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Abstract: We study response time, a key performance characteristic of queueing mechanisms. The
studied model incorporates both active and passive queue management, arbitrary service time
distribution, as well as a complex model of arrivals. Therefore, the obtained formulas can be
used to calculate the response time of many real queueing mechanisms with different features, by
parameterizing adequately the general model considered here. The paper consists of two parts. In
the first, mathematical part, we derive the distribution function for the response time, its density, and
the mean value. This is done by constructing two systems of integral equations, for the distribution
function and the mean value, respectively, and solving these systems with transform techniques. All
the characteristics are derived both in the time-dependent and steady-state cases. In the second part,
we present numerical values of the response time for a few system parameterizations and point out
several of its properties, some rather counterintuitive.
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1. Introduction

By the response time of a device or system, we mean the overall time a task (customer,
job, networking packet, etc.) occupies the system, from entering the system until its
completion. The response time of a queuing system is, by this definition, the time spent by
a task in the queue while waiting for service/execution, plus the service time of this task.

The response time of most queuing systems is random in nature. Therefore, it can be
fully characterized by its probability distribution or roughly by its moments (the mean,
variance, etc.).

The mean response time is the principal characteristic of the performance of a queuing
system (see, e.g., [1]). If we have to describe roughly the performance of a system by giving
only one number, the best candidate for this number is the mean response time.

Therefore, studies on the distribution and the mean response time are of great im-
portance. A few such studies have been carried out to date; the specifics are to be seen
in the subsequent section. In short, all are devoted to queuing systems possessing some
important features and mechanisms, while lacking others.

In reality, queuing systems may possess many different features and mechanisms.
For instance, the arrival process may be of the Poisson type or the renewal type with
arbitrary interarrival distribution. It may or may not incorporate group arrivals. The inter-
arrival times may or may not be correlated. There may or may not be some other subtle
effects present, e.g., correlation between the temporary intensity and the size of arriving
groups, or correlation between sizes of groups. The service time may be of some specific
type or of a general type. The queue management may be of a simple type (tail-drop) or of
a more advanced type (active management).

The goal of this article is to calculate the response time in one universal queuing
model, incorporating all the aforementioned possible features together. Moreover, the ob-
tained results cover both the steady-state and time-dependent response time, as well as its
distribution function, probability density, and the mean value.
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Specifically, the time-dependent response time is the overall time a task arriving at
a particular time t occupies the system. Therefore, it is a function of t. In practice, it is
calculated for small values of t to characterize the behavior of the system shortly after its
activation, when its operation is deeply influenced by its initial state. The steady-state
response time characterizes the stable work of the system, i.e., for t → ∞, when the
influence of the initial condition vanishes.

Active queue management, built into the examined model, is the mechanism that
does not permit some arriving tasks to queue up, even if the waiting room is not filled
completely. In some active management mechanisms, the decision about queuing up a
new task is deterministic, based on some more or less advanced calculations, see e.g., [2].
In most algorithms, however, the decision about each task is random, i.e., permission to
queue up happens with some probability. This probability may change in time, being
influenced by the system’s state. Furthermore, it is often assumed that this probability
is dependent on the number of tasks in the system. We incorporate such a mechanism
in the analyzed model. It has several important applications listed below and is, in fact,
an extension of passive queue management.

By passive management (or tail drop), we mean a natural permission policy, in which
a new task can queue up if and only if there is free space in the waiting room. The policy
investigated here can be reduced to passive management by using the task-rejection prob-
ability represented by the Heaviside step function. In general, however, this probability
can be arbitrarily related to the number of tasks in the system—tasks can be rejected long
before the waiting room becomes filled completely.

Active management considered here originated in computer networking, where it was
proposed to organize queues of packets in packet switching devices [3–10]. Nonetheless,
the applicability of the model is much wider than that. This is because exactly the same
model portrays the natural inclination of people to resign from joining a queue with a
probability dependent on the queue length. The queue could be, for example, a physical
queue in an amusement park [11], a virtual queue in a call center [12], a jam of cars on a
motorway, and many others.

The contribution of this article is mathematical and numerical. The mathematical con-
tribution consists of 4 new theorems devoted to the response time, presenting in particular:

• the response time distribution function in the time-dependent case (Theorem 1),
• the response time probability density in the time-dependent case (Theorem 2),
• the mean response time in the time-dependent case (Theorem 3),
• the distribution function, density and mean response time in steady state (Theorem 4).

In the numerical part, we show mean response times and densities computed for
several system parameterizations, both in the time-dependent and steady-state regimes.
We pay attention to how these characteristics vary with load, with the initial conditions,
with the presence or lack of autocorrelation, and with task-rejection probabilities. Some
unexpected behavior of the response time is noticed.

The arrival process is represented here by the batch Markovian arrival process, whose
description and parameterization in the currently used form were first given in [13]. It is of
utmost importance that this process can mimic many properties and nuances of real-life
point processes. For example, it can imitate the interarrival distribution with arbitrary accu-
racy, the interarrival autocorrelation function, the group structure, the correlation between
temporary arrival rate and the group size, correlation between sizes of groups, and others.
Due to these qualities, it has been used in models of operation of various systems, including
computer networking and telecommunications (see [14] and references therein), vehicular
traffic [15,16], inventory systems [17,18], supply and maintenance systems [19,20], disaster
models [21], and others.

