∗
N

= mN + T′
1 − Ev =⇒

(p′1)
2 = 2m∗

N(mN − m∗
N + T′

1 − Ev) = 2m∗
N(Es − Ev + T′

1), (83)

Es = mN − m∗
N = 188 MeV is the (positive) scalar energy, and Es − Ev = 47 MeV [38]. This

gives a momentum p′1 = 381 MeV/c.
Therefore, the differential cross-section must be transformed with the appropriate

Jacobian. From Equation (83), we have p′1dp′1 = m∗
NdT′

1. Hence,

d3 p′1 = m∗
N p′1dT′

1dΩ′
1 (84)

and the differential cross-section transforms as

dσ

dTµdΩµdT′
1dΩ′

1dΩ′
2
= m∗

N p′1
dσ

dTµdΩµd3 p′1dΩ′
2

. (85)

A similar transformation can be obtained for the relativistic case of Equation (82):

d3 p′1 = E′
1 p′1dT′

1dΩ′
1 (86)
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and the differential cross-section transforms as

dσ

dTµdΩµdT′
1dΩ′

1dΩ′
2
= E′

1 p′1
dσ

dTµdΩµd3 p′1dΩ′
2

. (87)

The careful consideration of the correct energy–momentum balance and the appro-
priate transformation of the cross-section, accounting for the asymptotic kinetic energy
and the Jacobian factor, ensures the consistency and reliability of our results. This level
of attention to the details of the theoretical framework is crucial for obtaining meaningful
comparisons with other models, especially when dealing with different formalisms or
experimental measurements.

The comparison between the exact semi-inclusive cross-section and the factorized
model is crucial for validating the latter. In Figures 8 and 9, we present results for a
similar cross-section as in Figures 5 and 6, but for a slightly different kinematics cor-
responding to p′1 = 278 MeV/c instead of 381 MeV/c, and displaying the range of
the angle θ′2 varying between −180 and 180 degrees for better visualization. Now, the
cross-section appears as a single peak as a function of the angles. The top panels in
Figures 8 and 9, depict the results of both the exact and factorized calculations, reveal-
ing striking similarities. The shape resembles an asymmetric peaked structure with a
shoulder, slightly more pronounced in the factorized case. Besides this, there are no
significant differences, and the magnitude is the same.
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Figure 8. Similar to Figure 5 but for p′1 = 278 MeV/c and changing the interval of the θ′2 axis from
[0, 360] to [−180, 180]. In each panel, we show the cross-section computed using a different reaction
model: the exact RMF model, the factorized model, the pure phase-space model (PS), and the RFG
model with a separation energy of 40 MeV.
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This contrasts with the results obtained using a pure-phase space (PS) model shown in
the bottom left panels of Figures 8 and 9. The pure-phase space model assumes a constant
hadronic tensor, making the results follow the shape of the integrated 2h spectral function
and normalized to the inclusive 2p2h cross-section. This is analogous to the procedure
employed in Monte Carlo event generators. The PS model exhibits a peak, but the position
of the maximum is shifted, and the shape of the peak is more symmetric, lacking the
shoulder observed in models with a hadronic tensor. This underscores the importance
of considering the effect of the hadronic tensor in such reactions. Finally, in the bottom
right panel, we compare the calculation with the RFG without effective mass but with a
separation energy, revealing a significant difference in magnitude compared to the RMF.
Additionally, the peak is somewhat narrower in the RFG case. This emphasizes the impact
of the effective mass and the necessity of considering it in the formalism.
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Figure 9. Color map representation of Figure 8, where the semi-inclusive cross-section
dσ/dTµdΩµdT′

1dΩ′
1dΩ′

2 for the sum of pp and pn neutrino emission channels is plotted as a color
map. The keymap bar in each panel delineates how each color corresponds to specific values of the
plotted function in units of 10−45 cm2/MeV2.

In Figure 10, we present another test of the factorized approach compared with the
exact result. In the left panels A and B, we display the full semi-inclusive 2p2h cross-section
for pp and pn emission as a function of p′2 for the same kinematics as in Figure 8. In this
case, we have fixed the four angles θ′1, θ′2, ϕ′

1, ϕ′
2, corresponding to two representative points

on the plot in Figure 8, which are shown in A and B rows of Table 1. We also show the
results for kinematics C and D of Table 1, corresponding to different lepton kinematics.
Kinematics C and D were used in Ref. [37] to compute semi-inclusive two-nucleon emission
integrated over four variables. In the left panels of Figure 10, we show the results obtained
for each one of the three models: exact, factorized, and phase-space models.
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Figure 10. Left panels: semi-inclusive pp and pn emission cross-section for neutrino scattering as a func-
tion of p′2. In each panel (A–D), the lepton kinematics and angles of the exit particles are fixed to the val-
ues defined in Table 1. Right panels: the averaged elementary 2p2h hadronic tensor ⟨wµν

N1N2
(p′

1, p′
2, q, ω)⟩

defined in Equation (50), compared to the elementary 2p2h hadronic tensor evaluated for averaged hole
momenta wµν

N1N2
(p′

1, p′
2, ⟨h1⟩, ⟨h2⟩) as a function of p′2 for the same kinematics.

