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Abstract: Dual quaternions have wide applications in automatic differentiation, computer graphics,
mechanics, and others. Due to its application in control theory, matrix equation AXB = C has
been extensively studied. However, there is currently limited information on matrix equation
AXB = C regarding the dual quaternion algebra. In this paper, we provide the necessary and
sufficient conditions for the solvability of dual quaternion matrix equation AXB = C, and present the
expression for the general solution when it is solvable. As an application, we derive the ϕ-Hermitian
solutions for dual quaternion matrix equation AXAϕ = C, where the ϕ-Hermitian extends the
concepts of Hermiticity and η-Hermiticity. Lastly, we present a numerical example to verify the main
research results of this paper.
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1. Introduction

Let R denote the set of real numbers and Hm×n stand for the space of all m× n matrices
over quaternions

H = {u0 + u1i + u2j + u3k|i2 = j2 = k2 = ijk = −1, u0, u1, u2, u3 ∈ R}.

The symbols r(A), A∗, I, and 0 are defined by the rank of a given quaternion matrix
A, the conjugate transpose of A, identity matrix, and zero matrix with appropriate sizes,
respectively. The Moore–Penrose inverse of A ∈ Hl×k is denoted as A†, which is defined
as the solution of AYA = A, YAY = Y, (AY)∗ = AY, and (YA)∗ = YA. Moreover, let
LA = I − A† A and RA = I − AA† represent two projectors along A.

Since Hamilton’s discovery of quaternions in 1843, quaternions and quaternion matri-
ces have found a large amount of practical applications in fields such as computer science,
statistics, quantum physics, signal and color image processing, flight mechanics, aerospace
technology, and so on (see, e.g., [1–4]). Furthermore, quaternion matrix equations also have
significant applications in many fields, such as system and control theory.

Up to this point, matrix equations have witnessed a large number of papers propos-
ing various methods for solving some matrix equations (see, e.g., [5–10]). The classical
matrix equation

AXB = C, (1)

has been studied by many authors. Ben-Israel and Greville [11] eatablished the necessary
and sufficient conditions for the solvability of matrix Equation (1). In 2003, Liao and
Bai [12] investigated the least-squares solution of matrix Equation (1) over symmetric
positive semidefinite matrices. Huang et al. [13] provided the skew-symmetric solution
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and the optimal approximate solution of matrix Equation (1). Peng [14] derived the centro-
symmetric solution of matrix Equation (1). Deng et al. [15] studied the general expressions
regarding the Hermitian solutions of matrix Equation (1). Xie and Wang [16] considered
the reducible solution to matrix Equation (1) when it is solvable. As a special case of matrix
Equation (1), the Hermitian solution X to matrix equation

AXA∗ = B (2)

has attracted extensive attention (see, e.g., [17,18]). Baksalary [19] and Größ [20] studied
the nonnegative definite and positive definite solutions to matrix Equation (2), respectively.
For η ∈ {i, j, k}, a quaternion matrix A is called η-Hermitian and η-skew-Hermitian if
A = Aη∗ and A = −Aη∗ , respectively, where Aη∗ = −ηA∗η [21]. The utilization of η-
Hermitian matrices in linear modeling is extensively recognized [22]. Kyrchei [23] derived
the explicit determinantal representation formulas of η-Hermitian and η-skew-Hermitian
solutions to the quaternion matrix equation

AXAη∗ = B.

It is well-known that dual numbers and dual quaternions have wide applications in
computer graphics, automatic differentiation, geometry, mechanics, rigid body motions,
and robotics (see, e.g., [24–26]). For the related definitions of dual numbers and dual
quaternions, please see Section 2.

