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Abstract: Chatter causes great damage to the machining process, and the selection of appropriate
process parameters through chatter stability analysis is of great significance for achieving chatter-free
machining. This article proposes a milling stability analysis method based on the barycentric rational
interpolation differential quadrature method (DQM). The dynamics of the milling process considering
the regeneration effect is first modelled as a time-delay differential equation (DDE). When adjacent
pitch angles of the milling cutter are symmetric, the milling dynamic equation contains a single
time delay. Otherwise, when adjacent pitch angles are asymmetric, the dynamic equation contains
multiple time delays. The barycentric rational interpolation DQM is then used to approximate the
differential and delay terms of the milling dynamics equation, and to construct a state transition
matrix between adjacent milling periods. Finally, the chatter stability lobe diagram (SLD) is obtained
based on the Floquet theory. According to the SLD, the appropriate spindle speed can be selected
to obtain the maximum stable axial depth of cutting, thereby effectively improving the material
removal rate. The accuracy and efficiency of the proposed method have been validated by two
widely used milling models, and the results show that the proposed method has good accuracy and
computational efficiency.

Keywords: chatter stability analysis; milling; regeneration effect; barycentric rational interpolation;
differential quadrature method; stability lobe diagram; Floquet theory

1. Introduction

Milling is a common machining process, which is widely used in the field of aerospace
and other high-end equipment manufacturing because it can achieve high-precision ma-
chining of complex surfaces. However, the appearance of chatter on machine tools is
disastrous [1]. The chatter during the milling process seriously affects the stability of the
machining process, thereby reducing the surface quality of the workpiece and shortening
the service life of the tool. Therefore, achieving chatter-free milling has become one of the
major concerns. Researches have shown that the selection of process parameters has a
significant effect on the chatter stability of the milling process, and optimizing the process
parameters to achieve chatter-free machining is a simple and effective strategy.

The SLD reveals the chatter stability limits under different process parameters, which
can be utilized to optimize the process parameters effectively. Various methods have been
proposed to construct the chatter SLD. The chatter stability limits under real working con-
ditions can be obtained by performing cutting experiments. However, experimental-based
methods [2–4] require extensive cutting experiments when constructing the SLD, which
inevitably lead to significant time and economic costs. Therefore, it is necessary to seek
some low-cost stability prediction methods. In the milling process, the regenerative effect
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had been reported as the main reason for chatter [1]. The milling process considering the
regenerative effect is generally formulated as a DDE. Many stability analysis methods have
been generated based on the DDE of the milling process. The time-domain simulation
methods [5–8] can fully consider the nonlinear phenomena of the machining process and
provide important parameters such as the cutting force and the vibration displacement
while analyzing the stability of the milling process. However, the time-domain simulation
still entails significant computational costs. To compensate for these shortcomings, many
methods based on dynamic analysis have been proposed. Based on the frequency-domain
stability theory, the single-frequency solution [9] and multi-frequency solution [10,11]
methods were proposed by Altintas and Budak. According to the characteristics of the
intermittent cutting during the milling process, Bayly et al. [12] divided the vibration state
of the cutting tool into free vibration and forced vibration, and proposed a temporal finite
element analysis (TFEA) method for predicting the stability of the milling process. Subse-
quently, Mann et al. [13] used the TFEA method to simultaneously obtain the stability of the
milling process and the surface location error of the workpiece. Insperger et al. [14–16] put
forward the semi-discretization method (SDM) to study the delayed system and obtained
the SLD of the milling process based on the SDM. The SDM and TFEA were based on the
differential equation theory and the variational method, respectively [17] and their main
idea was first to approximate the infinite-dimensional delay system to a finite-dimensional
one, then construct a transition matrix between adjacent periods, and finally apply the
Floquet theory to determine the stability of the system. Similarly, Ding et al. developed
the full-discretization method (FDM) [18] based on the direct integration scheme, and
adopted the FDM to study the stability of milling processes. Butcher et al. introduced the
Chebyshev polynomial method [19] and the Chebyshev collocation method [20] for milling
stability analysis. Lin et al. [21] established a generalized regression neural network model
to predict the limiting axial cutting depth of the milling process.