Here, it is evident that the choice of averaged values for the hole momenta in the
factorized model does not differ significantly from the the exact result, where the elementary
2p2h hadronic tensor is integrated over the holes. Both models exhibit very similar behavior.
On the other hand, in the phase-space model, the elementary 2p2h hadronic tensor is
considered a constant and is normalized to the inclusive 2p2h cross-section. This leads to
the shapes of the curves in the phase-space model resembling less closely the exact case,
even though the order of magnitude is appropriate due to normalization.
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Table 1. Kinematics used for the results of Figure 10 of the semi-inclusive 2p2h cross-section.
Kinematics A and B are from Figures 8 and 9. Kinematics C and D were also employed in Ref. [37] to
compute the two-fold semi-inclusive cross-section.

Kin. Eν [MeV] Eµ [MeV] p′
1 [MeV/c] ϕ1 ϕ2 θ1 [deg.] θ2 [deg.]

A 750 550 278 0 π 172 341

B 750 550 278 0 π 140 330

C 950 600 400 π π 250 355

D 950 600 400 0 π 50 285

In the right column of Figure 10, we present additional results for the averaged
elementary 2p2h hadronic tensor for the same kinematics, comparing it to the tensor
evaluated over averaged holes. Specifically, we plot the contraction with the leptonic tensor

σ0Lµ,ν⟨wµν(p′
1, p′

2, q, ω)⟩,

and compare it to the contraction with the elementary 2p2h tensor evaluated over
averaged holes

σ0Lµ,νwµν(p′
1, p′

2, ⟨h1⟩, ⟨h2⟩).
Both pp and pn emission channels are shown in the figure. The agreement between both

models is quite good, highlighting that the elementary hadronic tensor is not constant but
depends on the kinematics. This dependence is clearly observed in the figure, emphasizing
the need to consider the full momentum and energy dependence in the tensor, as is performed
in the factorized model, rather than assuming a constant value, as in the phase-space model.

Finally, in Figures 11 and 12, we explore the semi-inclusive cross-section integrated
over one energy, focusing on different increasing values of the proton momentum p′1.
In Figure 11, the lepton kinematics is the same as in Figure 5 and p′1 = 278, 393, and
600 MeV/c. In Figure 12, the lepton kinematics is different with larger neutrino energy
Eν = 950 MeV, Eµ = 600 MeV, and cos θµ = 0.85. This corresponds to “Kinematic #1”
from Ref. [9], where we computed the semi-inclusive cross-section integrated over four
variables. The three different values of proton momentum in Figure 12 are p′1 = 400 MeV/c,
600 MeV/c, and 800 MeV/c.

An important general feature that emerges from these angular distribution plots is that
the two nucleons tend to be emitted in opposite directions. The back-to-back tendency is
only approximate. This means that the angle between p′

1 and p′
2 is greater than 90 degrees

and predominantly closer to 180 degrees. For example, in the top panels of Figure 11, the
maximum of the cross-section occurs around θ′1 ∼ 200 degrees and θ′2 ∼ 350 degrees, that
is, θ′2 − θ′1 ∼ 150 degrees. This can also be seen in the values of Table 1, corresponding to
angular positions where the cross-section is significant, where the differences between the
fifth and fourth columns are θ′2 − θ′1 = 169, 190, 105, and 235 degrees. This approximate
tendency of nucleons to be emitted back-to-back will also be independently confirmed by
the results of the next section.

These plots provide insights into how the distributions evolve and change shape as
the energy of the detected nucleon increases. The strength shifts angularly, and the main
peak changes its position. In Figure 11, as the energy increases, the shoulder observed in
Figure 8 becomes more pronounced. In Figure 12 The peak splits into two distinct peaks for
p′1 = 600 MeV/c and there is a return to a single peak for p′ = 800 MeV/c but in a different
angular position.
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Figure 11. Semi-inclusive two-nucleon emission cross-sections integrated over the second particle,
for neutrino scattering and separated into proton–proton (pp) and neutron–neutron (nn) chan-
nels. The kinematics are the same as in Figure 5 but with different values of proton momentum,
p′1 = 278 MeV/c in the top panel, 393 MeV/c in the middle panel, and 600 MeV/c in the bottom
panel. The pp channel is depicted in red on the left side, while the pn-channel is represented in blue
on the right side.



Symmetry 2024, 16, 247 26 of 41

θ′ 1 [d
eg]

0
50

100
150

200
250

300
350

θ ′2  [deg]

0
50

100
150

200
250

300
350

dσ
/d
T μ
dΩ

μd
T′

1d
Ω′

1d
Ω′

2 [
10

−4
5  c

m
2 /M

eV
2 ]

0

5

10

15

20

PP

θ′ 1 [d
eg]

0
50

100
150

200
250

300
350

θ ′2  [deg]

0
50

100
150

200
250

300
350

dσ
/d
T μ
dΩ

μd
T′

1d
Ω′

1d
Ω′

2 [
10

−4
5  c

m
2 /M

eV
2 ]

0

1

2

3

4

PN

θ′ 1 [d
eg]

0
50

100
150

200
250

300
350

θ ′2  [deg]

0
50

100
150

200
250

300
350

dσ
/d
T μ
dΩ

μd
T′

1d
Ω′

1d
Ω′

2 [
10

−4
5  c

m
2 /M

eV
2 ]

0

5

10

15

20

25

PP

θ′ 1 [d
eg]