So far, there has been little information on matrix Equation (1) regarding dual quater-
nion algebra. Motivated by the work mentioned above, in this paper, we aim to investigate
the general solution of dual quaternion matrix Equation (1) by using Moore–Penrose in-
verses and ranks of matrices. Since the ϕ-Hermitian serves as an extended form of both
Hermiticity and η-Hermiticity over the quaternions [27], we also provide the definition of
ϕ-Hermiticity over the dual quaternions. As an application, we establish the ϕ-Hermitian
solution of a special dual quaternion matrix equation

AXAϕ = C, Cϕ = C. (3)

Further details regarding ϕ-Hermitian matrices will be illustrated in Section 2.
This paper is organized as follows. In Section 2, we provide an overview of essential

definitions and lemmas that will be applied in the subsequent sections. In Section 3, we
establish some necessary and sufficient conditions for solvability regarding dual quaternion
matrix Equation (1) and consider some special cases of dual quaternion matrix Equation (1).
As an application, we investigate the ϕ-Hermitian solution of dual quaternion matrix
Equation (3) in Section 4. In Section 5, we present a numerical example to illustrate the
results of this paper. Finally, a brief conclusion is provided in Section 6.

2. Preliminaries

In this section, we review some definitions of dual numbers, dual quaternions, and
related propositions. Moreover, we introduce the definitions of dual quaternion matrix and
ϕ-Hermitian matrix, which are fundamental for obtaining the main results.

Definition 1 ([28]). Suppose that x0, x1 ∈ R; we say x is a dual number if x has the form

x = x0 + x1ϵ,

where ϵ is the infinitesimal unit, satisfying ϵ2 = 0.
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We call x0 the real part or the standard part of x, x1 as the dual part or the infinitesimal
part of x. The infinitesimal unit ϵ is commutative in multiplication with real numbers,
complex numbers, and quaternions. The set of dual numbers is denoted by

D = {x = x0 + x1ϵ|ϵ2 = 0, x0, x1 ∈ R}.

Assume that x = x0 + x1ϵ, y = y0 + y1ϵ ∈ D; we have x = y if x0 = y0 and x1 = y1;
regarding addition and multiplication, there is

x + y = x0 + y0 + (x1 + y1)ϵ,

xy = x0y0 + (x0y1 + x1y0)ϵ.

Definition 2 ([28]). Let z0, z1 ∈ H. We say z is a dual quaternion if z has the form

z = z0 + z1ϵ,

where ϵ is the infinitesimal unit, satisfying ϵ2 = 0, z0, z1 as the real part and the dual part
of z, respectively.

The collection of dual quaternions is denoted by

DQ = {z = z0 + z1ϵ|ϵ2 = 0, z0, z1 ∈ H}.

Now, we introduce the definition of dual quaternion matrix. Let X0, X1 ∈ Hm×n. X
is said to be a dual quaternion matrix if X has the form X = X0 + X1ϵ; the set of dual
quaternion matrices is denoted by

DQm×n = {X = X0 + X1ϵ|ϵ2 = 0, X0, X1 ∈ Hm×n}.

The conjugate transpose of X is defined as X∗ = X∗
0 + X∗

1 ϵ. For Y = Y0 + Y1ϵ ∈
DQm×n, by analogy, we have X = Y if X0 = Y0 and X1 = Y1; furthermore,

X + Y = X0 + Y0 + (X1 + Y1)ϵ,

XY = X0Y0 + (X0Y1 + X1Y0)ϵ.

To facilitate our study on the ϕ-Hermitian, we first review the concept of nonstandard
involution over quaternions, and then proceed to generalize it to dual quaternions.

Definition 3 ([27]). A map ϕ : H → H is called an antiendomorphism if ϕ(pq) = ϕ(q)ϕ(p)
and ϕ(p + q) = ϕ(p) + ϕ(q) for all p, q ∈ H. An antiendomorphism ϕ is called an involution if
ϕ(ϕ(p)) = p for every p ∈ H.

Definition 4 ([27]). Under the basis (1, i, j, k), an involution ϕ is called nonstandard if and only if
ϕ can be expressed as a real matrix

ϕ =

(
1 0
0 T

)
,

where T is a 3 × 3 real orthoganal symmetric matrix with eigenvalues 1, 1,−1.