Based on the numerical solution technique of integral equations, Ding et al. [22]
developed the numerical integration method for analyzing the chatter stability of the
milling process. Within the framework of numerical integration, various other methods
have also been derived. On the basis of Runge–Kutta methods, Niu et al. [23] proposed the
classical fourth-order Runge–Kutta method and the generalized Runge–Kutta method to
predict the stability of the milling process. Starting from the perspective of the initial value
solution of the differential equations, Zhang et al. [24] derived a chatter stability prediction
method based on the Simpson method. Mei et al. [25] developed a cutting chatter stability
prediction method based on the linear multistep method. Later, Mei et al. [26] proposed an
adaptive variable-step numerical integration method, and used it to construct the SLD of
the milling process with multiple delays. Yang et al. [27] proposed a five-point Gaussian
quadrature-based chatter prediction method of milling processes together with a transition
matrix reduction scheme to improve the computational accuracy and efficiency.

As far as the solution of milling dynamics equations is concerned, in addition to
numerical integration strategies, numerical differentiation techniques can also be used for
milling stability analysis. Zhang et al. [28] proposed a stability prediction method based on
the finite difference method and extrapolation method. Ding et al. [29] studied the stability
of the milling process using the DQM. The DQM is essentially a numerical differentiation
technique that approximates the derivatives at the nodes by a linear combination of function
values at the nodes. Since its proposal by Bellman R. et al. [30,31], the DQM has been
widely used to solve differential equations due to its advantages of simple concepts and
low computational complexity. However, the classical DQM also has its shortcomings. For
instance, it is sensitive to the distribution of discrete nodes, and is prone to generating an
ill-conditioned coefficient matrix when the number of discrete nodes is large. To address
these issues, Zong Z. et al. [32] introduced the localized differential quadrature method
(LDQM) and successfully applied it to the problem of two-dimensional wave equations.
Mei et al. [33] derived a chatter stability analysis method based on the LDQM. In their
works, the derivative of the state vector in the milling dynamics equation is represented as
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the weighted sum of state vector values at local nodes, which can generate a sparse weight
matrix and improve the stability of numerical calculations. However, when there are too
many local nodes, unstable results can still be generated.

Based on the above review, commonly used milling stability analysis methods can be
classified and are listed in Table 1.

Table 1. The most commonly used milling stability analysis methods.

Stability Analysis Methods References

Experimental-based methods [2–4]

Time-domain simulation methods [5–8]

Dynamic analysis methods [9–16,18–20,22–29,33]

From Table 1, it can be seen that the number of studies based on dynamic analysis
methods is the highest, indicating that such methods have good application prospects.

From the perspective of numerical analysis, the shortcomings of the classical DQM
stem from its construction process of polynomial interpolation. It is well known that ratio-
nal interpolation sometimes gives better approximations than polynomial interpolation,
especially for large sequences of points. Floater and Hormann [34] proposed a family of
barycentric rational interpolants that have no real poles and arbitrarily high approxima-
tion orders on any real interval, regardless of the distribution of the points. Inspired by
their works, this article derives a milling chatter stability analysis method based on the
barycentric rational interpolation DQM. The novelty of this work lies in the use of the
barycentric rational interpolation to approximate the vibration response function in one
cutting cycle and the construction of a DQM based on the barycentric rational interpolation
by differentiating the interpolation function. The use of the barycentric rational interpola-
tion DQM to process the milling dynamic equation effectively improves the shortcomings
of the classical DQM in producing an ill-conditioned weight coefficient matrix when there
is a large number of discrete nodes.

This paper is organized as follows: in Section 2, the dynamics model of the milling
process is outlined, taking into account the regeneration effect. In Section 3, a chatter
stability analysis method based on the barycentric rational interpolation DQM is presented.
In Section 4, the effectiveness of the proposed method is verified, and the verification results
are discussed. Finally, conclusions are derived in Section 5.

