Statistical Inference and Application of Asymmetrical Generalized Pareto Distribution Based on Peaks-Over-Threshold Model
Abstract
:1. Introduction
2. EVT for Extreme Tail Risk Measures
2.1. The GPD
2.2. Peaks over Threshold (POT)
2.3. Value at Risk (VaR)
3. Parameter Estimation Method
3.1. Existing Method GPWME
3.2. New Methods
3.2.1. GWNLSM Estimation
3.2.2. Estimation
4. Simulation Studies
- (1)
- Generate a sample from the given distribution, where the sample size is 10,000.
- (2)
- Given , then .
- (3)
- Estimate the parameters (, ) and the VaR (given in Equation (3)).
- (4)
- Repeat steps (1)–(3) 2000 times.
- (5)
- Compute the RMSE and the absolute relative bias (ARB) of each VaR estimator.
5. Actual Data Processing and Analysis
- (1)
- Threshold selection. For the PM2.5 data, we combine the AD statistic and the Raw Down method to select the threshold , exceeding the number , , where Raw Down means that the test begins at the largest threshold and choose the first threshold until the test is rejected, then the threshold before the rejection is chosen [24].
- (2)
- (3)
- Based on the above parameter estimation results, random samples following GPD and , , are calculated.
- (4)
- Repeat (3) 1000 times; RMSE and ARB for VaR are calculated. Some results are shown in Table 5.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tawn, J.A. Bivariate extreme value theory: Models and estimation. Biometrika 1988, 75, 397–415. [Google Scholar] [CrossRef]
- Tawn, J.A. Modelling multivariate extreme value distributions. Biometrika 1988, 77, 245–253. [Google Scholar] [CrossRef]
- Embrechts, P.; Resnick, S.I.; Gennady, S. Extreme Value Theory as a Risk Management Tool. N. Am. Actuar. J. 1999, 3, 30–41. [Google Scholar] [CrossRef]
- Pickands, J. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131. [Google Scholar]
- Hosking, J.R.; Wallis, J.R. Parameter and quantile estimation for the generalized pareto distribution. Technometrics 1987, 29, 339–349. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C.; Wallis, J.R. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resour. Res. 1979, 15, 1049–1054. [Google Scholar] [CrossRef]
- Smith, R.L. Maximum likelihood estimation in a class of nonregular cases. Biometrika 1985, 72, 67–90. [Google Scholar] [CrossRef]
- Moharram, S.; Gosain, A.; Kapoor, P. A comparative study for the estimators of the generalized pareto distribution. J. Hydrol. 1993, 150, 169–185. [Google Scholar] [CrossRef]
- Hosking, J.R. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B (Methodol.) 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Ashkar, F.; Ouarda, T.B. On some methods of fitting the generalized pareto distributions. J. Hydrol. 1996, 177, 117–141. [Google Scholar] [CrossRef]
- Castillo, E.; Hadi, A.S. Fitting the generalized pareto distribution to data. J. Am. Stat. Assoc. 1997, 92, 1609–1620. [Google Scholar] [CrossRef]
- From, S.G.; Ratnasingam, S. Some efficient closed-form estimators of the parameters of the generalized pareto distribution. Environ. Ecol. Stat. 2022, 29, 827–847. [Google Scholar] [CrossRef]
