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Abstract: A model based on pure decoherence for the Jaynes–Cummings spin–boson system, coupled
through its integral of motion to an infinite bosonic bath, is proposed and examined. The properties
of the spin oscillation process suggest an initial entanglement between the environment and the
spin–boson degrees of freedom. The study demonstrates that the potential applicability of the
Jaynes–Cummings model in detecting non-orthogonal bosonic states is preserved in the presence of
pure decoherence.
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1. Introduction

The Jaynes–Cummings model [1] (JCM) serves as a natural starting point for describ-
ing matter–field interactions, being elementary yet far from trivial [2]. Since its inception,
the JCM has garnered significant and sustained attention [3], and while its primary focus
lies in quantum optical applications [4], its general form and structure render it highly
effective across various scientific domains, spanning from quantum information [5,6] to
quantum control [7] and the physics of open systems [8]. The JCM depicts a two-level
quantum system (a spin or a qubit) interacting with a single bosonic mode of radiation.
Despite its solvability [2,4,9], the model remains realistic enough to stimulate research in
diverse fields, encompassing applied group theory [9–11], investigations related to quan-
tum integrability [12,13], and extending to quantum information processing [14–16]. This
text further explores a specific application of the Jaynes–Cummings model for detecting
non-orthogonal quantum states, as proposed in Ref. [17]. The effectiveness of theoretical
models, including Jaynes–Cummings modeling, in describing practical problems cannot be
assumed unless their predictions remain robust against the natural and common imperfec-
tions inherent in real systems. One significant challenge is the omnipresent decoherence,
which arises due to the interaction of a system with its environment, rendering it effectively
“open” with respect to energy and information transfer. Numerous powerful models for
describing open quantum systems exist [8,18–20], employing various problem-specific
methods such as master Equations [18] or path integrals [20], to name a few. Striking a
balance between mathematical rigor and physical soundness is, however, a non-trivial
task [19,21]. The typical objective is to deduce, from the unitary evolution of the composite
system (S) + environment (B), represented by ρSB(t), a “reduced” evolution of the open
subsystem ρS(t) = TrB(ρSB(t)). This reduced evolution is determined by a non-unitary
operator ρ(tj) = Γ(tj, ti)ρ(ti), where ρ(ti) is the reduced density matrix of the evolving
system [19]. It is crucial that the operator Γ satisfies minimal requirements; it must be
completely positive [19,21,22] and adhere to the semi-group property, obeying a com-
position law: Γ(t2, t0) = Γ(t2, t1)Γ(t1, t0). Notably, unless Γ(tj, ti) = Γ(tj − ti), the time
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evolution is considered to be non-Markovian. Initial entanglement [23] of ρSB(t = 0) poses
a well-known obstacle to the general construction of reduced dynamics meeting these
natural requirements [19], explaining the continuous and considerable attention devoted
to investigating this problem [24–31]. It is worth noting that quantum optical models are
also eventually adapted to describe decoherence [8,9,32], and the Jaynes–Cummings model
is no exception [33–37]. In addition to numerous approximate treatments of quantum
systems affected by decoherence, a few exact models stand out due to their distinctive
role in revealing the deep underlying symmetry of systems with significant physical con-
sequences. One such model is pure decoherence [8,38,39] (dephasing), which describes a
quantum system coupled to its environment via its integral of motion. The pure decoher-
ence model enables the exploration of exact [38,39] reduced dynamics (traced with respect
to the environment degrees of freedom) of an open system, going beyond Markovian or
weak coupling approximations [19]. While pure decoherence or dephasing models may
appear simple and somewhat artificial, they have proven to credibly describe realistic
systems [40–43]. These models are studied extensively in the broader context of quantum
information processing [44–47]. Notably, they provide a means to investigate the role
played by initial system–environment correlation [25,26,48,49].