0
50

100
150

200
250

300
350

θ ′2  [deg]

0
50

100
150

200
250

300
350

dσ
/d
T μ
dΩ

μd
T′

1d
Ω′

1d
Ω′

2 [
10

−4
5  c

m
2 /M

eV
2 ]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

PN

θ′ 1 [d
eg]

0
50

100
150

200
250

300
350

θ ′2  [deg]

0
50

100
150

200
250

300
350

dσ
/d
T μ
dΩ

μd
T′

1d
Ω′

1d
Ω′

2 [
10

−4
5  c

m
2 /M

eV
2 ]

0

2

4

6

8

PP

θ′ 1 [d
eg]

0
50

100
150

200
250

300
350

θ ′2  [deg]

0
50

100
150

200
250

300
350

dσ
/d
T μ
dΩ

μd
T′

1d
Ω′

1d
Ω′

2 [
10

−4
5  c

m
2 /M

eV
2 ]

0.0
0.5
1.0
1.5

2.0

2.5

3.0
PN

Figure 12. The same as in Figure 11 for a different kinematics, given by Eν = 950 MeV Eµ = 600 MeV,
and cos θµ = 0.85 (’Kinematic #1’ from [9]). The panels represent three different values of proton
momentum p′1 = 400 MeV/c (top panels), 600 MeV/c (middle panels), and 800 MeV/c (bottom panels).
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4.3. Semi-Inclusive 2p2h Cross-Section Integrated over the Muon

In this last subsection, we explore another observable of interest in semi-inclusive
two-nucleon emission: the cross-section integrated over the muon energy and angles, as
well as the final nucleon angles.

dσN1 N2

dp′1dp′2
= 2πp′1

2 p′2
2
∫ Tmax

Tmin

dTµ

∫ 1

umin

d cos θµ

∫
dΩ′

1

∫
dΩ′

2
dσN1 N2

dTµdΩµd3 p′1d3 p′2
(88)

where the integration limits are given below.
The motivation for this study is to compare predictions with the Valencia model and

recent results obtained within the NEUT generator, as published in [16]. This comparison
is valuable because the Valencia model also employs an interacting relativistic Fermi gas,
introducing interaction through a different effective interaction. Additionally, it includes
effects such as short-range and long-range correlations of the RPA type, while neglecting the
interference of the direct and exchange current matrix elements, among other considerations
detailed in [16]. On the other hand, results from the NEUT generator are representative
of what is expected from a model that applies a phase-space approximation for the 2p2h
emission, neglecting the dependence of the hadronic tensor on the exclusive variables
p′

1, p′
2, h1, h2. In contrast, we apply the factorized approximation of the RMF model, which

has been tested in the previous subsection and yields results very similar to the shell model
of [6].

The factorized approximation in this case is convenient because it saves us from the
computation of an eight-dimensional integral, as required by the exact calculation. The
factorization allows us to use the analytical formula for the G(E, H) function, introducing
the elementary 2p2h hadronic tensor evaluated at averaged hole momenta. Thus, we are
left with a six-dimensional integral that needs to be computed numerically.

First, we examine the integration limits that we have written explicitly in Equation (88)
for the muon kinetic energy Tmin < Tµ < Tmax and angle umin < cos θµ < 1. Note that
these integration limits are specific to our RMF+MEC approach and are not general.

We maintain a fixed neutrino energy, Eν, while considering p′1 and p′2 as the fixed mo-
menta of the emitted nucleons. Consequently, the energies E′

1 and E′
2 are also predetermined.

The conservation of energy is expressed by the equation Eµ = Eν + E1 + E2 − E′
1 − E′

2. In
our model the initial hole energies are bounded within the range m∗

N < Ei < EF. This
bounding of initial particle energies inherently limits the energy available for the muon,
ensuring Eµ falls within a defined range.

Eν + 2m∗
N − E′

1 − E′
2 < Eµ < Eν + 2EF − E′

1 − E′
2. (89)

This means that the integration limits must be

Tmin = Eν − mµ + 2m∗
N − E′

1 − E′
2, (90)

Tmax = Eν − mµ + 2EF − E′
1 − E′

2. (91)

The lower limit of cos θµ for fixed Eν and Eµ is due to the fact that the 2p2h response
can be neglected if the energy transfer is below the threshold energy to kick two initially
at-rest particles that are emitted with a total momentum q (frozen nucleon approximation).
Therefore, the dominant contribution to the integral requires that

Eν − Eµ = ω >
√

4(m∗
N)

2 + q2 − 2m∗
N (92)

where
(Eν − Eµ + 2m∗

N)
2 ≥ 4(m∗

N)
2 + q2. (93)
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On the other hand, the momentum transfer is given by

q2 = (k − k′)2 = k2 + k′2 − 2kk′ cos θµ (94)

= E2
ν + E2

µ − m2
µ − 2Eν

√
E2

µ − m2
µ cos θµ (95)

Substituting this value of the momentum transfer in Equation (93) and expanding
the square,

E2
ν + E2

µ − 2EνEµ + 4(m∗
N)

2 + 4m∗
N(Eν − Eµ)

≥ 4(m∗
N)

2 + E2
ν + E2

µ − m2
µ − 2Eν

√
E2

µ − m2
µ cos θµ. (96)

Solving for cos θµ and simplifying we obtain the lower limit:

cos θµ ≥
2EνEµ − m2

µ − 4m∗
N(Eν − Eµ)

2Eν

√
E2

µ − m2
µ

≡ umin (97)

Applying these integration limits when performing the numerical integral helps speed
up the calculation, as it avoids the need to calculate the 2p2h hadronic tensor for kinematics
that are suppressed by these limits.