- Rasmussen, P.F. Generalized probability weighted moments: Application to the generalized pareto distribution. Water Resour. Res. 2001, 37, 1745–1751. [Google Scholar] [CrossRef]
- Zhang, J. Likelihood moment estimation for the generalized pareto distribution. Aust. N. Z. J. Stat. 2007, 49, 69–77. [Google Scholar] [CrossRef]
- Zhang, J.; Stephens, M.A. A new and efficient estimation method for the generalized pareto distribution. Technometrics 2009, 51, 316–325. [Google Scholar] [CrossRef]
- Song, J.; Song, S. A quantile estimation for massive data with generalized pareto distribution. Comput. Stat. Data Anal. 2012, 56, 143–150. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, J.H. Estimating extreme tail risk measures with generalized pareto distribution. Comput. Stat. Data Anal. 2016, 98, 91–104. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, W.; Zhao, J.; Zhao, X. Parameter estimation for generalized Pareto distribution by generalized probability weighted moment-equations. Commun.-Stat.-Simul. Comput. 2017, 46, 7761–7776. [Google Scholar] [CrossRef]
- Chen, P.; Ye, Z.S.; Zhao, X. Minimum distance estimation for the generalized pareto distribution. Technometrics 2017, 59, 528–541. [Google Scholar] [CrossRef]
- Martín, J.; Parra, M.I.; Pizarro, M.M.; Sanjuán, E.L. Baseline methods for the parameter estimation of the generalized pareto distribution. Entropy 2022, 24, 178. [Google Scholar] [CrossRef] [PubMed]
- Langousis, A.; Mamalakis, A.; Puliga, M.; Deidda, R. Threshold detection for the generalized pareto distribution: Review of representative methods and application to the noaa ncdc daily rainfall database. Water Resour. Res. 2016, 52, 2659–2681. [Google Scholar] [CrossRef]
- Choulakian, V.; Stephens, M.A. Goodness-of-fit tests for the generalized pareto distribution. Technometricsh 2001, 43, 478–484. [Google Scholar] [CrossRef]
- G’Sell, M.G.; Wager, S.; Chouldechova, A. Sequential selection procedures and false discovery rate control. J. R. Stat. Ser. B Stat. Methodol. 2016, 78, 423–444. [Google Scholar] [CrossRef]
- Bader, B.; Yan, J.; Zhang, X. Automated threshold selection for extreme value analysis via ordered goodness-of-fit tests with adjustment for false discovery rate. Ann. Appl. Stat. 2018, 12, 310–329. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Ren, W.X. Threshold selection for extreme value estimation of vehicle load effect on bridges. Int. J. Distrib. Sens. Netw. 2018, 14, 1–12. [Google Scholar] [CrossRef]
- Annabestani, M.; Saadatmand-Tarzjan, M. A new threshold selection method based on fuzzy expert systems for separating text from the background of document images. Iran. J. Sci. Technol. Trans. Electrical Eng. 2019, 43, 219–231. [Google Scholar] [CrossRef]
- Curceac, S.; Atkinson, P.M.; Milne, A.; Wu, L.; Harris, P. An evaluation of automated GPD threshold selection methods for hydrological extremes across different scales. J. Hydrol. 2020, 585, 124845. [Google Scholar] [CrossRef]