In this study, we present a modification of the Jaynes–Cummings model by introducing
a pure decoherence framework. We assume that the decoherence-inducing infinite bosonic
field (a bath) is coupled to the spin–boson Jaynes–Cummings (JC) system through its
integral of motion, representing a conserved quantity—the total number of spin–boson
excitations. This integral of motion, well-established for its central role in solving the
JCM [9], is directly linked to the notion of integrability in quantum models [12,13]. The
resulting pure decoherence model, formulated and analyzed using the coherent states
technique, allows for exact predictions of the time evolution of the composite system,
even for entangled initial states. Specifically, we explore spin oscillations and demonstrate
that their collapses and revivals serve as a sensitive indicator of the initial entanglement
between JC spin–boson degrees of freedom and the environment. Consequently, these
properties can act as a hallmark, revealing the presence of such entanglement in the system’s
initial preparation. Furthermore, our investigation reveals that the properties of the spin
oscillations can distinguish between bipartite entanglement (involving JC spin or JC boson
and the environment) and genuinely tripartite entanglement. Additionally, we establish
that the pure decoherence described by our proposed model does not hinder the potential
application of the JCM [17] in detecting non-orthogonal states of bosonic modes, a common
scenario in quantum communication.

The paper is structured as follows: First, we formulate the Jaynes–Cummings model
with pure decoherence. The main results of the paper focus on the spin oscillation pattern in
the presence of initial entanglement, categorized based on the entangled degrees of freedom:
bipartite spin–environment, bipartite boson–environment, and genuine entanglement of
JC degrees of freedom and the environment. We introduce an extension of an exact
retrodiction method proposed in Ref. [17], utilizing the JCM to discriminate non-orthogonal
states within a system affected by pure decoherence. Finally, we provide a summary and
draw conclusions from our findings.

2. Materials and Methods: Pure Decoherence of the JCM

The Jaynes–Cummings model, describing the interaction of a single two-level system
(spin) with a single-mode boson (electromagnetic field), is represented by the Hamiltonian
(with h̄ = 1):

ĤJC = ω

(
N̂ +

1
2

)
+

∆
2

σ̂z + g
(

â†σ̂− + âσ̂+
)

(1)
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Here, σ̂z,+,− and â, â† correspond to the spin and boson (with [â, â†] = 1) degrees of freedom,
respectively. The excitation number operator is given by

N̂ = â† â +
σz

2
(2)

This operator is an integral of motion, as indicated by [N̂, ĤJC] = 0, representing a con-
served quantity. The dynamics of the system are influenced by the detuning parameter ∆
and the spin–boson coupling strength g.

The spin–boson Jaynes–Cummings model given by Equation (1) necessitates an
infinite-dimensional state space. This can be represented using bosonic number states
|n⟩, where â† â|n⟩ = n|n⟩ with n = 0, 1, . . ., and qubits |k⟩, where σ̂z|k⟩ = (2k − 1)|k⟩ with
k = 0, 1. The state space is then defined as H = span|k⟩ ⊗ |n⟩. However, due to the pres-
ence of the integral of motion given by Equation (2), the state space exhibits an isomorphic
direct sum structure

H = C1 ⊕
∞⊕

N=1

HN (3)

In this context, span|k = 0⟩ ⊗ |n = 0⟩ ∼ C1, and each HN = span|N, k⟩, k = 0, 1 ∼ C2

is two-dimensional. It is spanned by the so-called bare states [9] |N, k⟩ := |k⟩|n − k⟩,
corresponding to eigenspaces of the integral of motion N̂|N, k⟩ =

(
N − 1

2

)
|N, k⟩. Diago-

nalizing Ĥ JC within each subspace HN allows the construction of a basis of dressed states
|Nk⟩, where

ĤJC|Nk⟩ = ΛN,k|Nk⟩, k = 0, 1 (4)

Here, ΛN,k = ωN + (2k − 1)ΩN with Ω2
N = g2N + ∆2/4. A unitary equivalence between

dressed and bare states can be expressed as follows:

|N0⟩ = yN |N, 0⟩+ xN |N, 1⟩ (5)

|N1⟩ = xN |N, 0⟩ − yN |N, 1⟩ (6)

with coefficients given by xN = g
√

N/

√(
ΩN − ∆

2

)2
+ g2N and

yN =
(

ΩN − ∆
2

)
/

√(
ΩN − ∆

2

)2
+ g2N.