The integrated cross-section from Equation (88) is shown in Figures 13 for neu-
trinos and 14 for antineutrinos. We present the results for three incident neutrino
energies: Eν = 500, 1000, and 1500 MeV. These values are the same as those used in
Figures 11 and 12 of Ref. [16] for neutrino scattering, considering the same observable
for comparison. In our results, we employ two models. One is the pure phase space (top
panels of Figures 13 and 14), where the elementary 2p2h hadronic tensor is not included.
Specifically, in the PS model, we set Lµνwµν(p′

1, p′
2, h1, h2) = 1. Therefore, the model

only contains the integrated 2h spectral function, and it is normalized with a constant
so that the PS total cross-section coincides with the factorized one. We present these
results as a way to observe the effect of the elementary 2p2h tensor hadronic in this
observable. The other calculations shown in the middle and bottom panels of Figure 13
correspond to the emission channels of pp and pn, respectively. In these cases, the first
particle, p′1, is always a proton, while p′2 can be either a proton or a neutron.

The first thing we notice is the shape of the distribution in the plane (p′1, p′2). The
cross-section is zero beyond a surface that is approximately a quarter of a circle centered
at the point (p′1, p′2) = (kF, kF), because kF is the minimum value of p′i. The boundary of
the surface is determined by energy conservation. The curve defining the boundary of the
surface can be written as a function of p′2 in terms of p′1. In fact, we use energy conservation

E′
1 + E′

2 = Eν − Eµ + E1 + E2 (98)

and apply the fact that the maximum energy of the holes is the Fermi energy and the
minimum energy of the muon is the muon mass:

E1 + E2 < 2EF (99)

mµ < Eµ =⇒ −Eν < −mµ (100)

Then, we have

E′
1 + E′

2 < Eν − mµ + 2EF =⇒ E′
2 < Eν − mµ + 2EF − E′

1. (101)
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Taking the square of the last inequality and solving for the momentum, we obtain the
limiting curve

p′2 < p′2max =

√(
Eν − mµ + 2EF −

√
p′2

1 + (m∗
N)

2
)2

− (m∗
N)

2 (102)

The curve p′2max as a function of p′1 is plotted in Figure 15 for several values of the
neutrino energy. Comparing with Figures 13 and 14, we see that they explain the border of
the distribution.
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Figure 13. Integrated semi-inclusive cross-section dσN1 N2 /dp′1dp′2 as a function of outgoing nucleon
momenta for three neutrino energies: Eν = 500 MeV, 1000 MeV, and 1500 MeV. In the top panels,
we show the pure phase-space (PS) results. In the middle and bottom panels, we show the pp and
pn emission channels, respectively, computed with the factorized RMF model. The phase space is
normalized to the inclusive total neutrino cross-section. The keymap bar in each panel indicates how
each color corresponds to specific values of the plotted function in units of 10−38 cm2/GeV2.
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Figure 14. The same as Figure 13 for antineutrino scattering.
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Figure 15. Maximum values of outgoing nucleon momentum p′2 as a function of p′1 for various
neutrino energies.

The second observation from Figures 13 and 14 is that the peak of the distribution
in the case of the phase-space model (PS) shifts toward larger momenta as the neutrino
energy increases. However, in the case of the factorized model, the peak remains more
or less in the same position in the (p′1, p′2) plane, in both pp and pn emission. This is due
to the inclusion of the elementary 2p2h hadronic tensor, which has a peak around the ∆
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resonance. The results in the figure show that the position of this peak does not change
much with increasing neutrino energy.

A possible explanation of the invariance of the position of the distribution peak is
based on the assumption of back-to-back dominance of the final particles, as we have seen
in the angular distributions of the last section, together with the additional assumption of
dominance of the ∆-forward diagrams of the MEC for pp emission. In fact, the argument is
the following. To simplify this discussion, we set the effective mass equal to the nucleon
mass. The assumption is that the greatest contribution to the cross-section comes from
back-to-back nucleons. From momentum conservation, this gives

q + h1 + h2 = p′
1 + p′

2 ≃ 0 =⇒ q + h1 ≃ −h2. (103)

Assuming the dominance of the ∆-forward current, if the first nucleon absorbs the
energy–momentum transfer (diagram (f) of Figure 1), then the maximum contribution
occurs when the ∆ propagator is at its maximum; i.e., we are close to an on-shell ∆:

(ω + E1)
2 − (q + h1)

2 ≃ M2
∆. (104)

Using the result from the back-to-back condition (103), we obtain

ω + E1 ≃
√

h2
2 + M2

∆. (105)

Using this result in the energy conservation,

2E′
1 ≃ E′

1 + E′
2 = ω + E1 + E2 ≃

√
h2

2 + M2
∆ + E2. (106)

Finally, we obtain

E′
1 ≃ 1

2

(√
h2

2 + M2
∆ + E2

)
. (107)

This suggests that the position of the maximum contribution does not depend strongly
on the energy of the incoming neutrino, as long as we are in the back-to-back configuration
and the ∆-forward current dominates. This could explain the observed behavior in the pp
distributions of Figure 13, where the position of the peak remains relatively stable even
with increasing neutrino energy.