The examined queuing model is asymmetric in the sense that the interarrival times can
be autocorrelated, while the service times cannot. Such asymmetry is a trade-off between
the applicability of the model and its analytical complexity. This will be debated further in
Section 3.
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The mathematical approach of this paper is based on constructing systems of integral
equations and solving them with transform techniques. Specifically, two such systems
of equations are proposed and solved: for the time-dependent distribution function of
the response time (Equations (8) and (12)) and for the time-dependent mean response
time (Equations (45) and (48)). The remaining characteristics of interest, i.e., densities
and steady-state response times, are derived from the solutions of these two systems
of equations.

The rest of the article develops as follows. In Section 2, the literature on the response
time and related queuing models is reviewed. In Section 3, the modeling framework
is presented, including details of the arrival process and organization of the queuing
system with its active management. Several important special cases are discussed as
well. Section 4 houses the paper’s key contribution, namely theorems devoted to the
response time distribution function, its probability density and mean value, and steady
state. In Section 5, numerical results are provided and commented on. Finally, closing
remarks are given in Section 6, as well as suggestions for future work.

2. Related Work

As far as the authors know, the results of this article are new.
All the previous studies of the response time, or the related waiting time, lack one or

more important features of the model examined herein, such as active management, a general
type of service distribution, autocorrelated arrivals, or group arrivals. Moreover, in most
papers, the analysis is reduced to the steady state only, with no time-dependent solution.

Specifically, derivations of the response time or waiting time of classic queuing mod-
els, such as M/M/1, M/G/1, and G/M/1 types, can be found in many queuing mono-
graphs, e.g., [1,22,23]. Unfortunately, these models include neither active management
nor autocorrelation.

Perhaps the closest analysis is performed in [13,24], where the waiting time is computed
for the model with the same arrival and service processes as herein. Specifically, the steady-
state waiting time is studied in [13], while the time-dependent one in [13]. The analysis is
then continued in the monograph [14], p. 161. However, the model of [13,14,24] does not
incorporate a critical component examined here, i.e., active queue management. This feature
significantly expands universality and applicability of the model but also requires a different
analytical approach.

Conversely, there are several studies with active management in the queuing model,
but without any derivations of the response time or the waiting time [25–30].

There are also other works with the same or similar model of the arrival process,
but without active queue management [15–21,31–33].

Finally, there are papers that deal with the response or waiting time and do involve
active queue management, but with a simplified arrival process, which either lacks group
arrivals [34] or autocorrelation [35]. A general arrival process with powerful modeling
capabilities is an essential feature of the model examined here.

3. Modeling Framework

We analyze the queuing model with a single service station. Namely, the arriving tasks
form a queue in the waiting room in the order of arrival. Concurrently, the queue is served
from the front by the service station. The service/execution time of a task is random and
has a distribution function F(x) of arbitrarily complex form. Service times of distinct tasks
are mutually independent. The waiting room is finite and has a size of K − 1. This means
that the maximum number of tasks in the system can be K, encompassing the position for
service. If upon a task arrival there are already K tasks in the system, the just-arrived task
is not permitted to queue up. It exits the system unattended and never comes back.

Furthermore, any arriving task may be forbidden to queue up, even if the waiting
room isn’t filled completely. This happens with a probability of d(n) for each arriving task,
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where n denotes the number of tasks occupying the system on the arrival of this new task.
This is the active management mechanism built into the model.

We see immediately that parameterizing function d(n) we can obtain passive manage-
ment of the system as well. Namely, if

d(n) =
{

0, for n < K,
1, for n ≥ K,

then a task can queue up only if the waiting room is not filled completely. This is the
passive management case. If, on the other side, d(n) ∈ (0, 1) for some n < K, then active
management takes place. In the examined model, d(n) can have any form, so the derived
formulas are applicable to systems with passive and active management.

The queue receives arrivals according to the batch Markovian arrival process [13].
The evolution of this process is governed by the modulating process J(t), which is an
m-state Markov chain with continuous time and rate matrix D. The modulating process
controls arrivals of tasks, perhaps in groups.

In practice, the batch Markovian arrival process is parameterized by a sequence of
m × m matrices: D0, D1, D2, . . . . For consistency, Dk must be non-negative for every k ≥ 1,
the rows of D = ∑∞

i=0 Di must sum to 0, and it must hold that D ̸= D0. An expanded
account of characteristics and properties of this process is available in [14]. Its most
important characteristic, the arrival rate, is equal to:

λ = π
∞

∑
i=1

iDi1, (1)

where
1 = [1, . . . , 1]T , (2)

and π is the steady-state vector for matrix D, fulfilling the system:

πD = [0, . . . , 0], π1 = 1. (3)

The mean service time is denoted by S, i.e.,:

S =
∫ ∞

0
xdF(x) =

∫ ∞

0
(1 − F(x))dx. (4)

Load of the system is therefore:
ρ = λS, (5)

where λ is given in (1).
N(t) represents the total count of tasks in the system at time t, embracing the one

under service, if applicable.
Note that the considered queuing model does not possess the symmetry typical of

classic queuing models, such as M/M/1 or G/G/1. In the classic models, the service and
arrival processes are symmetric in the sense that all service times are uncorrelated and all
interarrival times are uncorrelated. The asymmetry of the model here originates from the
fact that arrival times can be highly correlated, while the service times cannot. Specifically,
the k-lag correlation of the batch Markovian arrival process is as follows:

