Cylindrical Models Motivated through Extended Sine-Skewed Circular Distributions
Abstract
:1. Introduction
2. A New Model for Linear–Circular Data
2.1. Moment Expressions
2.2. Linear–Circular Correlation
2.3. Random Number Generation
- Step 1
- Generate a random variable from the wrapped Cauchy distribution with location and concentration and generate independently U from the uniform distribution .
- Step 2
- Set asThen, follows the sine-skewed wrapped Cauchy distribution.
- Step 3
- Generate X from the Weibull distribution (6) with a shape parameter and a scale parameter .
2.4. Identifiability
3. Statistical Inference
Monte Carlo Simulation Study
4. Real Data Analysis
4.1. Periwinkle Data Set
4.2. Occurrence Date of Typhoon and the Reciprocal of Minimum Pressure Data Set
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Definition |
DGP | Data-generating process |
ESS | Extended sine-skewed |
MLE | Maximum likelihood estimate |
MLL | Maximum log-likelihood |
RMSE | Root mean squared error |
TIC | Takeuchi information criterion |
WeiESSVM | Weibull extended sine-skewed von Mises distribution |
WeiSSVM | Weibull sine-skewed von Mises distribution |
Appendix A. Proofs
Appendix A.1. Derivation of the Moment in the Case of m = 1
Appendix A.2. Derivation of the Moment in the Case of m = 2
Appendix A.3
Appendix A.4. An Relationship between and the Associate Legendre Function
References
- García-Portugués, E.; Barros, A.M.; Crujeiras, R.M.; González-Manteiga, W.; Pereira, J. A test for directional-linear independence, with applications to wildfire orientation and size. Stoch. Environ. Res. Risk Assess. 2014, 28, 1261–1275. [Google Scholar] [CrossRef]
- Lagona, F.; Picone, M.; Maruotti, A.; Cosoli, S. A hidden Markov approach to the analysis of space–time environmental data with linear and circular components. Stoch. Environ. Res. Risk Assess. 2015, 29, 397–409. [Google Scholar] [CrossRef]
- Wang, F.; Gelfand, A.E.; Jona-Lasinio, G. Joint spatio-temporal analysis of a linear and a directional variable: Space-time modeling of wave heights and wave directions in the Adriatic Sea. Stat. Sin. 2015, 25, 25–39. [Google Scholar] [CrossRef]
- Mardia, K.V.; Sutton, T.W. A model for cylindrical variables with applications. J. R. Stat. Soc. Ser. Methodol. 1978, 40, 229–233. [Google Scholar] [CrossRef]
- Imoto, T.; Shimizu, K.; Abe, T. A cylindrical distribution with heavy-tailed linear part. Jpn. J. Stat. Data Sci. 2019, 2, 129–154. [Google Scholar] [CrossRef]
- Kato, S.; Shimizu, K. Dependent models for observations which include angular ones. J. Stat. Plan. Inference 2008, 138, 3538–3549. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wehrly, T.E. Some angular-linear distributions and related regression models. J. Am. Stat. Assoc. 1978, 73, 602–606. [Google Scholar] [CrossRef]
- Abe, T.; Ley, C. A tractable, parsimonious and flexible model for cylindrical data, with applications. Econom. Stat. 2017, 4, 91–104. [Google Scholar] [CrossRef]
- Abe, T.; Pewsey, A. Sine-skewed circular distributions. Stat. Pap. 2011, 52, 683–707. [Google Scholar] [CrossRef]
- Ley, C.; Babić, S.; Craens, D. Flexible models for complex data with applications. Annu. Rev. Stat. Appl. 2021, 8, 369–391. [Google Scholar] [CrossRef]
- Miyata, Y.; Shiohama, T.; Abe, T. Identifiability of asymmetric circular and cylindrical distributions. Sankhya A 2023, 85, 1431–1451. [Google Scholar] [CrossRef]
- Umbach, D.; Jammalamadaka, S.R. Building asymmetry into circular distributions. Stat. Probab. Lett. 2009, 79, 659–663. [Google Scholar] [CrossRef]
- Miyata, Y.; Shiohama, T.; Abe, T. An extension of sine-skewed circular distributions. arXiv 2024, arXiv:2402.09788. [Google Scholar] [CrossRef]
- Mardia, K.V. linear–circular correlation coefficients and rhythmometry. Biometrika 1976, 63, 403–405. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wehrly, T. Measures and models for angular correlation and angular–linear correlation. J. R. Stat. Soc. Ser. B Stat. Methodol. 1977, 39, 222–229. [Google Scholar] [CrossRef]
- Takeuchi, K. The distribution of information statistics and the criterion of goodness of fit of models. Math. Sci. 1976, 153, 12–18. (In Japanese) [Google Scholar]