If we give values to the hole momentum h1 = 0, kF, we obtain

h1 = 0 ⇒ E′
1 ≃ 1

2
(M∆ + mN) = 1086 MeV =⇒ p′1 ≃ 546 MeV/c (108)

h1 = kF ⇒ E′
1 ≃ 1

2

(√
k2

F + M2
∆ + EF

)
= 1108 MeV =⇒ p′1 ≃ 588 MeV/c (109)

The values obtained under our assumption, p′1 = 546 − 588 MeV/c, are not very far
from the actual position of the peak in Figure 13, p′1 ≃ 600 −−700 MeV/c. We attribute
the difference to the approximations made to obtain the rough estimation of the maximum
since the nucleons do not strictly emerge back-to-back. Other contributions in the MEC, the
neglect of the effective mass effect, and additional factors also contribute to the discrepancy.
However, the result is reasonably sound, allowing us to suggest that the hypothesis of
back-to-back dominance has some relevance to the results in Figure 13.

The results shown in Figure 13 can be compared with those shown in Figures 11 and 12
from Ref. [16], where the same cross-sections were computed for the same kinematics for pp
and pn emission with the Valencia model of 2p2h emission and the NEUT event generator,
which includes the final state interaction (FSI) with an intranuclear cascade model. Note that
our results are directly the results of the primary vertex of the interaction and do not include
FSI, which is expected to change the distribution slightly and possibly make the peak narrower.
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Differences are observed between our results and those of the Valencia model. For exam-
ple, the Valencia model predicted a maximum of the pp distribution for p′1 ∼ 0.9− 1.2 GeV/c
and p′2 ∼ 0.4 − 0.5 GeV/c, attributed in Ref. [16] to the ∆ current, whereas in our case, as
mentioned above, the peak is observed at p′1 = p′2 ∼ 0.6 − 0.7 GeV/c.

The comparison with NEUT also does not agree with our pure phase space calculation,
presumably because we do not normalize for each value of q, ω, but to the total result
of pp + pn emission. In this way, it is seen that it is important to include at least the
inclusive responses as a function of q, ω to obtain some structure apart from the pure
spectral function.

In the case of pn emission, another discrepancy is observed when comparing with the
Valencia model. Both distributions are asymmetric when changing from proton to neutron.
However, in our case, it is observed that at the maximum, the neutron exits with more
energy than the proton, while the opposite occurs with the Valencia model.

An explanation for our result that the neutron is more energetic than the proton in pn
emission can be made similarly to that given in Ref. [16]. However, in our case, where we only
include MEC, the same deduction leads us to the conclusion that the neutron predominantly
exits with more energy than the proton. Since the explanation in Ref. [16] is not detailed, we
cannot draw strong conclusions about the differences. Therefore, we provide a more in-depth
explanation of our results.

The argument is based on the assumption that the Delta current is the main contribu-
tion to the cross-section. Under this hypothesis, we compute the matrix element of the ∆
current between the initial nn and the final pn pair. From Equations (22) and (23), the ∆
matrix elements are

jµ
∆F = ⟨pn| 1√

6

[
2τ

(2)
+ Kµ

F1 + 2τ
(1)
+ Kµ

F2 − IV+(KF1 − KF2)
µ
]
|nn⟩, (110)

jµ
∆B = ⟨pn| 1√

6

[
2τ

(2)
+ Kµ

B1 + 2τ
(1)
+ Kµ

B2 + IV+(KB1 − KB2)
µ
]
|nn⟩, (111)

Using the basic matrix elements of the isospin operators (15) ,

⟨pn|IV+|nn⟩ = −2, (112)

⟨pn|τ(1)
+ |nn⟩ = 2, (113)

⟨pn|τ(2)
+ |nn⟩ = 0. (114)

we obtain

jµ
∆F =

2√
6

(
Kµ

F1 + Kµ
F2

)
(115)

jµ
∆B =

2√
6

(
3Kµ

B2 − Kµ
B1

)
. (116)

Here, the functions Kµ
F1, Kµ

F2, Kµ
B1 and Kµ

B2 correspond to the diagrams of Figure 16. It
is fundamental to remember that we are considering the case where particle p′1 is a proton
and particle p′2 is a neutron, as specified in Figure 16. The argument applies similarly when
considering a neutron as particle 1 and a proton as particle 2, obtaining the same results.
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Figure 16. Feynman diagrams representing the matrix elements for forward (KF1, KF2) and backward
(KB1 and KB2) ∆ current for pn emission.

From Figure 16 and Equations (115) and (116), it is evident that there are four main
contributions to the cross-section. The interaction with the initial nn pair results in a particle-
hole excitation connected to the W+, with the final particle being a proton (diagrams F1
and B1) or a neutron (diagrams F2 and B2). In the case of F1, the final proton receives
a significantly higher energy–momentum transfer, while in the case of F2, the neutron
becomes much more energetic. These two possible contributions have equal strength. The
same can be said for backward diagrams B1 and B2.