ρc(k) = πD01 ·
ξD−2

0 (D − D0)
(
(−D−1

0 (D − D0))
k−1 − 1ξ

)
D−2

0 (D − D0)1

2πD−1
0 1 + 1

, (6)

where ξ is the steady-state vector for matrix −D−1
0 (D − D0)− I whereas I stands for m × m

unit matrix. It is well established that ρc(k) can have high values even for large k and the
shape of ρc(k) can be very well fitted to empirical autocorrelation functions (see, e.g., [36]).
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On the other side, service times are not correlated in the examined model by definition.
Such asymmetry is a trade-off between the applicability of the model and its an-

alytical complexity. Specifically, the arrival process is very often correlated in reality
(e.g., [14,36,37]). Therefore, the applicability of symmetric models with no autocorrelation
of both service and interarrival times is limited. On the other hand, correlated service
times, although not impossible, are much rarer in reality than correlated arrivals. There-
fore, the asymmetric model with correlated arrivals and uncorrelated services seems to
constitute a reasonable choice.

Finally, by a proper parameterization of matrices D0, D1, D2, . . . , we can obtain many
simpler processes, which can also be of interest, if all the features of the full parameterization
are not necessary. Specifically:

• if m = 1 and D0 = −λ, D1 = λ, then we acquire the Poisson process,
• if m = 1, D0 = −λ and j ≥ 1 Dk = pjλ, then we acquire the compound Poisson process,
• if D0 = T and D1 = −T1α, then we acquire the renewal process (uncorrelated

arrivals) with phase-type interarrival distribution with parameters (α, T), which can
approximate any renewal process with arbitrary precision,

• if D0 = T and Dk = −pkT1α, k ≥ 1, then we acquire the renewal process with
group arrivals,

• if Dk = 0 for k ≥ 2, then we acquire the Markovian arrival process, which has no
groups, but all the remaining features of the original process,

• if D0 = Q − Λ and D1 = Λ, then we acquire the Markov-modulated Poisson process,
the simplest autocorrelated process without group arrivals,

• if Dj = pjD1, j ≥ 1, then we acquire a process with correlated interarrival times,
but uncorrelated sizes of groups.

The results obtained herein are valid for arbitrary matrices D0, D1, D2, . . . , so they can
be employed in all the listed cases, and many other.

In Table 1, important model parameters and characteristics of interest are listed.

Table 1. Symbol list.

K system capacity

Dk arrival process parameters

N(t) queue size at t
m number of modulating states

J(t) modulating state at t
d(n) active management function

λ arrival rate

F(t) service time distribution function
S mean service time

ρ system load

Rni(t, x) distribution function of the response time at t

rni(t, x) probability density of the response time at t

Tni(t) mean response time at t

R∞
(x) distribution function of the response time in steady state

r∞(x) probability density of the response time in steady state

T∞ mean response time in steady state

4. Response Time

Let τni(t) denote the system response time at time t, given that N(0) = n, J(0) = i.
In other words, τni(t) is the time it would take a task to pass the system, assuming it arrived
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at t and was queued up by active queue management. Note that we consider a potential,
not actual arrival, at an arbitrary t.

Denote:

Rni(t, x) = P{τni(t) < x|N(0) = n, J(0) = i}, t > 0, x > 0. (7)

Therefore, Rni(t, x) is the response time distribution function for time t, assuming initial
conditions N(0) = n, J(0) = i.

As we can see, Rni(t, x) is a time-dependent characteristic, i.e., a function of t. Comput-
ing Rni(t, x) for a small t, say t = 10, we can characterize the response time of the system
shortly after its activation, when its operation depends severely on its initial state.

We start the analysis with the case N(0) > 0. Given this, we have:

Rni(t, x) =
m

∑
j=1

K−n

∑
l=0

∫ t

0
hij(n, l, z)Rn+l−1,j(t − z, x)dF(z)

+
m

∑
j=1

K−n

∑
l=0

hij(n, l, t)
∫ ∞

t
F(n+l)∗(x + t − z)dF(z), 1 ≤ n ≤ K, (8)

where F(k)∗ denotes the k-fold convolution of the distribution function F with itself, while
hij(n, l, z) is probability that l tasks will be let to the waiting room by time z, and the state
at time z will be j, assuming no service will be completed by z, and that it was N(0) = n,
J(0) = i.

Equation (8) is created from the total probability rule applied with respect to z, the ser-
vice completion moment. In the first component of (8), it is assumed t ≥ z. Under such
assumption, the new task number at z is n + l − 1, because l new tasks are queued up
by z and 1 task departs at z. Furthermore, the new modulating state at z is j. Therefore,
beginning from z, the conditional probability that τni(t) < x is Rn+l−1,j(t − z, x).

In the second component of (8), it is assumed t < z. Under such assumption, the num-
ber of tasks in the system at t is n + l. Therefore, we can compute directly τni(t). Namely,
τni(t) consists of the residual time of service of the task occupying the service position at
t. This residual time equals z − t. Then it consists of n + l − 1 complete services of tasks
present at t. Furthermore, we have to add one more service time, for the task arriving at t.
In total, τni(t) consists of n + l complete service times, plus one partial, of duration z − t.
This gives P{τni(t) < x} = F(n+l)∗(x + t − z).

The active management mechanism is present in Equation (8) in function hij(n, l, z),
defined above. Naturally, hij(n, l, z) depends on the parameterization of the active manage-
ment mechanism, through the function d(n). It will be shown later how hij(n, l, z) can be
computed and how it depends on d(n) (see Formulas (61)–(67)).