2. Dynamics Model of the Milling Process

The milling process considering the regeneration effect is usually modeled by a
DDE [9,27], which can be written as follows:

M
..
y(t) + C

.
y(t) + Ky(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices of the milling system, re-
spectively. y(t) =

[
x(t) y(t)

]T and f(t) =
[
Fx(t) Fy(t)

]T are the vibration displacement
vector and milling force vector, respectively. The calculation of the milling force usually
depends on different milling force models. Figure 1 shows a two-degree-of-freedom (DOF)
flexible tool rigid workpiece milling model. In Figure 1, φj(t, z) is the angular position of
the cutting edge on the tooth (j) with a height z, ϕj is the pitch angle between the tooth
(j − 1) and the tooth (j), β is the helix angle of the milling cutter, zu,j and zl,j are the upper
and lower bounds of the cutting edge participating in cutting on the tooth (j), φst and φex
are the start and exit angles of the tooth, ϕlag(z) is the lag angle of the cutting edge at height
z and ϕs is the tooth sweep angle.
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Figure 1. Schematic of two-DOF milling model, (a) schematic of the milling model; (b) A-A direction 
view; (c) distribution of the cutter teeth; (d) the lag angle and tooth sweep angle. 
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According to the geometric relationship described in Figure 1, ϕlag(z) and φj(t, z) can
be calculated through the following formula:

ϕlag(z) =
2 tan β

D
· z (2)

where D is the diameter of the milling cutter.

φj(t, z) = φj(0, 0) +
2πΩ

60
· t − ϕlag(z) (3)

where φj(0, 0) is the angular position of the tooth (j) at the initial time and Ω is the
spindle speed.

The cutting force arises from the chip formation process, which consists of two parts:
static thickness formed by the feed motion and dynamic thickness formed by the relative
motion between the tool and the workpiece. These two parts of chip thickness form the
static cutting force and dynamic cutting force, respectively. Therefore, the milling force f
can be expressed as follows:

f(t) = fc(t) + fd(t) (4)

where fc is the static component of the milling force, and fd is the dynamic component
of the milling force. Since the stability of the cutting process is influenced only by the
dynamic component of the cutting force [35], the static component of the cutting force will
be omitted in the subsequent analysis process. Based on the linear cutting force model [36],
the milling force vector can be calculated as follows:

f(t) =
N

∑
j=1

Hj(t) ·
[
y(t)− y

(
t − Tj

)]
(5)
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Equation (5) is a multiple-time-delay dynamic milling force calculation model. In
Equation (5), N is the number of teeth, Tj is the time delay of the tooth (j), y

(
t − Tj

)
is

the vibration displacement vector of the previous tooth-passing period of the tooth (j)
and Hj(t) is the dynamic milling force coefficient matrix corresponding to the tooth (j).
Due to the periodic characteristics of the milling process, Hj(t) satisfies the relationship of
Hj(t) = Hj(t + T), where T is the spindle period. Hj(t) can be written as follows:

Hj(t) =
[

hxx,j(t) hxy,j(t)
hyx,j(t) hyy,j(t)

]
(6)

where

hxx,j(t) =
zu,j(t)∫
zl,j(t)

(
−Kt cos φj(t, z) sin φj(t, z)− Kn sin φj(t, z) sin φj(t, z)

)
· dz

hxy,j(t) =
zu,j(t)∫
zl,j(t)

(
−Kt cos φj(t, z) cos φj(t, z)− Kn sin φj(t, z) cos φj(t, z)

)
· dz

hyx,j(t) =
zu,j(t)∫
zl,j(t)

(
+Kt sin φj(t, z) sin φj(t, z)− Kn cos φj(t, z) sin φj(t, z)

)
· dz

hyy,j(t) =
zu,j(t)∫
zl,j(t)

(
+Kt sin φj(t, z) cos φj(t, z)− Kn cos φj(t, z) cos φj(t, z)

)
· dz

(7)

In Equation (7) Kt and Kn are the tangential and radial cutting force coefficients,
respectively, and can be determined through cutting experiments.

The stability analysis of the milling process is usually conducted in the state space. We
can substitute Equation (5) into Equation (1) and transform the governing equation of the
milling process into the state space form.

.
x(t) = Ax(t) +

N

∑
j=1

Bj(t)
[
x(t)− x

(
t − Tj

)]
(8)

where x(t) =
[
y(t)

.
y(t)

]T is the state vector and A and Bj(t) can be expressed as
A =

[
0 I

−M−1K −M−1C

]
Bj(t) =

[
0 0

M−1 · Hj(t) 0

] (9)

Since Hj(t) = Hj(t + T), it can be inferred that Bj(t) = Bj(t + T). Hence, Equation (8)
represents a linear periodic system with time-delay terms. It is worth noting that when
adjacent pitch angles are symmetric, the values of Tj (j = 1, 2, · · · , N) are the same and
the system degenerates into a single-time-delay system. Otherwise, the system is a multiple-
time-delay system. According to the Floquet theory, the linear periodic system is stable if
and only if the spectral radius of its Floquet transition matrix is less than one.