To describe pure decoherence [38,39,45] of the JCM, we assume that the spin–boson
model (JC) given by Equation (1) is coupled to its environment (B) via the integral of motion
N̂ in Equation (2) with a coupling strength κ

Ĥ = ĤJC + ĤB + κN̂ ⊗ ÂB (7)

Among infinite environments, we consider the simplest one which is a one-dimensional bosonic
field with a continuous energy spectrum given by an integrable and non–negative h(q)

ĤB =
∫ ∞

0
dqh(q)â†(q)â(q) (8)

ÂB =
∫ ∞

0
dqg(q)

(
â(q)† + â(q)

)
(9)

Here, the bosonic modes satisfy the commutation relation [â(q), â†(q′)] = iδ(q − q′). The
field B is coupled to the JC system with a strength determined by a continuous and
integrable function g(q).

It is worth noting that while the Hamiltonian in Equation (7) exhibits high symmetry,
it takes a standard Caldeira–Leggett form [8]. The proposed decoherence mechanism in
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Equation (7) can be seen as a generalization of well-known pure dephasings. The coupling
operator N̂ given by Equation (2) represents the sum of the spin z-component [8,38,39,41,42]
and the bosonic number operator [40,43]. These operators have a well-established physical
meaning in the context of pure decoherence.

To describe the pure decoherence of the Jaynes–Cummings model (JCM), we introduce
an environment (B) coupled to the JCM via the integral of motion N̂ given by Equation (2).
The coupled Hamiltonian is expressed as follows:

Ĥ =
∞

∑
N=1

∑
k=0,1

ĤN,k|Nk⟩⟨Nk| (10)

ĤN,k = ΛN,k1B + ĤB + κ

(
N − 1

2

)
ÂB (11)

We note that the term corresponding to n = 0 has been omitted as it does not lead to
non-trivial evolution. The block-diagonal structure of Equation (10) is inherited by the
corresponding time-evolution unitary operator

Û(t) = exp(−iHt)) =
∞

∑
N=1

∑
k=0,1

exp
(
−iĤN,kt

)
|Nk⟩⟨Nk| (12)

which is of particular usefulness if it is applied jointly with the coherent states
technique [39,45,50]. Coherent states |F⟩ of a bosonic field are given by the displaced
vacuum |F⟩ = D(F)|V⟩, where the displacement operator [51,52] is defined as follows:

D(F) = exp
[∫ ∞

0
dq(F(q)â†(q)− h.c.)

]
(13)

D(G)D(F) = exp
[

i
∫ ∞

0
dqG(q)F̄(q)

]
D(F + G) (14)

Coherent states are overcomplete and non-orthogonal with a scalar product:

⟨G|F⟩ = exp
[∫ ∞

0
dq[Ḡ(q)F(q)− 1

2
|G(q)|2 − 1

2
|F(q)|2]

]
(15)

This scalar product quantifies their overlap. The dynamic properties of coherent states [39,51]
allow for the calculation of

Û(t)|Nk⟩ ⊗ |F⟩ = |Nk⟩ ⊗ |Ft
N,k⟩, k = 0, 1 (16)

|Ft
N,k⟩ = e−iΛN,ktÛN(t)D(F)|V⟩ (17)

where, for the pure decoherence model, the unitary operator ÛN can be explicitly evaluated
and reads as follows:

ÛN(t)D(F)|V⟩ = e−iΦN(t)D

(
κ(N − 1

2 )g(q)
h(q)

(1 − e−ih(q)t) +
F(q)
h(q)

e−ih(q)t

)
|V⟩ (18)

ΦN(t) =
∫ ∞

0
dq
[

g2(q)((h(q)t − sin(h(q)t)) + 2g(q)F(q) sin(h(q)t)
]