- Silva Lomba, J.; Fraga Alves, M.I. L-moments for automatic threshold selection in extreme value analysis. Stoch. Environ. Res. Risk Assess. 2020, 34, 465–491. [Google Scholar] [CrossRef]
- Balkema, A.A.; De Haan, L.I. Residual life time at great age. Ann. Probab. 1974, 2, 792–804. [Google Scholar] [CrossRef]
- De Zea Bermudez, P.; Kotz, S. Parameter estimation of the generalized Pareto distribution—Part I. J. Stat. Plan. Inference 2010, 140, 1353–1373. [Google Scholar] [CrossRef]
- Landwehr, J.M.; Matalas, N.; Wallis, J. Estimation of parameters and quantiles of wakeby distributions. Water Resour. Res. 1979, 15, 1361–1372. [Google Scholar] [CrossRef]
p = 0.99 | p = 0.999 | p = 0.9999 | ||||
---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | |
( = 0.98) | ||||||
0.1 | 0.1505 | 0.1507 | 0.5241 | 0.5245 | 1.8920 | 1.8943 |
0.2 | 0.2417 | 0.3880 | 1.0468 | 1.9865 | 4.5350 | 5.9320 |
0.3 | 0.3874 | 0.5727 | 2.0901 | 3.3288 | 10.931 | 12.778 |
0.4 | 0.6203 | 0.6342 | 4.1739 | 4.2635 | 26.574 | 26.820 |
0.5 | 0.9916 | 1.0179 | 8.3218 | 8.4833 | 64.592 | 65.264 |
0.6 | 1.5879 | 1.6469 | 16.629 | 17.084 | 160.04 | 161.07 |
0.7 | 2.5359 | 2.6193 | 33.193 | 33.911 | 386.40 | 398.62 |
0.8 | 4.0551 | 4.2626 | 66.226 | 68.616 | 987.72 | 1012.01 |
0.9 | 6.4608 | 6.8859 | 132.31 | 136.16 | 2489.05 | 2655.14 |
( = 0.99) | ||||||
0.1 | 0.5206 | 0.5465 | 2.0061 | 2.0466 | ||
0.2 | 1.0371 | 2.7049 | 4.8787 | 8.0178 | ||
0.3 | 2.0664 | 4.3109 | 11.912 | 16.020 | ||
0.4 | 4.1189 | 4.3153 | 29.4287 | 29.761 | ||
0.5 | 8.2235 | 8.6656 | 73.150 | 74.088 | ||
0.6 | 16.419 | 16.982 | 182.86 | 185.17 | ||
0.7 | 32.708 | 34.350 | 461.78 | 476.22 | ||
0.8 | 65.731 | 74.542 | 1184.33 | 1604.15 | ||
0.9 | 131.40 | 173.90 | 2853.84 | 3542.59 | ||
( = 0.995) | ||||||
0.1 | 0.5544 | 0.6366 | 2.0507 | 2.2331 | ||
0.2 | 1.1021 | 2.5829 | 5.0543 | 8.8306 | ||
0.3 | 2.1912 | 4.2018 | 12.534 | 17.377 | ||
0.4 | 4.3598 | 4.5966 | 31.228 | 31.827 | ||
0.5 | 8.6729 | 9.1764 | 78.282 | 81.745 | ||
0.6 | 17.156 | 19.610 | 198.75 | 216.080 | ||
0.7 | 34.499 | 48.666 | 508.52 | 548.680 | ||
0.8 | 68.833 | 125.12 | 1301.21 | 1548.14 | ||
0.9 | 137.790 | 293.19 | 3388.58 | 5448.34 |
RMSE | ARB | ||||||
---|---|---|---|---|---|---|---|
VaR | VaR | VaR | VaR | VaR | VaR | ||
GPD (0.2, 1) | |||||||
= 0.98 | LME | 0.2358 | 1.0236 | 4.6917 | 0.0249 | 0.0548 | 0.1364 |
WNLS | 0.2363 | 1.1068 | 5.1240 | 0.0250 | 0.0600 | 0.1528 | |
GPWME | 0.2406 | 1.0464 | 5.1278 | 0.0255 | 0.0558 | 0.1459 | |
GWNLSM | 0.2423 | 1.0412 | 4.5217 | 0.0253 | 0.0564 | 0.1388 | |
= 0.99 | LME | 1.0274 | 5.2043 | 0.0550 | 0.1511 | ||
WNLS | 1.0902 | 5.6780 | 0.0590 | 0.1715 | |||
GPWME | 1.0388 | 5.9179 | 0.0555 | 0.1661 | |||
GWNLSM | 1.0350 | 4.8295 | 0.0559 | 0.1484 | |||
= 0.995 | LME | 1.0889 | 5.4096 | 0.0581 | 0.1559 | ||
WNLS | 1.0973 | 5.6234 | 0.0592 | 0.1718 | |||
GPWME | 1.0928 | 6.0105 | 0.0582 | 0.1675 | |||
GWNLSM | 1.0959 | 5.0130 | 0.0589 | 0.1534 | |||