Proposition 1 ([27]). Let z ∈ H. Then, every nonstandard involution ϕ of H has the form
ϕ(z) = β−1z∗β for some β ∈ H with β2 = −1.

Definition 5 ([27]). For a nonstandard involution ϕ, Z ∈ Hm×n, we denote by Zϕ the matrix
obtained by applying ϕ entrywise to the transposed matrix of Z.

For example, if ϕ is such that ϕ(i) = i, ϕ(j) = −j, ϕ(k) = k, then
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1 + k j
i 3 + k

j + k i − j

ϕ

=

(
1 + k i −j + k
−j 3 + k i + j

)
.

Definition 6 ([27]). For a nonstandard involution ϕ, a quaternion matrix Z is said to be ϕ-
Hermitian if Z = Zϕ. In fact, Zϕ = β−1Z∗β for some β ∈ H with β2 = −1.

Proposition 2. Let Z ∈ Hm×n, β ∈ H, and β2 = −1. Then,

(1) (Zϕ)† = (Z†)ϕ,
(2) (LZ)

ϕ = RZϕ ,
(3) (RZ)

ϕ = LZϕ .

Proof. Regarding the proof of (1), it is obvious that β−1 = −β, β∗ = −β; by the definition
of Moore–Penrose inverse, we obtain

Zϕ(Z†)ϕZϕ = (−βZ∗β)[−β(Z†)∗β](−βZ∗B)

= −βZ∗(Z†)∗Z∗β = −β(ZZ†Z)∗β

= −βZ∗β = Zϕ,

(Z†)ϕZϕ(Z†)ϕ = [−β(Z†)∗β](−βZ∗β)[−β(Z†)∗β]

= −β(Z†)∗Z∗(Z†)∗β = −β(Z†ZZ†)∗β

= −β(Z†)∗β = (Z†)ϕ,

[Zϕ(Z†)ϕ]∗ = [(−βZ∗β)(−β(Z†)∗β)]∗

= [−βZ∗(Z†)∗β]∗ = (−βZ†Zβ)∗

= −β(Z†Z)∗β = (−βZ∗β)[−β(Z†)∗β]

= Zϕ(Z†)ϕ,

[(Z†)ϕZϕ]∗ = [−β(Z†)∗β(−βZ∗β)]∗

= [−β(Z†)∗Z∗β]∗ = (−βZZ†β)∗

= −β(ZZ†)∗β = [−β(Z†)∗β](−βZ∗β)

= (Z†)ϕZϕ.

(4)

Based on this, we can deduce that (Z†)ϕ is the Moore–Penrose inverse of Zϕ.
For (2), we have

(LZ)
ϕ = (I − Z†Z)ϕ = I − Zϕ(Z†)ϕ = I − Zϕ(Zϕ)† = RZϕ .

In a similar vein to (2), we can offer a demonstration for (3); therefore, we omit it here.

By analogy, we propose the definition of ϕ-Hermiticity with respect to dual quaternion
matrix, where ϕ is a nonstandard involution.

Definition 7. For X = X0 + X1ϵ ∈ DQm×n, X is called ϕ-Hermitian matrix if X = Xϕ, where

Xϕ : = β−1X∗β = β−1X∗
0 β + β−1X∗

1 βϵ = Xϕ
0 + Xϕ

1 ϵ,

with β ∈ H and β2 = −1.
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For example, if ϕ is such that ϕ(i) = i, ϕ(j) = −j, ϕ(k) = k,

X =

(
1 2 + i

2 + i 3 + k

)ϕ

+

(
3 + i k

k 2i + 3k

)ϕ

ϵ

=

(
1 2 + i

2 + i 3 + k

)
+

(
3 + i k

k 2i + 3k

)
ϵ,

then X is a ϕ-Hermitian matrix.