Figure 17 illustrates the single contributions of KF1, KF2, KB1 and KB2 to the cross-
section, along with the total forward and backward contribution.
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Figure 17. Color map of the cross-section for neutrino-induced pn emission. We display the separate
contributions of the forward, KF1, KF2, and backward, KB1, KB2 terms of the ∆ current, as well as the
total contribution of the forward and backward, and finally the total contribution of the ∆ current
alone. The neutrino energy is Eν = 1 GeV. The units of the cross-section are the same as in Figure 13.

We observe that the cross-section obtained with the term F1 alone results in a distri-
bution where the proton (particle 1) is more energetic than the neutron (particle 2) at the
maximum. On the contrary, the contribution of the term F2 is exactly the same as that of
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F1, changing the proton for the neutron. As a result, the combined contribution of the two
terms F1 + F2 produces two maxima approximately corresponding to the positions of the
maxima of F1 and F2 (note that in the total result, there is an interference of F1 with F2 that
is also taken into account).

We now examine the individual contribution of the backward terms B1 and B2. The
contribution of the term B2 has been calculated using the current jB = 2√

6
KB2 without the

factor of 3 in Equation (116) so that both terms enter with the same weight. Then, in Figure 17,
we see again that protons have more energy in the distribution B1, while neutrons are the most
energetic in the case of B2. Again, the two distributions, B1 and B2, are obtained from each
other by changing the proton for the neutron. However, in the total distribution B1 + B2, the
term B2 carries a factor of 3 with respect to B1. Note that the currents are squared, meaning
that the term B2 contributes actually with a factor of 9 with respect to B1. This results in the
total backward distribution predominantly showing more energetic neutrons.

From these results, it also emerges that the interference between F1 and F2 is destruc-
tive since the total cross-section is smaller than the individual cross-sections. This makes
the backward term dominate, resulting in the final observation that neutrons are more
energetic when all four contributions are summed, taking into account the interferences.

As this detailed analysis shows, the comparison with other models, such as the
Valencia model, should consider the distinct physical assumptions and modeling choices
inherent to each approach. The differences observed underscore the complexity of the
underlying nuclear dynamics and the importance of refining theoretical models to capture
the intricacies of neutrino–nucleus interactions.

Finally, it is important to emphasize that this last discussion does not contradict the
analysis performed to derive Equation (107), which was based on the dominance of the ∆
forward process in pp emission. The case of pp emission differs significantly from pn emission,
and the various contributions enter into a different combination due to isospin considerations.

On the other hand, these arguments cannot be directly applied to the case of antineutri-
nos in Figure 14, where the pn distribution appears to be fairly symmetric. This symmetry
in the antineutrino case arises from the subtraction of transverse terms in the hadronic ten-
sor due to the negative sign in Equation (3) when contracting the leptonic tensor. Therefore,
careful consideration is needed when assessing the importance of different terms, as it is
less straightforward and may depend on the specific kinematics involved.

5. Conclusions

We have explored the semi-inclusive two-nucleon emission reaction induced by neutrinos
and antineutrinos within the framework of the relativistic mean field of nuclear matter. Our
approach involves a factorization approximation, where the reaction is described by an ele-
mentary two-nucleon cross-section multiplied by an integrated two-hole spectral function. The
2p2h excitations are modeled using a relativistic treatment of meson-exchange currents.

One notable contribution of this work is the derivation of a simple analytical formula
for the integrated two-hole spectral function. This formula not only streamlines the calcu-
lation of the cross-section in the factorized case but also facilitates a clear interpretation
of the obtained results. To validate the factorized approximation, we have performed
comparisons with exact results obtained through numerical integration over the angles of
one hole in the center-of-mass system of the two holes.

Our study has also provided a reliable prescription for the elementary two-nucleon
hadronic tensor. This was achieved by evaluating the tensor at averaged hole momenta
that satisfy energy–momentum conservation. These averaged momenta are chosen to be
perpendicular to the missing momentum in the center-of-mass system of the two holes, as
well as perpendicular to the momentum transfer. This prescription ensures a consistent
treatment of the elementary two-nucleon process within the factorized model.

Our results demonstrate the efficacy of the factorized model in capturing essential
features of the semi-inclusive cross-section, particularly when considering the angular
dependence of the two-nucleon emission. The semi-inclusive two-nucleon emission results,
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integrated over the energy of one of the particles, exhibit a remarkable agreement with
shell model calculations of Ref. [6]. This agreement is noteworthy, especially considering
the Fermi gas nature of our approach. We attribute this success to the integration over holes
in our model, contrasting with shell models that sum over occupied states, leading to a
similar smearing effect. The correct energy balance, incorporating the effective mass and
vector energy within the relativistic mean field (RMF), further contributes to the agreement.
Our results also show the dominance of final state configurations close to back-to-back
nucleons, i.e., the angle between them is larger than 90 degrees. A comparison with a pure
phase-space model reveals clear differences in the final particle distributions, underscoring
the importance of considering the dependence of the hadronic tensor on the 2p2h momenta
in such reactions.

Additionally, we have computed the cross-section for neutrinos and antineutrinos,
integrated over the muon kinematics and nucleon angles, as functions of the outgoing
momenta p′1 and p′2. The factorized model significantly simplifies the computational effort,
yielding smooth and distinct distributions. Our analysis of the emission distributions for pp
and pn pairs has been interpreted in light of the dominance of the ∆ current. Comparisons
with the Valencia model reveal clear disparities, highlighting the impact of different model
ingredients on the results. These differences underscore the importance of a detailed
understanding of the underlying physics in neutrino-induced reactions.