(19)

3. Results
3.1. Entanglement-Assisted Spin Collapses and Revivals

Collapses and revivals of spin (atomic) oscillations, represented by ⟨σ̂z⟩, are among
the most studied features of the Jaynes–Cummings model [2,4,9]. Here, we explore how
initial entanglement in the pure-decoherence-assisted JCM affects the properties of spin
inversion. It is noteworthy that in the absence of initial system–environment correlations,
the pure decoherence given in Equation (7) does not modify the well-known spin inversion
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properties. To confirm this, let us consider a fully separable initial preparation of the JC
spin–boson model and the environment in the vacuum state |V⟩. The initial state of the
system, considering a fully separable preparation, is given by

|ψ(0)⟩ = |0, z⟩ ⊗ |V⟩ (20)

Here, the spin is in its ground state |0⟩, and the boson is in a coherent state [51] |z⟩ =

∑∞
N=0 zN |N⟩, where zN = e−|z|2/2zN/

√
N!. Expressing the spin–boson initial state in terms

of the dressed states given by Equation (5), it reads as follows:

|0, z⟩ = z0|0, 0⟩+ 1√
2

∞

∑
N=1

zN [|N0⟩+ |N1⟩] (21)

After applying Equation (12) and Equation (16), the state evolves in time as follows:

|ψ(t)⟩ = z0|0, 0⟩ ⊗ |V⟩+ 1√
2

∞

∑
N=1

zN ∑
k=0,1

[
|Nk⟩ ⊗ |Vt

N,k⟩
]

(22)

Despite the non-trivial effect of pure decoherence in Equation (22), the corresponding spin
inversion in

⟨σ̂z⟩(t) = ⟨ψ(t)|σ̂z|ψ(t)⟩

= −|z0|2 −
∞

∑
N=1

|zN |2 cos(2ΩNt) (23)

remains unmodified compared to the known decoherence-free formula [32]. This also holds
true for a spin initially prepared in its excited state:

|1, z⟩ =
1√
2

∞

∑
N=1

zN−1[|N0⟩+ |N1⟩] (24)

An originally bipartite spin–boson model, extended by the presence of an environment
causing its decoherence, becomes essentially tripartite. In doing so, three distinct classes
of initial preparations are recognized, classified with respect to initial entanglement with
an environment. The first two classes consist of bipartite entangled states with initial
spin–environment or boson–environment entanglement but separable concerning a third
part of the composite, which is either the boson or the spin, respectively. The third class
comprises states with genuine tripartite initial entanglement, meaning that none of the
parts of the composite can be separated (traced) without unavoidable information loss [53].

3.1.1. Boson–Environment Initial Entanglement

Let us consider a decoherence-assisted Jaynes–Cummings model (JCM) with an initial
state entangled in bosonic and environmental degrees of freedom only. We examine a
family of entangled initial preparations given by

|ψ(0)⟩ =
(1 − α)

N |0, z⟩ ⊗ |V⟩+ α

N |0, s⟩ ⊗ |F⟩ (25)

Here, α is a parameter in the range [0, 1], and the normalization factor is N 2 = (1 −
α)2 + α2 + 2α(1 − α)ℜ(⟨z|s⟩⟨V|F⟩). The states in Equation (25) are entangled with respect
to boson–environment degrees of freedom. They represent entangled states of boson
coherent states |z⟩ and |s⟩ with coherent states of the environment |V⟩ (the vacuum) and
|F⟩ = D(F)|V⟩. The spin part of the composite system in Equation (25) is separated and
given in its ground state |0⟩.