Proposition 3 ([27]). Let X, Y ∈ Hm×n, α, β ∈ H. Then,

(1) (αX + βY)ϕ = Xϕϕ(α) + Yϕϕ(β),
(2) (Xα + Yβ)ϕ = ϕ(α)Xϕ + ϕ(β)Yϕ,
(3) (XY)ϕ = YϕXϕ,
(4) (Xϕ)ϕ = X.

Having outlined the properties of ϕ-Hermitian matrix over quaternions, we now present
the corresponding properties of ϕ-Hermitian matrix over the dual quaternion algebra.

Proposition 4. Let X, Y ∈ DQn×n. Then,

(1) (X + Y)ϕ = Xϕ + Yϕ,
(2) (XY)ϕ = YϕXϕ,
(3) (Xϕ)ϕ = X.

Proof. By the algebraic properties of ϕ, we have

(X + Y)ϕ = [(X0 + Y0) + (X1 + Y1)ϵ]
ϕ

= (X0 + Y0)
ϕ + (X1 + Y1)

ϕϵ

= Xϕ
0 + Yϕ

0 + Xϕ
1 ϵ + Yϕ

1 ϵ

= Xϕ
0 + Xϕ

1 ϵ + Yϕ
0 + Yϕ

1 ϵ

= Xϕ + Yϕ.

In relation to (2), we obtain

(XY)ϕ = [X0Y0 + (X0Y1 + X1Y0)ϵ]
ϕ

= (X0Y0)
ϕ + (X0Y1 + X1Y0)

ϕϵ

= Yϕ
0 Xϕ

0 + Yϕ
1 Xϕ

0 ϵ + Yϕ
0 Xϕ

1 ϵ

= (Yϕ
0 + Yϕ

1 ϵ)(Xϕ
0 + Xϕ

1 ϵ)

= YϕXϕ.

In terms of (3), we have

(Xϕ)ϕ = [(X0 + X1ϵ)ϕ]ϕ

= (Xϕ
0 + Xϕ

1 ϵ)ϕ

= X0 + X1ϵ

= X.

Now, we provide a few lemmas, which are basic tools for obtaining the key outcomes.
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Lemma 1 ([29]). Suppose that A, B, and C are provided for matrices with the adequate dimensions
over H; then, quaternion matrix Equation (1) is consistent if and only if

RAC = 0, CLB = 0.

In this case, the general solution can be expressed as

X = A†CB† + LAU + VRB,

where U, V are any matrices over H with appropriate dimensions.

Lemma 2 ([16]). Let A1, A2, B1, B2, and C1 have matrices with appropriate sizes. Set

A = RA1 C, B = B1LB2 , M = RA1 A2, C1 = CLB2 .

Then, the following descriptions are equivalent:

(1) The quaternion matrix equation

A1X1B1 + A1X2B2 + A2X3B2 = C (5)

is consistent.
(2) RM A = 0, RA1 CLB2 = 0, C1LB = 0.
(3)

r
(

A1 A2 C
)
= r
(

A1 A2
)
,

r
(

B2 0
C A1

)
= r
(

B2
)
+ r
(

A1
)
,

r

C1
B1
B2

 = r
(

B1
B2

)
.

In this case, the general solution to (5) can be expressed as follows:

X1 = A†
1C1B† + LA1 V1 + V2RB,

X2 = A†
1(C − A1X1B1 − A2X3B2)B†

2 + T1RB2 + LA1 T2,

X3 = M† AB†
2 + LMU1 + U2RB2 ,

where U1, U2, V1, V2, T1, and T2 are arbitrary matrices over H with appropriate sizes.

The following lemma, originally derived by Marsaglia and Styan [30], can be extended
to H.

Lemma 3. Assume that A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n, D ∈ Hj×k, and E ∈ Hl×i; then, we
have the following rank equality:

(1) r
(

RAB
)
= r
(

A B
)
− r(A).