3. Algorithm Derivation
3.1. DQM Based on the Barycentric Rational Interpolation

In the mathematical field of numerical analysis, interpolation is a type of estimation,
a method of constructing new data points based on the range of a discrete set of known
data points. In engineering and science, polynomials are very often used for interpolation
because of their straightforward mathematical properties [37]. The most commonly used
methods for constructing interpolation polynomials include Lagrange interpolation and
Newton interpolation.
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3.1.1. Polynomial Interpolation and the Barycentric Formula

According to polynomial interpolation theory, if (x0, f (x0)), (x1, f (x1)) . . ., (xn, f (xn))
are n + 1 points in the plane with distinct xi, then there exists one unique polynomial p
of degree n or less that satisfies p(xi) = f (xi) for i = 0, · · · , n. According to the Lagrange
interpolation, p(x) can be expressed as follows:

p(x) =
n

∑
i=0

li(x) f (xi) (10)

where

li(x) =
∏n

k=0,k ̸=i(x − xk)

∏n
k=0,k ̸=i(xi − xk)

(11)

and the Lagrange interpolation basis function li has the following property:

li(xk) =

{
1, k = i
0, otherwise

k, i = 0, · · · , n (12)

The formula described in Equation (10) is often referred to as the classical form of
Lagrange interpolation. Some improvements can be made to Equation (10) to improve
the characteristics of the classical Lagrange interpolation. By defining the barycentric
weight wi,

wi =
1

∏k ̸=i(xi − xk)
, i = 0, · · · , n (13)

Equation (10) can finally be expressed in the following form [38]:

p(x) =

n
∑

i=0

wi
x−xi

f (xi)

n
∑

k=0

wk
x−xk

(14)

The formula described in Equation (14) is called the second (true) form of the barycen-
tric interpolation formula. The use of the barycentric formula can effectively reduce the
computational complexity of classical Lagrange interpolation and improve numerical stability.

3.1.2. Barycentric Rational Interpolation and Its Differentiation

The interpolation formula proposed by Floater and Hormann [34] can be expressed
as follows:

r(x) =

n−d
∑

i=0
λi(x)pi(x)

n−d
∑

i=0
λi(x)

(15)

where d is any integer with 0 ≤ d ≤ n, and for each i = 0, · · · , n − d, pi(x) is the unique
polynomial that interpolates f (x) at points xi, . . ., xi+d. The blending function λi is defined
as follows:

λi(x) =
(−1)i

(x − xi)(x − xi+1) · · · (x − xi+d)
(16)

By introducing a new barycentric weight wj, Equation (15) can be written as the
following barycentric form:

r(x) =

n
∑

j=0

wj
x−xj

f
(
xj
)

n
∑

k=0

wk
x−xk

(17)
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where the barycentric weight wj is expressed as follows:

wj = ∑
i∈Jj

(−1)i
i+d

∏
k=i,k ̸=j

1
xj − xk

(18)

where Jj is an index set that satisfies Jj := {i ∈ I : j − d ≤ i ≤ j} and I := {0, 1, · · · , n − d}.
The barycentric rational interpolation formula represented by Equation (17) can be

used to evaluate the derivatives of r(x) based on the formulas proposed by Schneider and
Werner [39]. Equation (17) can be further written as follows:

r(x) =
n

∑
j=0

qj(x) · f
(
xj
)

(19)

where

qj(x) =

wj
x−xj

n
∑

k=0

wk
x−xk

(20)

Taking differentiation with respect to x on both sides of Equation (19) and substituting
x = xi the following equation can be obtained:

r′(xi) =
n

∑
j=0

q′j(xi) · f
(

xj
)

(21)

Equation (21) provides a DQM based on the barycentric rational interpolation. By
letting Aij = q′ j(xi), the differentiation of r(x) at point xi(i = 0, · · · , n) can be expressed in
the following matrix form:

r′(x0)
r′(x1)

...
r′(xn)

 =


A00 A01 · · · A0n
A10 A11 · · · A1n

...
...

. . .
...