This work lays the foundation for future developments that can enhance our un-
derstanding of two-nucleon emission reactions induced by neutrinos. One avenue for
improvement is the incorporation of short-range correlations, considering that the two ini-
tial nucleons are correlated. A possible approach is to solve the Bethe–Goldstone equation
for the initial state of the two nucleons [55], revealing high-momentum components that
facilitate the emission of two nucleons [39]. This, in conjunction with the meson-exchange
current (MEC) model, would introduce an interference between short-range correlations
and MEC, adding further complexity and richness to the reaction dynamics. The contribu-
tion of short-range correlations, absent in the current study, is expected to be comparable in
magnitude to that of the MEC in the semi-inclusive 2p2h emission. However, the relative
importance of both terms will depend on the kinematics. This assumption is supported by
previous calculations from Refs. [4,5,9,16,39].

In this study, we have neglected the interaction in the final state. Future work could ex-
plore the inclusion of final-state interactions, providing a more comprehensive description
of the entire reaction process. Another avenue for future research is to incorporate realistic
two-hole spectral functions, akin to those found in the literature [41,42]. This would refine
the model with a more realistic distribution and allow for a more detailed comparison with
experimental data.

In summary, the factorized model developed in this work serves as a versatile tool for
investigating semi-inclusive two-nucleon emission reactions in neutrino and antineutrino
interactions. The insights gained from this study open up avenues for extending the model
to include more sophisticated physics, such as short-range correlations and realistic spectral
functions, to provide a more accurate representation of the underlying nuclear dynamics.
These advancements will contribute to the ongoing efforts to unravel the intricacies of
neutrino-induced reactions on nuclear targets.
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Appendix A. Calculation of the Semi-Inclusive 2p2h Hadronic Tensor in the Center of
Mass System of the Two Holes

In this appendix we reduce an integral of the kind

I(H, E) ≡
∫ d3h1

2E1

d3h2

2E2
f (h1, h2)δ(E1 + E2 − E)δ(h1 + h2 − H) (A1)

to an integral over the relative angles of h1 in the CM system of the two holes with momenta
h1, h2 and mass m. Here, f (h1, h2) is an arbitrary function.

We proceed in several steps:

1. First, we prove the inequality

m2 ≤ E1E2 − h1 · h2. (A2)

In fact,

0 ≤ (h1 − h2)
2 = h2

1 + h2
2 − 2h1 · h2 =⇒ 2h1 · h2 ≤ h2

1 + h2
2. (A3)

On the other hand, we have
(h1 · h2)

2 ≤ h2
1h2

2. (A4)

Combining (A3) and (A4),

(h1 · h2)
2 + 2(h1 · h2)m2 ≤ h2

1h2
2 + (h2

1 + h2
2)m

2 =⇒
(h1 · h2)

2 + 2(h1 · h2)m2 + m4 ≤ h2
1h2

2 + (h2
1 + h2

2)m
2 + m4 =⇒ (A5)

(h1 · h2 + m2)2 ≤ (h2
1 + m2)(h2

2 + m2) = E2
1E2

2 =⇒
h1 · h2 + m2 ≤ E1E2.

This concludes the proof of (A2).
2. If E2 − H2 < 4m2, then I(H, E) = 0.

In fact, we note that the product of delta functions inside the integral (A1) is zero unless

h1 + h2 = H, E1 + E2 = E. (A6)

This implies that

E2 − H2 = 2m2 + 2E1E2 − 2h1 · h2 > 4m2. (A7)

The last inequality follows from Eq. (A2). Conversely, if this inequality is not satisfied,
then the integral (A1) is zero.

3. From step #2 above, the integral (A1) can be equivalently expressed as

I(H, E) =
∫ d3h1

2E1

d3h2

2E2
f (h1, h2)δ(E1 + E2 − E)δ(h1 + h2 − H)θ(E2 − H2 − 4m2) (A8)

4. The integral I(H, E) can be written in the equivalent form
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I(H, E) =
∫

d4h1d4h2δ4(hµ
1 + hµ

2 − Hµ) f (h1, h2)

× δ(h1µhµ
1 − m2)θ(h0

1)δ(h2µhµ
2 − m2)θ(h0

2)θ(E2 − H2 − 4m2) (A9)

where we have introduced the four-vectors hµ
1 = (h0

1, h1), hµ
2 = (h0

2, h2), and Hµ = (E, H).
To prove the formula, we just need to use the following result from special relativity:

∫ d3h1

2E1
g(E1, h1) =

∫
d4h1g(hµ

1 )δ(h1µhµ
1 − m2)θ(h0

1), (A10)

where g(E1, h1) is an arbitrary function.
5. We perform the integral in the CM system of the two holes that move with momentum

H. We change variables:

hµ
1 = Λµ

νh′′1
ν, hµ

2 = Λµ
νh′′2

ν, (A11)

where Λ is a boost transformation matrix. Double-primed variables refer to the CM
system. It is defined so that the coordinates of the four-vector Hµ in the moving
system are

H′′ = 0, E′′ =
√

E2 − H2. (A12)

Thus the CM system moves with velocity v = H/E. In fact the new component of Hµ

in the direction of v is given by the two-dimensional Lorentz transformation

H′′ = γ(H − vE), γ = 1/
√

1 − v2, (A13)

but H′′ = 0 implies v = H/E. Note that the result of Equation (A7) implies v < 1, so
the boost is always possible.