(2) r
(
CLB

)
= r
(

B
C

)
− r(B).

(3) r
(

RABLC
)
= r
(

B A
C 0

)
− r(A)− r(C).

(4) r
(

RAB
C

)
= r
(

B A
C 0

)
− r(A).

(5) r
(

ALB C
)
= r
(

A C
B 0

)
− r(B).
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(6) r
(

A BLD
REC 0

)
= r

A B 0
C 0 E
0 D 0

− r(D)− r(E).

3. The Solution of Matrix Equation (1)

In this section, we establish the necessary and sufficient conditions for the solvability
of dual quaternion matrix Equation (1) and provide the expressions of its general solution.
Additionally, we investigate some special cases of dual quaternion matrix Equation (1).

Theorem 1. Let A = A0 + A1ϵ ∈ DQm×n, B = B0 + B1ϵ ∈ DQk×l , C = C0 + C1ϵ ∈ DQm×l

be known. Put
A2 = A1LA0 , B2 = RB0 B1, C11 = A0 A†

0C0B†
0 B1, (6)

C22 = A1 A†
0C0B†

0 B0, C2 = C1 − C11 − C22, (7)

M = RA0 A2, N = RA0 C2, E = B2LB0 , F = C2LB0 . (8)

Then, the following statements are equivalent:

(1) Dual quaternion matrix Equation (1) is consistent.
(2)

RA0 C0 = 0, C0LB0 = 0, (9)

RM N = 0, RA0 C2LB0 = 0, FLE = 0. (10)
(3)

r
(

A0 C0
)
= r
(

A0
)
, r
(

B0
C0

)
= r
(

B0
)
, (11)

r
(

A1 A0 C1
A0 0 C0

)
= r
(

A1 A0
A0 0

)
, (12)

r
(

C1 A0
B0 0

)
= r
(

A0
)
+ r
(

B0
)
, (13)

r

B1 B0
B0 0
C1 C0

 = r
(

B1 B0
B0 0

)
. (14)

In this case, the general solution X of dual quaternion matrix Equation (1) can be expressed as
X = X0 + X1ϵ, where

X0 = A†
0C0B†

0 + LA0U + VRB0 ,

X1 = A†
0(C2 − A0VB2 − A2UB0)B†

0 + W1RB0 + LA0W2,

U = M†NB†
0 + LMQ1 + Q2RB0 ,

V = A†
0FE† + LA0 Q3 + Q4RE,

(15)

and Qi(i = 1, 4), Wi(i = 1, 2) are arbitrary matrices over H with appropriate dimensions.

Proof. (1) ⇔ (2): Suppose that dual quaternion matrix Equation (1) is solvable and its
solution is X ∈ DQm×n, which can be expressed as

X = X0 + X1ϵ, (16)
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substituting (16) into (1), by the definition of equality of dual quaternion matrices, we can
obtain that dual quaternion matrix Equation (1) is equivalent to the system of quaternion
matrix equations {

A0X0B0 = C0,

A0X0B1 + A0X1B0 + A1X0B0 = C1.
(17)

The structure of the proof goes as follows. We first prove that (1) ⇔ (2) and illustrate
the general solution of (17) with the form of (15), and then we prove (2) ⇔ (3).

We divide the system (17) into the following:

A0X0B0 = C0, (18)

and

A0X0B1 + A0X1B0 + A1X0B0 = C1. (19)

By Lemma 1, we obtain that (18) is consistent if and only if

RA0 C0, C0LB0 = 0.