An0 An1 · · · Ann




f (x0)
f (x1)

...
f (xn)

 (22)

where Aij can be calculated using the following formula:

Aij =


wj/wi
xi−xj

i ̸= j
n
∑

k=0,k ̸=i

wk/wi
xk−xi

i = j
(23)

3.2. Stability Analysis of the Milling Process Based on the Barycentric Rational
Interpolation DQM

According to the Floquet theory, when conducting stability analysis of the milling
process, it is necessary to first construct the Floquet transition matrix between adjacent
milling periods. To construct the transition matrix, one spindle period [0, T] is discretized
into m small pieces using m + 1 different time nodes first. The discrete time node can be
written as ti(i = 0, 1, · · · , m). Similarly, the previous spindle period [−T, 0] is discretized
into m pieces using the same set of discrete points, and the discrete nodes are represented
as ti−T(i = 0, 1, · · · , m). Then, the state Equation (8) at time node ti(i = 0, 1, · · · , m) can be
expressed as follows:

.
x(ti) =

(
A +

N

∑
j=1

Bj(ti)

)
· x(ti)−

N

∑
j=1

Bj(ti) · x
(
ti − Tj

)
(24)
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For the convenience of description, let xi denote x(ti), xi−T denote x(ti − T), xi−Tj

denote x
(
ti − Tj

)
and Bj,i denote Bj(ti), the state Equation (8) at all the discrete time nodes

can be expressed as follows:


.
x0.
x1
...

.
xm

 =



A +
N
∑

j=1
Bj,0

A +
N
∑

j=1
Bj,1

. . .

A +
N
∑

j=1
Bj,m




x0
x1
...

xm



−
N
∑

j=1


Bj,0

Bj,1
. . .

Bj,m




x0−Tj

x1−Tj
...

xm−Tj



(25)

According to the DQM provided by Equation (21), the derivative of the state vector on
the left side of Equation (25) can be expressed as follows:

.
x0.
x1
...

.
xm

 =


W00 W01 · · · W0m
W10 W11 · · · W1m

...
...

. . .
...

Wn0 Wn1 · · · Wmm




x0
x1
...

xm

 (26)

where Wpq(p, q = 0, 1, · · · , m) is the corresponding weighted coefficient and can be calcu-
lated according to Equation (23).

Next, the state vector x
(
ti − Tj

)
can be represented by a linear combination of the

value of x(ti)(i = 0, 1, · · · , m) or x(ti−T)(i = 0, 1, · · · , m) based on the location of ti − Tj.
According to the position of the time node ti and the length of the delay term Tj, four
different situations about the location of the time node ti − Tj in adjacent spindle periods
are shown in Figure 2.

In Figure 2a, the time node ti − Tj belongs to [−T, 0] and does not coincide with
discrete nodes tk−T(k = 0, 1, · · · , m); in Figure 2b, the time node ti − Tj belongs to [−T, 0]
and coincides with a certain discrete node tk−T(k = 0, 1, · · · , m); in Figure 2c, the time
node ti − Tj belongs to [0, T] and does not coincide with discrete nodes tk(k = 0, 1, · · · , m);
in Figure 2d, the time node ti − Tj belongs to [0, T] and coincides a certain discrete node
tk(k = 0, 1, · · · , m). The calculation of state vector x

(
ti − Tj

)
needs to be carried out accord-

ing to the four different situations shown in Figure 2. If the time node ti − Tj is located at the
position described in Figure 2a or Figure 2c, the state vector x

(
ti − Tj

)
can be interpolated

using the barycentric rational interpolation formula given in Equation (19). If the time
node ti − Tj is located at the position described in Figure 2b or Figure 2d, the state vector
x
(
ti − Tj

)
is directly equal to the function value of the discrete point x(tk−T) or x(tk). Based

on the above analysis, the value of x
(
ti − Tj

)
can be expressed as follows:

x
(
ti − Tj

)
=



m
∑

l=0
ql
(
ti − Tj

)
· x(tl−T) situation(a)

x(tk−T) situation(b)
m
∑

r=0
qr
(
ti − Tj

)
· x(tr) situation(c)

x(tk) situation(d)

(27)
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Equation (27) can also be expressed in the form of vector multiplication as
shown below.

xi−Tj =



[
q0,i−Tj

q1,i−Tj
· · · qm,i−Tj

]
·
[

x0−T x1−T · · · xm−T

]T
situation(a)[

0 · · · I · · · 0
]
·
[

x0−T · · · xk−T · · · xm−T

]T
situation(b)[

q0,i−Tj
q1,i−Tj

· · · qm,i−Tj

]
·
[

x0 x1 · · · xm

]T
situation(c)[

0 · · · I · · · 0
]
·
[

x0 · · · xk · · · xm

]T
situation(d)