GPD (0.4, 1) | |||||||
= 0.98 | LME | 0.5960 | 4.1581 | 28.526 | 0.0359 | 0.0889 | 0.2208 |
WNLS | 0.5963 | 4.3481 | 29.282 | 0.0359 | 0.0945 | 0.2346 | |
GPWME | 0.6043 | 4.2111 | 30.011 | 0.0364 | 0.0897 | 0.2286 | |
GWNLSM | 0.6210 | 4.1443 | 26.543 | 0.0369 | 0.0905 | 0.2209 | |
= 0.99 | LME | 4.1749 | 33.105 | 0.0893 | 0.2527 | ||
WNLS | 4.3218 | 33.957 | 0.0939 | 0.2705 | |||
GPWME | 4.2194 | 36.377 | 0.0901 | 0.2708 | |||
GWNLSM | 4.1020 | 29.095 | 0.0892 | 0.2411 | |||
= 0.995 | LME | 4.3559 | 35.972 | 0.0927 | 0.2684 | ||
WNLS | 4.3036 | 34.655 | 0.0935 | 0.2800 | |||
GPWME | 4.3624 | 38.747 | 0.0928 | 0.2800 | |||
GWNLSM | 4.3250 | 30.981 | 0.0932 | 0.2542 | |||
GPD (0.8, 1) | |||||||
= 0.98 | LME | 3.8021 | 68.581 | 1157.57 | 0.0624 | 0.1704 | 0.4027 |
WNLS | 3.7820 | 67.292 | 1054.26 | 0.0623 | 0.1720 | 0.3890 | |
GPWME | 3.8128 | 68.095 | 1142.27 | 0.0627 | 0.1690 | 0.3976 | |
GWNLSM | 4.0488 | 65.579 | 989.23 | 0.0656 | 0.1697 | 0.3828 | |
= 0.99 | LME | 69.805 | 1480.19 | 0.1732 | 0.4870 | ||
WNLS | 68.472 | 1349.27 | 0.1753 | 0.4726 | |||
GPWME | 70.129 | 1520.94 | 0.1739 | 0.4998 | |||
GWNLSM | 65.032 | 1155.32 | 0.1674 | 0.4314 | |||
= 0.995 | LME | 71.113 | 1812.26 | 0.1758 | 0.5483 | ||
WNLS | 67.375 | 1436.30 | 0.1726 | 0.5027 | |||
GPWME | 71.083 | 1799.72 | 0.1758 | 0.4694 | |||
GWNLSM | 67.983 | 1292.96 | 0.1720 | 0.4694 | |||
GPD (2, 1) | |||||||
= 0.98 | LME | 981.834 | 3.28 | 1.32 | 0.1535 | 0.4490 | 1.1581 |
WNLS | 958.756 | 2.78 | 8.93 | 0.1511 | 0.4028 | 0.8835 | |
GPWME | 961.981 | 3.11 | 1.11 | 0.1508 | 0.4311 | 1.0458 | |
GWNLSM | 3257.37 | 4.49 | 5.82 | 0.5939 | 0.8414 | 0.9610 | |
= 0.99 | LME | 3.58 | 2.65 | 0.4786 | 1.72649 | ||
WNLS | 3.02 | 1.56 | 0.4339 | 1.2574 | |||
GPWME | 3.57 | 2.29 | 0.4793 | 1.6624 | |||
GWNLSM | 4.89 | 5.23 | 0.9684 | 1.0007 | |||
= 0.995 | LME | 3.59 | 6.07 | 0.4777 | 2.5958 | ||
WNLS | 2.96 | 2.45 | 0.4268 | 1.5203 | |||
GPWME | 4.26 | 7.44 | 0.5410 | 4.5462 | |||
GWNLSM | 4.79 | 4.99 | 0.9568 | 0.9976 |
RMSE | ARB | ||||||
---|---|---|---|---|---|---|---|
VaR | VaR | VaR | VaR | VaR | VaR | ||
Cauchy (0, 1) | |||||||
= 0.98 | LME | 3.1092 | 88.443 | 2318.32 | 0.0775 | 0.2120 | 0.4773 |
WNLS | 3.0863 | 85.680 | 2033.446 | 0.0772 | 0.2121 | 0.4527 | |
GPWME | 3.0866 | 87.650 | 2230.66 | 0.0770 | 0.2095 | 0.4681 | |
GWNLSM | 3.3829 | 82.235 | 1949.25 | 0.0839 | 0.2078 | 0.4417 | |
= 0.99 | LME | 90.650 | 3202.64 | 0.2166 | 0.5904 | ||
WNLS | 85.880 | 2707.33 | 0.2138 | 0.5293 | |||
GPWME | 90.269 | 3123.24 | 0.2158 | 0.5799 | |||
GWNLSM | 82.370 | 2462.95 | 0.2066 | 0.5153 | |||
= 0.995 | LME | 91.416 | 4325.15 | 0.2178 | 0.7113 | ||
WNLS | 84.334 | 3070.36 | 0.2111 | 0.5997 | |||
GPWME | 91.209 | 4022.12 | 0.2175 | 0.6959 | |||
GWNLSM | 85.447 | 3379.91 | 0.2106 | 0.5925 | |||
Pareto (1, 1) | |||||||
= 0.98 | LME | 9.3271 | 280.801 | 7496.16 | 0.0756 | 0.21743 | 0.5073 |
WNLS | 9.3032 | 270.150 | 6702.71 | 0.0754 | 0.21501 | 0.4791 | |
GPWME | 9.3260 | 278.776 | 7322.52 | 0.0755 | 0.2163 | 0.5041 | |