In this case, the general solution of (18) can be written as

X0 = A†
0C0B†

0 + LA0U + VRB0 , (20)

where U, V are any matrices over H with appropriate sizes.
Substituting Equation (20) into Equation (19) provides

A0VB2 + A0X1B0 + A2UB0 = C2, (21)

where A2, B2, and C2 are defined by (6) and (7). Using Lemmas 2 to (21), we know that
matrix Equation (21) is solvable if and only if

RM N = 0, RA0 C2LB0 = 0, FLE = 0,

where M, N, E, and F are provided by (8). In this case, the general solution of (21) can be
expressed as

X1 = A†
0(C2 − A0VB2 − A2UB0)B†

0 + W1RB0 + LA0W2, (22)

U = M†NB†
0 + LMQ1 + Q2RB0 , (23)

V = A†
0FE† + LA0 Q3 + Q4RE, (24)

where Q1, Q2, Q3, Q4, W1, and W2 are any matrices with the suitable dimensions over H.
To sum up, we have shown that matrix Equation (1) has a dual solution X ∈ DQm×n if and
only if (2) holds.

(2) ⇔ (3): We divide it into two parts to prove its equivalence.

• Firstly, we prove that (9) holds if and only if (11) holds. According to Lemma 3, it is
easy to verify that (9) ⇔ (11).

• Now, we turn to prove that (10) ⇔ (12) − (14). Let X0 = A†
0C0B†

0 . Then, it is easy
to verify that X0 is a particular solution to the matrix equation A0X0B0 = C0. By
Lemma 3 and block elementary operations, we obtain
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RM N = 0 ⇔ r(RM N) = 0 ⇔ r
(

RA0 A2 RA0 C2
)
= r(RA0 A2),

⇔ r
(

A0 A2 C2
)
= r
(

A0 A2
)
,

⇔ r
(

A0 A1LA0 C2
)
= r
(

A0 A1LA0

)
,

⇔ r
(

A1 A0 C2
A0 0 0

)
= r
(

A1 A0
A0 0

)
,

⇔ r
(

A1 A0 C1 − A0 A†
0C0B†

0 B1 − A1 A†
0C0B†

0 B0
A0 0 0

)
= r
(

A1 A0
A0 0

)
,

⇔ r
(

A1 A0 C1
A0 0 A0 A†

0C0B†
0 B0

)
= r
(

A1 A0
A0 0

)
,

⇔ r
(

A1 A0 C1
A0 0 C0

)
= r
(

A1 A0
A0 0

)
,

RA0 C2LB0 = 0 ⇔ r(RA0 C2LB0) = 0 ⇔ r
(

C2 A0
B0 0

)
= r(A0) + r(B0),

⇔ r
(

C1 − C11 − C22 A0
B0 0

)
= r(A0) + r(B0),

⇔ r
(

C1 − A0 A†
0C0B†

0 B1 − A1 A†
0C0B†

0 B0 A0
B0 0

)
= r(A0) + r(B0),

⇔ r
(

C1 A0
B0 0

)
= r(A0) + r(B0),

FLE = 0 ⇔ r(FLE) = 0 ⇔ r
(

E
F

)
= r(E) ⇔ r

(
B2LB0

C2LB0

)
= r(B2LB0),

⇔ r

 B0
B2
C2

 = r
(

B0
B2

)
⇔ r

 B0
RB0 B1

C2

 = r
(

B0
RB0 B1

)
,

⇔ r

 B1 B0
B0 0
C2 0

 = r
(

B1 B0
B0 0

)
,

⇔ r

 B1 B0
B0 0

C1 − A0 A†
0C0B†

0 B1 − A1 A†
0C0B†

0 B0 0

 = r
(

B1 B0
B0 0

)
,

⇔ r

 B1 B0
B0 0
C1 A0 A†

0C0B†
0 B0

 = r
(

B1 B0
B0 0

)
,

⇔ r

 B1 B0
B0 0
C1 C0

 = r
(

B1 B0
B0 0

)
.

Now, we consider some special cases of dual quarernion matrix Equation (1).