It is worth noting that since coherent states are not orthogonal, the bipartite entan-
glement in Equation (25) is never maximal [23,53], unlike the celebrated Bell states [5]. In
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contrast to the decoherent JCM previously studied in the absence of initial correlations
(Equation (20)), there is a non-trivial modification of spin inversion in ⟨σ̂z⟩ due to the initial
entanglement in Equation (25). The expectation value of σ̂z reads as follows:

⟨σ̂z⟩(t) = − (1 − α)2

N 2 |z0|2 −
α2

N 2 |s0|2 − 2
α(1 − α)

N 2 ℜ⟨V|F⟩

− 2
N 2

∞

∑
N=1

cos(2ΩN(t))
[
(1 − α)2|zN |2 + α2|sN |2 + 2α(1 − α)z̄NsNℜ⟨V|F⟩

]
(26)

A qualitative modification of the spin oscillations given in Equation (26) is directly
related to the value of the parameter α as presented in Figure 1. The spin inversion,
quantified by ⟨σ̂z⟩(t) as a function of time t, is shown. It is evident that an increase in α
leads to an increase in both the amplitude of oscillations and the time-averaged value of
⟨σ̂z⟩, i.e.,

⟨⟨σ̂z⟩⟩ = lim
T→∞

T−1
∫ T

0
⟨σ̂z⟩(t)dt (27)

which is a function of α with a maximal value for α = 1/2. It is important to note that for
s ̸= z, there is a shift in the first oscillation revival, which appears earlier (later) for |s| < |z|
(for |s| > |z|, respectively). An impact of a choice of coherent states entering Equation (25)
for the boson in the JCM is presented in Figure 2. However, the time average ⟨⟨σ̂z⟩⟩ remains
unchanged. Coherent states of the environment entering Equation (25) manifest themselves
in Equation (26) solely via the real part of their scalar product, resulting in changes that are
qualitatively the same as those induced by α ̸= 0.

Figure 1. Expectation value σ ≡ ⟨σ̂z⟩ of spin and its oscillations as a function of time t given in
Equation (26) for different values of α. The other parameters are z = 6, s = 8 and ℜ⟨V|F⟩ = 1/10.

3.1.2. Spin–Environment Initial Entanglement

A second natural class of initially entangled states to be considered is given by the
states as follows:

|ψ(0)⟩ =
(1 − α)

N |0, z⟩ ⊗ |V⟩+ α

N |1, z⟩ ⊗ |F⟩ (28)

where N 2 = (1 − α)2 + α2 + 2α(1 − α)ℜ(⟨V|F⟩). In this case, the spin degree of freedom
in Equation (28) is entangled with the environment. Note, however, that the bosonic part of
the JC pair in a coherent state |z⟩ remains separated.
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Figure 2. Expectation value σ ≡ ⟨σ̂z⟩ of spin and its oscillations as a function of time t given in
Equation (26) for different values of s. The other parameters are α = 1/2, z = 8 and ℜ⟨V|F⟩ = 1/10

The spin oscillations can be inferred from an expectation value as follows:

⟨σ̂z⟩(t) = − (1 − α)2

N 2 |z0|2

− 2
N 2

∞

∑
N=1

cos(2ΩN(t))[(1 − α)2|zN |2 + α2|zN−1|2

+ 2α(1 − α)z̄Nz(N − 1)ℜ⟨V|F⟩] (29)

which is calculated for the initial state Equation (28). An influence of α on the properties
of the spin inversion is presented in Figures 3 and 4. Time instants when the revivals
of spin oscillations occur remain unchanged for different values of α. There is also a
significant impact of α on the amplitude of spin oscillations, which is maximal for maximal
entanglement, i.e., for α = 1/2. However, there is a substantial difference indicated in a
time-average ⟨⟨σ̂z⟩⟩, which, contrary to the previously studied boson–environment initial
entanglement Equation (25), does not depend on α for the initial preparation given in
Equation (28).

Figure 3. Expectation value σ ≡ ⟨σ̂z⟩ of spin and its oscillations as a function of time t given in
Equation (29) for different values of α. The other parameters are z = 6 and ℜ⟨V|F⟩ = 1/10. For the
sake of clear presentation, the graph corresponding to α = 0.2 is multiplied by a factor of 5.
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Figure 4. Expectation value σ ≡ ⟨σ̂z⟩ of spin and its oscillations as a function of time t given in
Equation (29) for different values of z. The other parameters are α = 1/2 ℜ⟨V|F⟩ = 1/10.