GWNLSM | 10.079 | 263.021 | 6286.66 | 0.0814 | 0.2126 | 0.4683 | |
= 0.99 | LME | 286.769 | 9886.04 | 0.2208 | 0.6097 | ||
WNLS | 271.847 | 8537.50 | 0.2168 | 0.5585 | |||
GPWME | 286.754 | 9904.80 | 0.22084 | 0.6094 | |||
GWNLSM | 262.670 | 7461.39 | 0.2110 | 0.5345 | |||
= 0.995 | LME | 287.946 | 14914.1 | 0.2212 | 0.7202 | ||
WNLS | 265.757 | 10433.2 | 0.2133 | 0.6269 | |||
GPWME | 287.636 | 13634.9 | 0.2210 | 0.7170 | |||
GWNLSM | 274.081 | 9534.50 | 0.2161 | 0.6060 |
LME | 0.0782 | 0.5185 |
WNLS | 0.1169 | 0.4953 |
GPWME | 0.0813 | 0.5169 |
GWNLSM | 0.0481 | 0.5363 |
u | 0.83 |
RMSE | ARB | |||||
---|---|---|---|---|---|---|
VaR at | VaR at | VaR at | VaR at | VaR at | VaR at | |
LME | ||||||
LME | 0.939642 | 3.567475 | 9.359341 | 0.029951 | 0.069050 | 0.140593 |
WNLS | 1.114730 | 4.347896 | 11.12457 | 0.049561 | 0.102806 | 0.165263 |
GPWME | 1.033365 | 4.195512 | 11.23957 | 0.045660 | 0.096672 | 0.161397 |
GWNLSM | 1.021122 | 3.781147 | 9.356901 | 0.045634 | 0.083634 | 0.140933 |
WNLS | ||||||
LME | 1.068671 | 4.288407 | 11.87006 | 0.032968 | 0.077429 | 0.136665 |
WNLS | 1.194244 | 4.963725 | 13.53752 | 0.037138 | 0.091490 | 0.159159 |
GPWME | 1.110651 | 4.800949 | 13.69599 | 0.034303 | 0.086194 | 0.155536 |
GWNLSM | 1.097004 | 4.361997 | 11.53057 | 0.034309 | 0.080041 | 0.136313 |
GPWME | ||||||
LME | 0.729066 | 2.94535 | 8.193269 | 0.025959 | 0.061376 | 0.1145927 |
WNLS | 0.787671 | 3.432898 | 9.433241 | 0.028197 | 0.072860 | 0.132312 |
GPWME | 0.739436 | 3.287148 | 9.479313 | 0.026414 | 0.068239 | 0.128704 |
GWNLSM | 0.745556 | 3.017241 | 8.055831 | 0.026776 | 0.064257 | 0.114585 |
GWNLSM | ||||||
LME | 1.596907 | 4.875529 | 10.94257 | 0.041240 | 0.083499 | 0.134014 |
WNLS | 1.889057 | 5.813446 | 12.88081 | 0.049464 | 0.101360 | 0.160320 |
GPWME | 1.739965 | 5.616292 | 12.95679 | 0.045003 | 0.095299 | 0.155665 |
GWNLSM | 1.651400 | 4.856433 | 10.34925 | 0.043370 | 0.083253 | 0.132417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhao, X.; Zhou, M.; Chen, H.; Ji, Q.; Cheng, W. Statistical Inference and Application of Asymmetrical Generalized Pareto Distribution Based on Peaks-Over-Threshold Model. Symmetry 2024, 16, 365. https://doi.org/10.3390/sym16030365
Chen W, Zhao X, Zhou M, Chen H, Ji Q, Cheng W. Statistical Inference and Application of Asymmetrical Generalized Pareto Distribution Based on Peaks-Over-Threshold Model. Symmetry. 2024; 16(3):365. https://doi.org/10.3390/sym16030365
Chicago/Turabian StyleChen, Wenru, Xu Zhao, Mi Zhou, Haiqing Chen, Qingqing Ji, and Weihu Cheng. 2024. "Statistical Inference and Application of Asymmetrical Generalized Pareto Distribution Based on Peaks-Over-Threshold Model" Symmetry 16, no. 3: 365. https://doi.org/10.3390/sym16030365
APA StyleChen, W., Zhao, X., Zhou, M., Chen, H., Ji, Q., & Cheng, W. (2024). Statistical Inference and Application of Asymmetrical Generalized Pareto Distribution Based on Peaks-Over-Threshold Model. Symmetry, 16(3), 365. https://doi.org/10.3390/sym16030365