Corollary 1 ([31]). Assume that A = A0 + A1ϵ ∈ DQm×n, C = C0 + C1ϵ ∈ DQm×l are
given. Put

A2 = A1LA0 , C22 = A1 A†
0C0, C2 = C1 − C22, M = RA0 A2, N = RA0 C2. (25)

Then, the following statements are equivalent:

(1) Dual quaternion matrix equation AX = C is consistent.
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(2)
RA0 C0 = 0, RM N = 0. (26)

(3)

r
(

A0 C0
)
= r
(

A0
)
, r
(

A1 A0 C1
A0 0 C0

)
= r
(

A1 A0
A0 0

)
. (27)

In this case, the general solution X of dual quaternion matrix equation AX = C can be
expressed as X = X0 + X1ϵ, where

X0 = A†
0C0 + LA0U,

X1 = A†
0(C2 − A2U) + LA0W1,

U = M†N + LMW2,

(28)

and W1, W2 are arbitrary matrices over H with appropriate dimensions.

Corollary 2 ([31]). Let B = B0 + B1ϵ ∈ DQk×l , C = C0 + C1ϵ ∈ DQm×l be known. Denote

B2 = RB0 B1, C11 = C0B†
0 B1, C2 = C1 − C11, E = B2LB0 , F = C2LB0 . (29)

Then, the following statements are equivalent:

(1) Dual quaternion matrix equation XB = C is consistent.
(2)

C0LB0 = 0, FLE = 0. (30)
(3)

r
(

B0
C0

)
= r
(

B0
)
, r

B1 B0
B0 0
C1 C0

 = r
(

B1 B0
B0 0

)
. (31)

In this case, the general solution can be expressed as X = X0 + X1ϵ, where

X0 = C0B†
0 + VRB0 ,

X1 = (C2 − VB2)B†
0 + W1RB0 ,

V = FE† + W2RE,

(32)

and W1, W2 are arbitrary matrices over H with appropriate dimensions.

Remark 1. Matrix equations AX = B and XC = D have significant applications in eigenvalue
problems, image processing, and solving linear systems. However, the matrix equation AXB = C
is a general case that encompasses either matrix equation AX = B or XC = D. Therefore,
the applications regarding matrix equations AX = B and XC = D are applicable to matrix
equation AXB = C.

4. Applications

As an application of Theorem 1, we can investigate dual quaternion matrix Equation (3).

Theorem 2. Suppose that A = A0 + A1ϵ ∈ DQm×n, C = C0 + C1ϵ = Cϕ ∈ DQm×m are
provided; denote

B2 = RAϕ
0

Aϕ
1 , C11 = A0 A†

0C0(Aϕ
0 )

† Aϕ
1 , C22 = A1 A†

0C0(Aϕ
0 )

† Aϕ
0 ,

C2 = C1 − C11 − C22, M = RA0 Bϕ
2 , N = RA0 C2.

Then, the following statements are equivalent:

(1) Dual quaternion matrix Equation (3) is consistent.
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(2) The following equalities are satisfied:

RA0 C0 = 0, RM N = 0, RA0 C2LAϕ
0
= 0.

(3) The following rank equalities hold:

r
(

A0 C0
)
= r
(

A0
)
,

r
(

A1 A0 C1
A0 0 C0

)
= r
(

A1 A0
A0 0

)
,

r

(
C1 A0

Aϕ
0 0

)
= r
(

A0
)
+ r
(

Aϕ
0

)
= 2r(A0).

In this case, the general solution X of (3) can be expressed as X = X0 + X1ϵ, where

X0 =
X̃0 + X̃0

ϕ

2
, X1 =

X̃1 + X̃1
ϕ

2

and

X0 = A†
0C0(Aϕ

0 )
† + LA0U + VRAϕ

0
,

X1 = A†
0(C2 − A0VB2 − Bϕ

2 UAϕ
0 )(Aϕ

0 )
† + W1RAϕ

0
+ LA0W2,

U = M†N(Aϕ
0 )

† + LMQ1 + Q2RAϕ
0
,

V = A†
0 Nϕ(Mϕ)† + LA0 Q3 + Q4RMϕ ,

Qi(i = 1, 4) , Wi(i = 1, 2) are any matrices with appropriate dimensions over H.