3.1.3. ‘Genuine’ Initial Entanglement

For the sake of completeness, let us consider a fully three-partite entanglement of the
spin–boson–environment system. This is a third type of multipartite entanglement which
is ‘genuine’ since none of the possible bipartitions can lead to a separable state.

We consider an initial state

|ψ(0)⟩ =
(1 − α)√

2N
|0, z⟩ ⊗ |V⟩+ α√

2N
|1, s⟩ ⊗ |F⟩ (30)

where N 2 = (1 − α)2 + α2 + 2α(1 − α)ℜ(⟨z|s⟩⟨V|F⟩). Let us note, however, that despite
the seemingly complicated form of a related expectation value of the spin,

⟨σ̂z⟩(t) = − (1 − α)2

N 2 |z0|2 −
α2

N 2 |s0|2 − 2
α(1 − α)

N 2 ℜ⟨V|F⟩

− 2
N 2

∞

∑
N=1

cos(2ΩN(t))[(1 − α)2|zN |2 + α2|sN−1|2

+ 2α(1 − α)z̄Ns(N − 1)ℜ⟨V|F⟩], (31)

this expression captures the time-dependent behavior of the spin in the presence of genuine
tripartite entanglement.

The spin oscillation properties, as described by the expectation value, appear to be
qualitatively similar for the previously discussed spin–environment case and the current
spin–boson–environment case. In other words, based solely on the spin oscillation proper-
ties, it is not possible to distinguish whether the initial entangled state is of the form given
in Equation (28), i.e., bipartite, or Equation (30), i.e., genuinely tripartite.

3.2. (Pure) Decoherence-Assisted Retrodiction

The retrodiction method proposed in Ref. [17] utilizing the Jaynes–Cummings model
involves using a spin variable as a probe to measure and postselect, aiming to achieve
orthogonality of the reduced signal (bosonic) states. In the context of quantum communi-
cation [54–56], particularly with non-orthogonal pairs of coherent states A = {|z⟩, | − z⟩}
forming an alphabet for encoding and transmitting messages, the Jaynes–Cummings model
provides an effective and exact retrodiction method. As the states in A are not orthogonal
⟨z| − z⟩ ̸= 0, they cannot be with certainty distinguished. Receiving a signal encoded with
A, one is faced with a retrodictive decision of which of the two letters has been sent [57,58].
Here, the Jaynes–Cummings model turns out to provide an effective and exact retrodiction
method [17]. The idea behind this is to utilize a spin variable of the JCM as a probe then
measure it and postselect providing, after a time of interaction, orthogonality of the reduced
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signal (bosonic) states. Here, we explore an effect of pure decoherence Equation (7) on
the potential ability of the JCM-based exact retrodiction proposed in Ref. [17]. We assume
that initially the signal (boson) and the probe (spin) are separated from their environment
(being in its vacuum state) and their state reads as follows:

|ψ(0)⟩ = |1, z⟩ ⊗ |V⟩ (32)

Due to interactions, applying Equation (12) and Equation (16), the signal+probe+environment
system evolves in time

|ψ(t)⟩ =
1√
2

∞

∑
N=1

zN−1 ∑
k=0,1

[
|Nk⟩ ⊗ |Vt

N,k⟩
]

(33)

An amplitude that postselecting the probe+environment state |i⟩⟨i| ⊗ |V⟩⟨V| (with either
i = 0 or i = 1), the signal is in the | − z⟩ state and reads as follows:

K(i) =
⟨−z|i ⊗ V⟩⟨i ⊗ V|ψ⟩

|⟨i ⊗ V|ψ⟩| =
exp(−|z|2)

P(i)
Ξ(i) (34)

with

P(i) = exp(−|z|2)
∞

∑
N=0

fi

(
gt
√

N + 1
) |z|2N

N!
(35)

and

Ξ(i, t) =
∞

∑
N=0

(−1)N fi

(
gt
√

N + 1
)