6. Since det Λµ
ν = 1, we have

δ4(hµ
1 + hµ

2 − Hµ) = δ4(Λµ
ν(h′′1

ν + h′′2
ν − H′′ν)) = δ4(h′′1

µ + h′′2
µ − H′′µ). (A14)

Then we can write the integral (A9) in the CM system, and again using Equation (A10),
we arrive at the result

I(H, E) ≡
∫ d3h′′1

2E′′
1

d3h′′2
2E′′

2
f (h1, h2)δ(E′′

1 + E′′
2 − E′′)δ(h′′

1 +h′′
2 )θ(E2 − H2 − 4m2) (A15)

Integrating over h′′
2 , we have h′′

2 = −h′′
1 and E′′

2 = E′′
1 . Therefore

I(H, E) ≡
∫ d3h′′1

4(E′′
1 )

2 f (h1, h2)δ(2E′′
1 − E′′)θ(E2 − H2 − 4m2) (A16)

7. To finish, we integrate over the energy E′′
1 using

E′′
1 dE′′

1 = h′′1 dh′′1 =⇒ d3h′′1 = h′′1 E′′
1 dE′′

1 dΩ′′
1 , (A17)

δ(2E′′
1 − E′′) =

1
2

δ(E′′
1 − E′′

2
), (A18)

we obtain the result E′′
1 = E′′/2 and

I(H, E) =
1
4

θ(E2 − H2 − 4m2)
h′′1

2E′′
1

∫
dΩ′′

1 f (h1, h2) (A19)

where dΩ′′
1 = d cos θ′′1 dϕ′′

1 and (θ′′1 , ϕ′′
1 ) are the angles of h′′

1 in spherical coordinates.
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Appendix B. Integration Limits of G(E, H)

In this appendix, we obtain the integration limits of the function G(E, H) given by
Equation (72), as an integral over the energy E1 of the first hole.

G(E, H) =
2π(m∗

N)
2

H

∫ EF

m∗
N

dE1θ(E − E1 − EH−h1)θ(EH+h1 − E + E1)θ(EF − E + E1). (A20)

E1 is subjected to the following conditions imposed by the step functions inside the integral

EH−h1 < E − E1 < EH+h1 , (A21)

E − E1 < EF. (A22)

By squaring the first inequality (A21) and rearranging terms,

(m∗
N)

2 + (H − h1)
2 < (E − E1)

2 < (m∗
N)

2 + (H + h1)
2 =⇒

H2 − 2Hh1 < E2 − 2EE1 < H2 + 2Hh1 =⇒
−2Hh1 < E2 − 2EE1 − H2 < 2Hh1. (A23)

Therefore,
|E2 − H2 − 2EE1| < 2Hh1. (A24)

Note that h1 also depends on the integration variable E1, so we need to manipulate
the inequality (A24) to obtain a condition involving only E1. It is convenient to rewrite the
previous equation in terms of the dimensionless variables normalized with the nucleon
mass as defined in Equations (73) and (74); we have

|τ + λϵ| < κη

The next step is to take the square of this inequality, and using η2 = ϵ2 − 1 and
κ2 − λ2 = τ,

τ2 + λ2ϵ2 + 2τλϵ < κ2η2 = κ2(ϵ2 − 1) ⇒
τ2 + 2τλϵ < (κ2 − λ2)ϵ2 − κ2 = τϵ2 − κ2. (A25)

Moving the terms that depend on ϵ to the right-hand side of the inequality,

τ2 + κ2 < τ(ϵ2 − 2λϵ)

= τ[(ϵ − λ)2 − λ2]

= τ[(ϵ − λ)2 − κ2 + τ]

= τ(ϵ − λ)2 − τκ2 + τ2. (A26)

Therefore, we can write
κ2(1 + τ) < τ(ϵ − λ)2 (A27)

Finally, we divide by the variable τ, taking into account that τ < 0,

(ϵ − λ)2 < κ2
(

1 +
1
τ

)
=⇒

|ϵ − λ| < κ

√
1 +

1
τ

. (A28)

This implies that ϵ is in the interval

λ − κ

√
1 +

1
τ
< ϵ < λ + κ

√
1 +

1
τ

. (A29)
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Now let us examine the restrictions imposed by the conditions that the energies of the
holes, E1 and E2 = E − E1, must be greater than the mass and less than the Fermi energy.

m∗
N < E − E1 < EF,

m∗
N < E1 < EF,

or in terms of dimensionless variables,

1 < 2λ − ϵ < ϵF =⇒ 2λ − ϵF < ϵ (A30)

1 < ϵ < ϵF. (A31)

For all three conditions (A29)–(A31) to be fulfilled simultaneously, ϵ must lie in the
following interval.

ϵA < ϵ < ϵB, (A32)

where the lower and upper limits are given by

ϵA = Max

{
λ − κ

√
1 +

1
τ

, 2λ − ϵF, 1

}
(A33)

ϵB = min

{
λ + κ

√
1 +

1
τ

, ϵF

}
. (A34)
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