Proof. By using the definitions of equality of dual quaternion matrices and dual quaternion
matrix multiplication, we can conclude that the consistency of dual quaternion matrix
Equation (3) is contingent on the existence of the solutions to the system of quaternion
matrix equations {

A0X̃0 Aϕ
0 = C0,

A0X̃0 Aϕ
1 + A0X̃1 Aϕ

0 + A1X̃0 Aϕ
0 = C1.

(33)

In fact, if matrix Equation (3) has a ϕ-Hermitian solution X = X0 + X1ϵ, it is obvious
that X0 and X1 must be solutions to (33). Conversely, if the system (33) has solutions X̃0
and X̃1, then matrix Equation (3) has solution X = X0 + X1ϵ, where

X0 =
X̃0 + X̃0

ϕ

2
, X1 =

X̃1 + X̃1
ϕ

2
.

According to Theorem 1, we can present the necessary and sufficient conditions for
the solvability of (33), along with the general expression for its solutions.

5. Numerical Example

Now, we provide a numerical example to illustrate the main results of this paper.
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Example 1. Given the dual quaternion matrices:

A = A0 + A1ϵ =

 2i + k 3i + j
j 0

3j − 4k i + k

+

 2 − 3i + k i
−3k i − j

0 4i + j

ϵ,

B = B0 + B1ϵ =

(
1 + i + j −j −3i + k

0 k + j 0

)
+

(
−i − 2k j + 3k 0

i k i + k

)
ϵ,

C = C0 + C1ϵ

=

 −6 − 3j + 3k −9 + 3i + 4j − 6k 9 + 9i − 3j − 3k
−1 + 2i − j −i − k 4 + 2j

4 + 10i − 2j + 6k −7 − i − j − 3k 14 − 16i + 2j − 8k


+

 −2i + 9j + 5k −16 + 28i − 16j − 18k 2 + 14i − 6j − 10k
2 + 5i + j + 7k −3 + i − 6j + k 9 − 10i − 3j − 10k

−11 + 24i + 17j − 2k −11 − 6i − 11j + 4k 42 − 6i − 12j + 10k

ϵ.

Computing directly yields

r
(

A0 C0
)
= r(A0) = 2, r

(
B0
C0

)
= r(B0) = 2,

r
(

A1 A0 C1
A0 0 C0

)
= r
(

A1 A0
A0 0

)
= 4,

r
(

C1 A0
B0 0

)
= r
(

A0
)
+ r
(

B0
)
= 4,

r

B1 B0
B0 0
C1 C0

 = r
(

B1 B0
B0 0

)
= 4.

All rank equations are satisfied and a solution of dual quaternion matrix Equation (1) can be
expressed as

X = X0 + X1ϵ =

(
i + k 0

1 j − 2k

)
+

(
j + 2k −1

i 2 + 3i − 4k

)
ϵ.

6. Conclusions

Matrix equations AX = B and XC = D have specific applications in areas such as
eigenvalue problems, image processing, and linear system solving. On the other hand,
AXB = C is a more general matrix equation that has broader use. In this paper, we have
established the solvability conditions for dual quaternion matrix Equation (1) by using
Moore–Penrose inverses and ranks of matrices; we have also derived the expressions of its
general solution to (1) when the solvability conditions are met. As special cases, some dual
quaternion matrix equations have also been discussed. Moreover, we have investigated
the ϕ-Hermitian matrix over dual quaternion algebra and provided its related properties.
As an application of the aforementioned research, we have considered a special case of (1)
and provided the ϕ-Hermitian solutions to (3). Finally, we have presented an example to
illustrate the main results. In the future, we will focus on researching more complex matrix
and tensor equations over the dual quaternion algebra.
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