(28)

For one specific time delay Tj, the position of ti − Tj will have two situations as the
index i increases: ti − Tj < 0 or ti − Tj ≥ 0. Assuming that a certain index s satisfies
ts − Tj < 0 and ts+1 − Tj ≥ 0, we have the following expression:
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x0−Tj
...

xs−Tj

xs+1−Tj
...

xm−Tj


=



q0,0−Tj
q1,0−Tj

· · · qm,0−Tj
...

...
. . .

...
q0,s−Tj

q1,s−Tj
· · · qm,s−Tj

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0





x0−T
...

xs−T
xs+1−T

...
xm−T



+



0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
q0,s+1−Tj

q1,s+1−Tj
· · · qm,s+1−Tj

...
...

. . .
...

q0,m−Tj
q1,m−Tj

· · · qm,m−Tj





x0
...

xs
xs+1

...
xm



(29)

Substituting Equations (26) and (29) into Equation (25) and carrying out a simple
transformation yields the following expressions:


W00 W01 · · · W0m

W10 W11 · · · W1m

...
...

. . .
...

Wm0 Wm1 · · · Wmm




x0

x1

...
xm

 =



A +
N
∑

j=1
Bj,0

A +
N
∑

j=1
Bj,1

. . .

A +
N
∑

j=1
Bj,m




x0

x1

...
xm



−
N
∑

j=1


Bj,0

Bj,1

. . .
Bj,m





q0,0−Tj
q1,0−Tj

· · · qm,0−Tj

...
...

. . .
...

q0,s−Tj
q1,s−Tj

· · · qm,s−Tj

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0





x0−T

...
xs−T

xs+1−T

...
xm−T



−
N
∑

j=1


Bj,0

Bj,1

. . .
Bj,m





0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

q0,s+1−Tj
q1,s+1−Tj

· · · qm,s+1−Tj

...
...

. . .
...

q0,m−Tj
q1,m−Tj

· · · qm,m−Tj





x0

...
xs

xs+1

...
xm



(30)
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Letting

W =


W00 W01 · · · W0m

W10 W11 · · · W1m

...
...

. . .
...

Wm0 Wm1 · · · Wmm

, Td,j =


Bj,0

Bj,1

. . .
Bj,m


XT =

[
x0 x1 · · · xm

]T
, X−T =

[
x0−T x1−T · · · xm−T

]T

Tc =



A +
N
∑

j=1
Bj,0

A +
N
∑

j=1
Bj,1

. . .

A +
N
∑

j=1
Bj,m



TL,j =



q0,0−Tj
q1,0−Tj

· · · qm,0−Tj

...
...

. . .
...

q0,s−Tj
q1,s−Tj

· · · qm,s−Tj

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


, TR,j =



0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

q0,s+1−Tj
q1,s+1−Tj

· · · qm,s+1−Tj

...
...

. . .
...

q0,m−Tj
q1,m−Tj

· · · qm,m−Tj



(31)

Simplifying and rearranging Equation (30) yields the following equation:

XT =

(Tc − W −
N

∑
j=1

Td,j · TR,j

)−1

·
(

N

∑
j=1

Td,j · TL,j

) · X−T (32)

Finally, the Floquet transition matrix Φ between adjacent milling periods can be
obtained based on Equation (32) as follows:

Φ =

(
Tc − W −

N

∑
j=1

Td,j · TR,j

)−1

·
(

N

∑
j=1

Td,j · TL,j

)
(33)

The stability of the milling process can be determined by the spectral radius of the
Floquet transition matrix Φ according to the Floquet theory.

4. Numerical Validation and Discussion

The calculation accuracy and efficiency of the proposed method are verified on account
of two benchmark milling models in this section.

4.1. Single-Time-Delay Milling Model

Without loss of generality, this section utilizes the two-DOF milling model same as that
in References [15,22] for demonstration. The cutting tool is a 12.7 mm diameter, two-flute,
carbide helical end mill with a 106.2 mm overhang held in an HSK 63A collet-type tool
holder. This milling model has undergone extensive validation and is widely used as a
benchmark example to validate algorithms. A two-flute cutter with symmetric pitch angles
is used in this model, so its governing equation contains a single time delay and can be
converted to the state space form as shown below.