The second integral in (8) can be transformed as follows:∫ ∞

t
F(n+l)∗(x + t − z)dF(z) =

∫ t+x

t
F(n+l)∗(x + t − z)dF(z)

=
∫ x

0
F(n+l)∗(x − z)dzF(z + t). (9)

The first transformation in (9) follows from relation: F(n+l)∗(t) = 0 for t < 0. The sec-
ond transformation is just a replacement of variables. Taking (9) into account, (8) is
equivalent to:

Rni(t, x) =
m

∑
j=1

K−n

∑
l=0

∫ t

0
hij(n, l, z)Rn+l−1,j(t − z, x)dF(z) +

m

∑
j=1

K−n

∑
l=0

hij(n, l, t)g(n + l, t, x), (10)
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with

g(k, t, x) =
∫ x

0
F(k)∗(x − z)dzF(z + t). (11)

Now we move to the case N(0) = 0. Given this case, we have:

R0i(t, x) =
m

∑
j=1

∞

∑
k=0

p(i, j, k)
K

∑
l=0

q(0, k, l)
∫ t

0
Rl j(t − z, x)µie−µizdz

+ F(x)e−µit, (12)

where q(n, k, l) is probability that from k tasks arriving in a group, l taks are queued up by
active queue management, assuming n taks occupied the system on this arrival of a group.

Equation (12) is created from the total probability rule applied with respect to time
z, which is now an arrival or alteration of the modulating state, or both. It is known that
in the batch Markovian arrival proces, group arrival of length k happens with probability
p(i, j, k), after a time period that has exponential distribution with mean 1/µi, where:

p(i, j, k) = [Dk]i,j/µi, k > 0. (13)

p(i, j, 0) = [D0]i,j/µi, i ̸= j, (14)

µi = −[D0]i,i. (15)

In other words, p(i, j, k) describes transitions of the group arrival process, i.e., the
probability that the next arrival will be of size k, perhaps accompanied with an alteration
of state from i to j. Specifically, if k = 0, then merely a change of state occurs, devoid of
an arrival. If k > 0 and i = j, then a group arrival takes place, without a change of state.
If k > 0 and i ̸= j, then a group arrival occurs with a change of state. Finally, simultaneous
absence of arrival and absence of change of state is impossible, i.e., p(i, i, 0) = 0.

In the first component of (12), it is assumed t ≥ z. Under such assumption, the task
number at z is l, and the new modulating state at z is j. Therefore, beginning from z,
the conditional probability that τ0i(t) < x is Rl j(t − z, x). In the second component of (12)
it is assumed t < z, which has probability e−µit. Under assumption t < z, there are still 0
tasks in the system at t. Hence P{τ0i(t) < x} = F(x).

The active management mechanism is present in Equation (12) in function q(0, k, l),
defined above. It will be shown later how q(n, k, l) can be derived (see Formulas (61)–(64)).

Note that (10) and (12) make up a system of (K + 1)m integral equations of Volterra
type, for unknowns Rni(t, x), where 0 ≤ n ≤ K and 1 ≤ i ≤ m. We will solve this system
now using the transform technique.

Denoting:

Rni(s, x) =
∫ ∞

0
e−stRni(t, x)dt, (16)

from (10) we have:

Rni(s, x) =
m

∑
j=1

K−n

∑
l=0

Uij(n, l, s)Rn+l−1,j(s, x) +
m

∑
j=1

K−n

∑
l=0

Wij(n, l, s, x), 1 ≤ n ≤ K, (17)

Uij(n, l, s) =
∫ ∞

0
e−sthij(n, l, z)dF(t), (18)

Wij(n, l, s, x) =
∫ ∞

0
e−sthij(n, l, t)g(n + l, t, x)dt, (19)
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while from (12) we obtain:

R0i(s, x) = µi(µi + s)−1
m

∑
j=1

∞

∑
k=0

p(i, j, k)
K

∑
l=0

q(0, k, l)Rl j(s, x) + F(x)(µi + s)−1, (20)

Then, (17) yields:

Rn(s, x) =
K−n

∑
l=0

U(n, l, s)Rn+l−1(s, x) +
K−n

∑
l=0

W(n, l, s, x)1, 1 ≤ n ≤ K, (21)

where
Rn(s, x) = [Rn1(s, x), . . . , Rnm(s, x)]T , (22)

U(n, l, s) =
[
Uij(n, l, s)

]
i,j=1,...,m, (23)

W(n, l, s, x) =
[
Wij(n, l, s, x)

]
i,j=1,...,m, (24)

while (20) gives:

R0(s, x) =
∞

∑
k=0

K

∑
l=0

q(0, k, l)M(k, s)Rl(s, x) + F(x)G(s), (25)

with
M(k, s) =

[
µi(µi + s)−1 p(i, j, k)

]
i,j=1,...,m

, (26)

G(s) =
[
(µ1 + s)−1, . . . , (µm + s)−1

]T
. (27)

Lastly, denoting:

R(s, x) = [R01(s, x), . . . , R0m(s, x), R11(s, x), . . . , R1m(s, x), . . . , RK1(s, x), . . . , RKm(s, x)]T , (28)

we can obtain the solution of (21) and (25) using standard algebraic manipulations. The re-
sult is summarized in the subsequent theorem.