- Fisher, N.I.; Lee, A.J. Regression models for an angular response. Biometrics 1992, 48, 665–677. [Google Scholar] [CrossRef]
- Kitamoto, A. Digital typhoon: Near real-time aggregation, recombination and delivery of typhoon-related information. In Proceedings of the 4th International Symposium on Digital Earth, Tokyo, Japan, 28–31 March 2005. [Google Scholar]
- Lagona, F. Correlated cylindrical data. In Applied Directional Statistics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 61–76. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Academic Press: London, UK, 2015. [Google Scholar]
0.0667 | 0.0235 | 0.0749 | |||
(0.1721) | (0.0475) | (0.1157) | (1.0784) | (0.1915) | |
0.0486 | 0.0076 | 0.0254 | |||
(0.1648) | (0.0404) | (0.0864) | (1.0603) | (0.1518) | |
0.0427 | 0.0031 | –0.0026 | 0.0107 | –0.0243 | |
(0.1634) | (0.0395) | (0.0895) | (1.0546) | (0.1266) | |
0.0405 | 0.0015 | 0.0033 | 0.0055 | 0.0584 | |
(0.1628) | (0.0393) | (0.0922) | (1.0523) | (0.1459) | |
0.0396 | 0.0010 | 0.0057 | 0.0034 | 0.1242 | |
(0.1627) | (0.0393) | (0.0935) | (1.0515) | (0.1818) | |
0.0373 | 0.0203 | 0.0652 | |||
(0.0948) | (0.0318) | (0.0912) | (1.0409) | (0.1937) | |
0.0197 | 0.0046 | 0.0168 | |||
(0.0888) | (0.0243) | (0.0499) | (1.0234) | (0.1378) | |
0.0154 | 0.0013 | 0.0003 | 0.0058 | –0.0105 | |
(0.0877) | (0.0240) | (0.0508) | (1.0190) | (0.0774) | |
0.0142 | 0.0002 | 0.0038 | 0.0026 | 0.0793 | |
(0.0876) | (0.0239) | (0.0515) | (1.0179) | (0.1086) | |
0.0131 | 0.0060 | 0.0007 | 0.1465 | ||
(0.0874) | (0.0239) | (0.0520) | (1.0168) | (0.1620) |
0.0459 | 0.0111 | 0.0173 | 0.0282 | 0.3881 | |
(0.1490) | (0.0874) | (0.0553) | (0.5640) | (0.4032) | |
0.0422 | 0.0033 | 0.0031 | 0.0170 | 0.2042 | |
(0.1483) | (0.0870) | (0.0580) | (0.5605) | (0.2475) | |
0.0412 | 0.0015 | –0.0000 | 0.0142 | 0.0897 | |
(0.1481) | (0.0871) | (0.0595) | (0.5596) | (0.1587) | |
0.0407 | 0.0007 | 0.0131 | 0.0159 | ||
(0.1480) | (0.0872) | (0.0601) | (0.5591) | (0.1214) | |
0.0404 | 0.0003 | 0.0124 | |||
(0.1480) | (0.0872) | (0.0605) | (0.5589) | (0.1177) | |
0.0126 | 0.0106 | 0.0162 | 0.0156 | 0.3921 | |
(0.0799) | (0.0492) | (0.0338) | (0.5186) | (0.3981) | |
0.0096 | 0.0044 | 0.0044 | 0.0067 | 0.1930 | |
(0.0795) | (0.0482) | (0.0325) | (0.5157) | (0.2090) | |
0.0088 | 0.0028 | 0.0016 | 0.0045 | 0.0777 | |
(0.0795) | (0.0481) | (0.0328) | (0.5149) | (0.1066) | |
0.0084 | 0.0021 | 0.0004 | 0.0035 | 0.0045 | |
(0.0794) | (0.0481) | (0.0331) | (0.5145) | (0.0664) | |
0.0082 | 0.0018 | –0.0003 | 0.0029 | ||
(0.0794) | (0.0481) | (0.0333) | (0.5143) | (0.0767) |
0.177 | 0.324 | 0.122 | 0.068 | 0.309 | |
0.072 | 0.392 | 0.139 | 0.058 | 0.339 | |
0.170 | 0.457 | 0.085 | 0.035 | 0.253 | |
0.047 | 0.442 | 0.086 | 0.055 | 0.370 |
0.426 | 0.103 | 0.033 | 0.011 | 0.427 | |
0.340 | 0.125 | 0.045 | 0.014 | 0.476 | |
0.330 | 0.188 | 0.012 | 0.028 | 0.442 | |
0.320 | 0.110 | 0.040 | 0.025 | 0.505 |
MLL | TIC | ||||||
---|---|---|---|---|---|---|---|
2.011 | 0.050 | 1.242 | 1.682 | 1.000 | 350.383 | ||
2.012 | 0.047 | 1.192 | 1.637 | 1.000 | 344.615 | ||
2.003 | 0.046 | 1.157 | 1.596 | 1.000 | 345.010 | ||
1.991 | 0.045 | 1.129 | 1.558 | 1.000 | −167.838 | 345.251 | |
1.988 | 0.044 | 1.121 | 1.547 | 0.936 | 345.385 |
MLL | TIC | ||||||
---|---|---|---|---|---|---|---|
1.3729 | 1.0213 | 2.3993 | 0.2353 | ||||
1.3733 | 1.0082 | 2.4753 | 0.1930 | ||||
1.3718 | 1.0053 | 2.4965 | 0.1798 | ||||
1.3717 | 1.0037 | 2.5086 | 0.1736 | ||||
1.3705 | 1.0030 | 2.5153 | 0.1691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyata, Y.; Shiohama, T.; Abe, T. Cylindrical Models Motivated through Extended Sine-Skewed Circular Distributions. Symmetry 2024, 16, 295. https://doi.org/10.3390/sym16030295
Miyata Y, Shiohama T, Abe T. Cylindrical Models Motivated through Extended Sine-Skewed Circular Distributions. Symmetry. 2024; 16(3):295. https://doi.org/10.3390/sym16030295
Chicago/Turabian StyleMiyata, Yoichi, Takayuki Shiohama, and Toshihiro Abe. 2024. "Cylindrical Models Motivated through Extended Sine-Skewed Circular Distributions" Symmetry 16, no. 3: 295. https://doi.org/10.3390/sym16030295
APA StyleMiyata, Y., Shiohama, T., & Abe, T. (2024). Cylindrical Models Motivated through Extended Sine-Skewed Circular Distributions. Symmetry, 16(3), 295. https://doi.org/10.3390/sym16030295