.
x(t) = Ax(t) + B(t)[x(t)− x(t − T)] (34)
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where T is equal to the tooth passing period, and

A =


0 0 1 0
0 0 0 1

−ω2
n 0 −2ζωn 0

0 −ω2
n 0 −2ζωn

, B(t) =


0 0 0 0
0 0 0 0

w·hxx(t)
mt

w·hxy(t)
mt

0 0
w·hyx(t)

mt

w·hyy(t)
mt

0 0

 (35)

where ωn is the nature angular frequency, ζ is the relative damping, w is the axial depth of
cutting and mt is the modal mass. The values of the dynamics parameters of the milling
model are shown in Table 2.

Table 2. Values of the dynamics parameters of the single-time-delay milling model.

mt
(kg) ζ

ωn
(rad/s)

Kt
(N/m2)

Kn
(N/m2) N

0.03393 0.011 5793 6 × 108 2 × 108 2

The SLD of the milling model is obtained using the method derived in Section 3. It
is worth noting that the method in Section 3 is derived based on a generalized multiple
time-delay milling model and can be appropriately simplified when used for the single-
time-delay milling model. Here, the first-order SDM (1st-SDM) is adopted as a benchmark
to verify the effectiveness and efficiency of the proposed method, as the SDM has been
experimentally validated and widely applied. In the simulation experiment, the cutting
method is down-milling, the spindle speed ranges from 5000 to 10,000 rpm, the axial depth
of cutting ranges from 0 to 6 mm, and the radial immersion ratio ranges from 0.2 to 1.0.
In numerical simulation, the milling period is discretized using the uniform nodes. The
SLD obtained is constructed on a 200 × 100-sized grid. The comparisons of the 1st-SDM,
LDQM and the proposed method with different parameters are shown in Figures 3 and 4.
The reference stability limits represented by the red line in Figures 3 and 4 are obtained by
the 1st-SDM with m = 200.
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Figure 3. SLD of the single-time-delay milling model obtained by the classical DQM, the LDQM, and
the method proposed in this work. (a) classical DQM (m = 60); (b) LDQM (m = 60, l = 21); (c) the
proposed method (m = 40, d = 4); (d) the proposed method (m = 60, d = 4).
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Figure 4. SLD of the single-time-delay milling model obtained by the method proposed in this work.
(a) radial immersion 0.6 (m = 20, d = 4); (b) radial immersion 0.6 (m = 30, d = 4); (c) radial immersion
0.2 (m = 20, d = 4); (d) radial immersion 0.2 (m = 30, d = 4).

Figure 3a–d display the SLD of the single-time-delay milling model with the radial
immersion 1. The SLD obtained by the classical DQM is shown in Figure 3a. As mentioned
earlier, when the number of discrete nodes is large, the classical DQM produces an ill-
conditioned differential matrix, resulting in erroneous stability prediction results. Figure 3b
shows the SLD obtained by the LDQM [33], from which it can be seen that when the
parameter l is too large, the LDQM may still yield unstable results. In Figure 3c,d, the
SLD is obtained by the method proposed in Section 3. As shown in Figure 3c,d, with
the increase of the discrete parameter m, the SLD obtained by the method proposed in
this work shows good consistency with the reference value, indicating that the method
proposed in this work has good accuracy. Compared with the LDQM using l = 21 local
nodes (Figure 3b), the method proposed in this paper can obtain accurate results when the
discrete parameter m is 60 (Figure 3d). This indicates that the DQM based on barycentric
rational interpolation effectively improves the shortcomings of the classical DQM that
can easily produce an ill-conditioned matrix when the number of discrete nodes is large.
Figure 4a–d show the SLD obtained by the proposed method with two other different radial
immersions. In Figure 4a,b, the radial immersion is 0.6, and the discrete parameters (m) are
20 and 30, respectively. In Figure 4c,d, the discrete parameters (m) are 20 and 30 and the
radial immersion is 0.2, which is a typical machining condition of the small radial depth of
cutting. From Figure 4, it can also be concluded that the method proposed in this work can
obtain the accurate SLD to predict the stability of the milling process.