Theorem 1. Transform of the distribution function of time-dependent response time equals:

R(s, x) = P−1(s)Q(s, x), (29)

with
P(s) = [Pij(s)]i,j=0,...,K, (30)

Pij(s, x) =



∑∞
k=0 q(0, k, j)M(k, s)− I, if i = j = 0,

∑∞
k=0 q(0, k, j)M(k, s), if i = 0, j > 0

U(i, j − i + 1, s)− I, if 0 < i < K, i = j,

U(i, j − i + 1, s), if 0 < i ≤ j + 1 < K + 1, i ̸= j,

−I, if i = j = K,

0, otherwise,

(31)

where 0 is the m × m zero matrix and

Q(s, x) =
[
−F(x)G(s)T , V(1, s, x)T , . . . , V(K, s, x)T

]T
, (32)



Symmetry 2024, 16, 271 9 of 20

V(n, s, x) = −
K−n

∑
l=0

W(n, l, s, x)1, (33)

while M(k, s), G(s), U(n, l, s) and W(n, l, s, x) are defined in (26), (27), (18) and (19), respectively.

If the service distribution is absolutely continuous and has density f (x), then the
response time at t is also absolutely continuous and has density rni(t, x):

rni(t, x)dx = P{τn,i(t) ∈ dx|N(0) = n, J(0) = i}, t > 0, x > 0. (34)

Transform of this density is equal to:

r(s, x) =
∂R(s, x)

∂x
, (35)

where

r(s, x) = [r01(s, x), . . . , r0m(s, x), r11(s, x), . . . , r1m(s, x), . . . , rK1(s, x), . . . , rKm(s, x)]T , (36)

rni(s, x) =
∫ ∞

0
e−strni(t, x)dt. (37)

To find (35), we have to calculate the derivative of Q(s, x), which requires the deriva-
tive of V(n, s, x), which in turn requires the derivative of W(n, l, s, x), which requires the
derivative of g(k, t, x). In the last two steps, we need to employ the Leibniz integral rule,
necessary for differentiation under integrals. By calculating all these derivatives, we get
the subsequent theorem.

Theorem 2. If the service distribution has density f (x), then the transform of density of the
time-dependent response time equals:

r(s, x) = P−1(s)z(s, x), (38)

where
z(s, x) =

[
− f (x)G(s)T , v(1, s, x)T , . . . , v(K, s, x)T

]T
, (39)

v(n, s, x) = −
K−n

∑
l=0

w(n, l, s, x)1, (40)

w(n, l, s, x) =
[∫ ∞

0
e−sthij(n, l, t)y(n + l, t, x)dt

]
i,j=1,...,m

, (41)

y(k, t, x) =
∫ x

0
f (k)∗(x − z) f (z + t)dz. (42)

For practical purposes, it suffices often to know the mean response time, instead of its
full distribution. Let Tni(t) denote the mean response time at t, given the initial state was
N(0) = n, J(0) = i, i.e.,:

Tni(t) = E{τn,i(t)|N(0) = n, J(0) = i}, t > 0, x > 0. (43)

There are at least two ways, how the mean response time can be computed. We can
either use Theorem 1 with the relation:

Tni(t) =
∫ ∞

0

(
1 − Rni(t, x)

)
dx, (44)
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or build equivalents of Equations (10) and (12) for Tni(t) and solve them. In fact, the latter
way is very easy, because it is straightforward to build and solve analogical equations.

Namely, for N(0) > 0 we have:

Tni(t) =
m

∑
j=1

K−n

∑
l=0

∫ t

0
hij(n, l, z)Tn+l−1,j(t − z)dF(z)

+
m

∑
j=1

K−n

∑
l=0

hij(n, l, t)
∫ ∞

t
[(n + l)S + t − z)]dF(z), 1 ≤ n ≤ K, (45)

which is built analogously as (10). Splitting and rearranging the second integral in (45) we get:

Tni(t) =
m

∑
j=1

K−n

∑
l=0

∫ t

0
hij(n, l, z)Tn+l−1,j(t − z)dF(z)

+ (1 − F(t))S
m

∑
j=1

K−n

∑
l=0

(n + l)hij(n, l, t),

+ a(t)
m

∑
j=1

K−n

∑
l=0

hij(n, l, t), 1 ≤ n ≤ K, (46)

where
a(t) =

∫ ∞

0
[1 − F(z + t)]dz. (47)

For N(0) = 0 we have:

T0i(t) =
m

∑
j=1

∞

∑
k=0

p(i, j, k)
K

∑
l=0

q(0, k, l)
∫ t

0
Tl j(t − z)µie−µizdz + Se−µit, (48)

which is built analogously as (12). Denoting:

Tni(s) =
∫ ∞

0
e−stTni(t)dt, Tn(s) = [Tn1(s), . . . , Tnm(s)]

T , (49)

(46) yields:

Tn(s) =
K−n

∑
l=0

U(n, l, s)Tn+l−1(s) + S
K−n

∑
l=0

(n + l)Y(n, l, s)1 +
K−n

∑
l=0

Z(n, l, s)1, 1 ≤ n ≤ K, (50)

where

Y(n, l, s) =
[∫ ∞

0
e−st(1 − F(t))hij(n, l, t)dt)

]
i,j=1,...,m

, (51)

Z(n, l, s) =
[∫ ∞

0
e−sta(t)hij(n, l, t)dt)

]
i,j=1,...,m

. (52)

From (48) we get:

T0(s) =
∞

∑
k=0

K

∑
l=0

q(0, k, l)M(k, s)Tl(s) + SG(s). (53)

Using notation:

T(s) = [T01(s), . . . , T0m(s), T11(s), . . . , T1m(s), . . . , TK1(s), . . . , TKm(s)]
T , (54)

and solving the system (50) and (53), we get the subsequent theorem.