ξ(N)
|z|2N

N!
(36)

where f1(·) = cos(·), f0(·) = sin(·) and ξ(N) = |⟨V|ÛN(t)|V⟩|. An exact retrodiction [17]
is possible provided that Ξ(i, t) = 0 for some t > 0. Let us note that an effect of decoherence
enters the amplitude K(i) Equation (34) via Equation (36) only, whereas P(i) remains not
altered in comparison with the decoherence-free archetype, cf. Ref. [17]. As the pure
decoherence modifies nothings but the magnitudes of summands in Equation (36) and
|ξ(N)| ≤ 1, one concludes that an effect of pure decoherence does not exclude vanishing
of K(i) and, in consequence, the exact retrodiction method of Ref. [17] is, in a presence of
pure decoherence Equation (7), not obstructed. However, it changes if an arriving signal
Equation (32) becomes modified by an unwanted initial entanglement with either a probe
or its environment as an existence of roots K(i), i = 0, 1, for t > 0 cannot then in general
be proved.

4. Discussion

We have developed a model to describe the impact of pure decoherence on the Jaynes–
Cummings system. Our model assumes that the environment inducing decoherence
couples to the spin–boson degrees of freedom of the Jaynes–Cummings model (JCM)
through the number of excitation operators, a known integral of motion of the JCM. Despite
its simplicity, the proposed model allows for a non-approximate and explicit solution for
its time evolution, leading to exact predictions of observable effects. The model retains
its solvability and exactness even in the presence of initial entanglement between the
decohering environment and the JCM degrees of freedom. We examined three classes
of entangled states characterized by the involved degrees of freedom: spin–environment
entanglement, boson–environment entanglement, and genuine entanglement, involving
all the JCM degrees of freedom in the presence of pure decoherence. Our analysis re-
vealed that the process of spin inversion, typically studied in the context of collapses
and revivals, is not only sensitive to the presence of initial entanglement but also enables
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discrimination between different types of entanglement in the initial state. Notably, we
found qualitative differences in the properties of decoherence-assisted spin oscillations for
bipartite spin–environment initial entanglement compared to a system initially in a state
with entanglement between the JC boson and the environment. As a potential application
of our pure decoherence model in the JCM, we explored its role in addressing a central
problem in quantum communication: the detection of non-orthogonal states transmitted
as letters of an alphabet encoding a message. Drawing on a method proposed in Ref. [17],
we demonstrated that the Jaynes–Cummings interaction between the signal-carrying bo-
son and a spin acting as a probe, along with postselection of the probe state, allows for
the distinguishability of signal states. Importantly, this potential ability is, in principle,
maintained for the decoherence model proposed in this paper, at least in the absence of
entanglement with the decohering environment. The other possible applications of the
results of the paper are related to the Hutner–Barnett model for polaritons [59] to describe
spontaneous emission of a two-level atom in a dissipative environment. An application of
that kind of modeling in the context of spontaneous emission is given, e.g., in Ref. [60].

While we acknowledge that pure decoherence is an approximation of real open sys-
tems influenced by dissipation, the idealistic nature of our model does not diminish its
significance. The exact solvability and well-defined microscopic origin of our considered
model can mitigate its limitations. We hope that our results can serve as a foundational
approximation of the properties of general open spin–boson models, which are otherwise
challenging to obtain. Moreover, our work may act as a potential benchmark for other,
more general methods crucial for quantum information processing. The sensitivity of spin
inversion to both the presence of initial entanglement and the type of entanglement in
the initial state underscores the intriguing potential of our proposed model. Additionally,
the application of our model to quantum communication showcases the versatility of the
Jaynes–Cummings model, offering insights into maintaining distinguishability of signal
states even in the presence of pure decoherence.

Overall, our work contributes to the understanding of the interplay between deco-
herence, entanglement, and quantum dynamics in the Jaynes–Cummings model, offering
insights that can guide future research in this field.
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