Symmetry 2024, 16, 271 11 of 20

Theorem 3. Transform of the time-dependent mean response time equals:

T(s) = P−1(s)H(s), (55)

where
H(s) =

[
−SG(s)T , L(1, s)T , . . . , L(K, s)T

]T
, (56)

L(n, s) = −S
K−n

∑
l=0

(n + l)Y(n, l, s)1 −
K−n

∑
l=0

Z(n, l, s)1, (57)

while P(s), G(s), Y(n, l, s) and Z(n, l, s) are defined in (31), (27), (51) and (52), respectively.

Now we may obtain the response time for the system in steady state (t → ∞). Let
R∞

(x) be the response time distribution function, r∞(x) the response time density and T∞

the mean response time, all of them for the system in steady state.
All of these characteristics can be calculated easily from Theorems 1–3. It is done by

applying the final-value theorem (see p. 89 of [38]). As the result, we get the theorem below.

Theorem 4. In steady state, the response time distribution function and its mean value are
as follows:

R∞
(x) = lim

s→0+
sR01(s, x), (58)

T∞
= lim

s→0+
sT01(s), (59)

where R01(s, x) and T01(s) are given in Theorems 1 and 3, respectively. Moreover, if the service
distribution is absolutely continuous, then the steady-state density of the response time equals:

r∞(x) = lim
s→0+

sr01(s, x), (60)

where r01(s, x) is given in Theorem 2.

Note that the choice N(0) = n = 0, J(0) = i = 1 is arbitrary and does not influence
the steady-state results. In fact, any other N(0) and J(0) can be chosen without changing
the output.

Lastly, observe that to use Theorems 1–4 effectively, we must find functions q(n, k, l)
and hij(n, l, t). This can be realized using the method proposed in [28], which gives:

q(n, 0, 0) = 1, q(n, k, 0) = dk(n), k > 0, (61)

q(n, 0, l) = 0, l > 0, (62)

q(n, k, l) = 0, min{K − n, k} < l, (63)

q(n, k, l) = d(n)q(n, k − 1, l) + (1 − d(n))q(n + 1, k − 1, l − 1), k > 0, l > 0. (64)

Denoting

h(n, l, s) =
[
hij(n, l, s)

]
i,j=1,...,m, hij(n, l, s) =

∫ ∞

0
e−sthij(n, l, t)dt, (65)

we obtain:
h(n, 0, s) = (I − A(n, 0, s))−1diag(G(s)), (66)

h(n, l, s) = (I − A(n, 0, s))−1
l

∑
j=1

A(n, j, s)h(n + j, l − j, s), l > 0, (67)
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where

A(n, l, s) =
∞

∑
k=0

q(n, k, l)M(k, s). (68)

5. Examples

The parameterization of task arrival process, utilized in this section, is as follows:

D0 =

 −0.275697 0.262572 0.001878
0.007508 −0.181924 0.003755
0.000483 0.000403 −0.650183

, (69)

D1 =

 0.000468 0.001407 0.000937
0.041777 0.000468 0.000422
0.001622 0.000080 0.160628

, (70)

D2 =

 0.000625 0.001875 0.001250
0.055698 0.000625 0.000562
0.002162 0.000107 0.214155

, (71)

D5 =

 0.000780 0.002343 0.001562
0.069627 0.000780 0.000702
0.002703 0.000133 0.267707

. (72)

As can be noticed, the arrival process includes groups, with a maximum group size of
5. The mean group size is 3, and the arrival rate of groups is 0.333333. Thus, the overall
arrival rate is 1. Moreover, this process is highly autocorrelated (see Figure 1). Its 1-lag
autocorrelation is above 0.4 and remains significant up to about 100-lag.

0 20 40 60 80 100
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to

co
rr

el
at

io
n

Figure 1. Correlation of interarrival times computed for arrival process (69)–(72).

The service distribution has the following density:

f (x) =
1

8ρ
e−

1
2ρ x

+
9

8ρ
e−

3
2ρ x, x > 0, ρ > 0, (73)

where ρ is a parameter. For such density, the mean service time is:

S = ρ. (74)

Hence, for λ = 1, the parameter ρ in (73) is equal to the load defined in (5). Distribution (73)
has a rather moderate standard deviation, but greater than an exponential distribution would
have. For example, for ρ = 1 it equals 1.29.
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If not stated differently, the following function is used for letting tasks into the
waiting room:

d(n) =


0, for n < 15,
0.0025(n − 13)3, for 15 ≤ n < 20,
1, for n ≥ 20.

(75)

In Table 2, we have the mean response time computed for different moments in time
and for steady state. Furthermore, three different initial numbers of tasks in the system
(N(0) = 0, 10, 20) were assumed, with two values of load: full load, ρ = 1, and overload,
ρ = 1.5. (Cases with ρ < 1 are less interesting, because the response time is low there for
obvious reasons).

Table 2. The mean response time, Tn1(t), for various values of load, ρ, and initial numbers of
tasks, N(0).

ρ = 1, ρ = 1, ρ = 1, ρ = 1.5, ρ = 1.5, ρ = 1.5,

N(0) = 0 N(0) = 10 N(0) = 20 N(0) = 0 N(0) = 10 N(0) = 20

t = 1 1.50 10.1 20.0 2.45 15.6 30.5

t = 2.5 1.47 8.89 18.6 2.41 14.6 29.1

t = 5 1.75 7.17 16.6 2.91 13.2 27.2

t = 10 2.26 4.91 13.1 4.00 11.1 24.0

t = 25 3.40 3.77 6.20 6.42 8.82 16.9

t = 50 4.92 4.94 5.09 9.22 9.71 11.9

t = 100 6.85 6.86 6.87 12.6 12.6 12.7

t = 250 8.63 8.66 8.62 15.6 15.6 15.6

t = 500 8.92 8.82 8.94 16.1 16.1 16.1

t = ∞ 8.94 8.94 8.94 16.1 16.1 16.1

In Figures 2–5, the response time density is depicted at different times, for 2 different
values of ρ and 2 values of N(0). Namely, in Figures 2 and 3, the fully loaded system is
reflected, ρ = 1, with N(0) = 10 and N(0) = 20, respectively. In Figures 4 and 5, an over-
loaded queue is depicted, ρ = 1.5, again with N(0) = 10 and N(0) = 20, respectively.
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Figure 2. The response time density at different times assuming N(0) = 10 and ρ = 1.
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Figure 3. The response time density at different times assuming N(0) = 20 and ρ = 1.

In each of these figures, we may see the evolution of the density function towards the
steady-state density (the darkest curve on each figure).
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Figure 4. The response time density at different times assuming N(0) = 10 and ρ = 1.5.
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Figure 5. The response time density at different times assuming N(0) = 20 and ρ = 1.5.

5.1. Discussion of Results

As evident in Table 2, the mean response time approaches steady state when t reaches
500. (At t = 250, it is not stable yet, with a discrepancy of a few percent from the steady-state
value.) 500 is a pretty long convergence time, most likely caused by the autocorrelation
of arrivals.

We can also observe in Table 2 that the mean response time is often non-monotonic in
time. Check, for instance, the case N(0) = 10, ρ = 1, where the response time starts at 10.1,
then drops to 3.77, then grows to 8.94. Similarly in other cases.
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What is surprising in Figures 2–5 is the high concentration of probability mass near
x = 0 in steady state. It is especially unexpected in Figures 4 and 5, obtained for ρ = 1.5.
One can expect that under such a high load, the queue should be long most of the time, so
the response time should also be long and rarely close to zero. However, as we can see in
Figures 4 and 5, this is not the case.

Such behavior of the response time is to be linked with the high autocorrelation of
arrivals. To demonstrate that, we can compare response times obtained for autocorrelated
arrivals (69)–(72) with results for uncorrelated arrivals, parameterized simply by: D0 = −1,
D1 = 1.

5.2. Impact of Autocorrelation

In Figures 6 and 7, the density of the response time is shown at different times in
overloaded queue with ρ = 1.5, and for N(0) = 10 and N(0) = 20, respectively. Both these
figures were obtained for uncorrelated arrivals, D0 = −1, D1 = 1.
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Figure 6. The response time density at different times assuming N(0) = 10, ρ = 1.5 and uncorre-
lated arrivals.

0 10 20 30 40
0.00

0.02

0.04

0.06

0.08

0.10

0.12

x

r 2
0,

1Ht
,x

L

t=¥

t=50

t=20

t=5

t=1

Figure 7. The response time density at different times assuming N(0) = 20, ρ = 1.5 and uncorre-
lated arrivals.

5.3. Discussion of Results

Figures 6 and 7 are to be compared with Figures 4 and 5, respectively.
In these pairs of figures, we may notice a very different behavior of the response time.

Specifically, in Figures 4 and 5, the probability mass tends to concentrate around x = 0
as time passes. Conversely, in Figures 6 and 7, the probability mass concentrates around
x = 25 as time goes on.

The effect of autocorrelation on the response time may be seen further in Figure 8.
In this figure, the steady-state mean response time is shown depending on load, which
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varies from 0 to 2. Specifically, the blue curve reflects the mean response time for autocorre-
lated arrivals (69)–(72), while the green curve reflects the response time for uncorrelated
ones, D0 = −1, D1 = 1.

As it is clear in Figure 8, for a load below 0.95, the mean response time in the auto-
correlated case is greater than in the uncorrelated one. Above 0.95, however, the situation
reverses – the response time is greater if there is no correlation.

This surprising effect, visible also in Figures 4–7, can be interpreted as follows. Assume
a high load, e.g., 1.5. In the correlated case, the arrival process is very irregular, i.e., it
has periods of very low and very high arrival intensities. During a high-intensity phase,
the queue length grows very quickly, due to the slow service. Consequently, active man-
agement kicks in aggressively, rejecting a large fraction of arriving tasks. In a low-intensity
phase, a very short queue can be maintained, despite the slow service, because the arrival
rate may be far less than 1 in such a phase.

In contrast, the arrival process without autocorrelation has a much more regular
intensity. Therefore, the queue is moderate to long most of the time, and active management
does not work so aggressively, as in the previous case.

Summarizing, when the load is high, in the autocorrelated case we have periods with
short queues and periods with long queues (and extreme rejections). In the uncorrelated
case, we have rather long queues most of the time (and moderate rejections). These factors
make the response time shorter on average in the scenario with autocorrelated arrivals.
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Figure 8. The mean response time in steady state versus load, for autocorrelated and
uncorrelated arrivals.

5.4. Impact of Active Management

In the next group of numerical results, we will investigate the effect of parameteriza-
tion of active management on the response time. In all the previous examples, we used
d(n) given in (75). Now the following formula will be utilized:

dp(n) = d(n + p), (76)

i.e., (75) shifted by a parameter p. Obviously, the greater p, the more sensitive active
management, and the sooner it starts rejecting tasks.

In Figures 9 and 10, we can see the density of the response time in steady state for
5 values of parameter p. Figure 9 covers the case ρ = 1, while Figure 10 covers the case
ρ = 1.5. In both figures, autocorrelated arrivals (69)–(72) are used.

As can be noticed in Figures 9 and 10, the greater p, the more probability mass is
concentrated on low values of x, and the thinner the distribution tail.



Symmetry 2024, 16, 271 17 of 20

0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

x

r¥
HxL

p=0

p=3

p=6

p=9

p=12

Figure 9. The steady-state response time density, for 5 values of parameter p in function dp(n) and
ρ = 1.
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Figure 10. The steady-state response time density, for 5 values of parameters p in function dp(n) and
ρ = 1.5.

5.5. Impact of Service Time Distribution

In the final set of numerical results, we will check the influence of the type of the service
time distribution on the response time. So far, the hyperexponential service time (73) has been
used in all numerical results. Now we will consider three more service time densities, namely:

• Pareto:

f2(x) =
αβα

xα+1 , x > β, (77)

with parameters α = 3.236, β = 0.691,
• Weibull:

f3(x) =
α

β

(
x
β

)α−1
e−(x/β)α

, x > 0, (78)

with parameters α = 0.463, β = 0.430,
• gamma:

f4(x) = βαe−βxxα−1/Γ(α), x > 0, (79)

with parameters α = 0.04, β = 0.04.

All the distributions presented above have the mean value S = 1.0. They, however,
differ by the standard deviation, which is 0.5, 2.5, and 5 for densities (77)–(79), respectively.

Furthermore, we will use not only bare distributions given in (77)–(79), but also their
scaled variants ρξ, where ρ > 0 is a parameter, and ξ is a random variate with one of the
distributions (77)–(79). Obviously, we have S = ρ in every such case, so the factor ρ is equal
to the load defined in (5).
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5.6. Discussion of Results

In Figure 11, the mean response time in steady state is depicted for all four considered
service time distributions as a function of ρ.

We can clearly observe two things. Firstly, the general shape of the curve seems not
to be affected by the particular distribution used. The shape is roughly the same for all
distributions (73), (77)–(79), even though densities (73), (77)–(79) differ significantly from
each other.

Secondly, the slope of each curve is deeply affected by the standard deviation of the
service time. The larger the standard deviation, the steeper the curve, regardless of the
particular type of distribution. For ρ = 1, the considered standard deviations are 0.5, 1.29,
2.5 and 5, which is reflected in the same order of curves in Figure 11, from the least steep
one (std. dev. of 0.5), to the most steep one (std. dev. of 5).
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Ρ
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¥

gamma
Weibull
hyperexponential
Pareto

Figure 11. The mean response time in steady state versus load, for Pareto, hyperexponential, Weibull
and gamma service time distribution.

6. Conclusions

We studied the response time using a queuing model which incorporates both active
and passive queue management, arbitrary service distribution, and a complex model of
arrivals, capable of mimicking arbitrary interarrival times, group arrivals, autocorrelated
arrivals, correlated group sizes, and other advanced features.

Formulas for the distribution function, probability density, and the mean value were
obtained both in the time-dependent case and steady state. These formulas can be used to
characterize the response time of many queuing mechanisms, possessing any subset of the
aforementioned features.

In numerical examples, we observed how the response time density and its mean value
are influenced by load, autocorrelation, and active queue management parameterization,
both in steady state and in the time-dependent scenarios.

The most unexpected observation made was that under high load, the mean response
time can be significantly smaller when arrivals are autocorrelated than when they are
uncorrelated. This contradicts a simplistic view that high autocorrelation of arrivals makes
all the queuing characteristics worse. In fact, autocorrelation may improve the response
time, perhaps at the cost of a decline in other characteristics.

The examined model, although rather general and broadly applicable, also has some
limitations. Some of these limitations are consequences of the asymmetry between the
arrival and service processes in the model.

The first limitation is that arrival times can be autocorrelated, but service times cannot.
In reality, arrival processes are more often correlated than service processes, but correlated
services can also be encountered.

The second limitation is that the arrival process possesses a group structure, whereas
the service process is singular. Again, a singular type of service is common in many systems,
but examples of systems with group service can be found as well.
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The third limitation is the particular active management mechanism assumed in the
study. In this mechanism, a task is forbidden to queue up based on the current system
occupancy. This type of active management, although popular and intuitive, is not the only
one possible. The results obtained here cannot be used for other active management types.

All these limitations may directly translate into propositions for future work. Firstly,
the response time of a system with autocorrelated service times can be studied. Secondly,
a model allowing simultaneous service of a group of arrivals can be investigated. Finally,
a model with another type of active management can be studied mathematically, e.g., of
the type proposed in [39].
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