From Figures 3 and 4, it can be seen that when the cutter with symmetric pitch angles
is used, the maximum value of the stability limit appears in the right area (near the spindle
speed of 9200 rpm) of the SLD. We can choose the optimal axial depth of cutting to achieve
the maximum material removal rate. At the same time, it can also be concluded that the
method proposed in this work is not affected by the machining conditions and can obtain
accurate SLD under both large and small radial depths of cutting.

In order to further validate the efficiency of the method, the time required to calculate
the SLD in numerical simulation is also compared with that of the 1st-SDM based on the
above mentioned two-DOF milling model. The simulative calculations were performed in
Matlab® on a laptop computer (Intel® CoreTM i7-10870H CPU 2.20 GHz, 16.00 GB RAM).
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The machining parameters used in numerical simulation are the same as those used in
calculating the SLD in Figures 3 and 4. Here, the discrete parameter m is set as 60. The
calculation time of the 1st-SDM and the proposed method are listed in Table 3.

Table 3. Calculation time required for the 1st-SDM and the proposed method (unit: s).

m = 60 Radial
Immersion: 1

Radial
Immersion: 0.6

Radial
Immersion: 0.2

1st-SDM 460.98 321.87 280.20

The proposed method (d = 3 ) 56.96 54.26 52.92

The proposed method (d = 4 ) 56.45 55.17 53.10

From Table 3, it can be seen that under three different radial immersion conditions,
the 1st-SDM requires the longest calculational time. In addition, as the radial immersion
decreases, the time consumption of the 1st-SDM also decreases accordingly. The reason
for this phenomenon is that as the radial immersion decreases, the free vibration time
of the cutting tool increases in one cutting period. In the free vibration range, the value
of parameter B in the milling state equation is 0, which reduces the complexity of the
numerical calculation and saves some calculation time. As for the method in this work,
it can be seen from the derivation process that the proposed method approximates the
differential and delay terms of the state equation when constructing the transition matrix,
and ultimately approximates the state equation into an algebraic system of equations. The
entire process has low computational complexity, thus saving computational time. From
the calculation time listed in Table 3, it can be seen that compared with the semi discrete
method, the method proposed in this paper can save up to 87% of the calculation time,
indicating that the method proposed in this work has good computational efficiency.

Also, it can be seen From Table 3 that with the increase of the barycentric rational
interpolation parameter d, the calculation time of the method proposed in this work slightly
increases, but overall, the impact of the change in parameter d on the calculation time
is negligible.

It is worth noting that although uniform nodes are used in the validation of the pro-
posed method in this section, the barycentric rational interpolation itself has no restriction
on the type of nodes, and other types of nodes can be just as effectively used in the method
proposed in this paper.

4.2. Multiple-Time-Delay Milling Model

In this section, a multiple-time-delay milling model is used to verify the method
derived in this work. For the convenience of comparison and verification, the milling
model used in [40,41] is employed for numerical simulation. A 19.05 mm diameter variable
pitch cutter with four flutes is adopted. The helix angle is 30◦ and the asymmetric pitch
angles are 70◦–110◦—70◦–110◦. Due to the use of a variable pitch cutter, the milling process
is a typical multiple-time-delay milling model as described by Equation (8). The detailed
values of the modal parameters and cutting force coefficients of this milling model are
listed in Table 4.

Table 4. Values of the dynamics parameters of the multiple-time-delay milling model.

mt
(kg) ζ

ωn
(rad/s)

Kt
(N/m2)

Kn
(N/m2)

mtx = 1.4986 ζx = 0.0558 ωnx = 563.55 × 2π
6.79 × 108 2.56 × 108

mty = 1.199 ζy = 0.025 ωny = 516.27 × 2π

The SLD of this multiple-time-delay milling model is constructed over a 200 × 100-sized
grid, the machining condition is down-milling and the simulation parameters are set as
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follows: the spindle speed Ω ranges from 2500 to 12,500 rpm, the axial depth of cutting w
ranges from 0 to 10 mm and the radial immersion ratio ranges from 0.2 to 1.0. The milling
period is also discretized using the uniform nodes. The results are shown in Figure 5; in
the SLD, the reference stability limits demoed by the red line are obtained by the 1st-SDM
with the discrete parameter m = 200. In Figure 5a–c, the radial immersions are 1, 0.6,
and 0.2, respectively. It can be seen from the SLD displayed in Figure 5a–c that when the
cutter with asymmetric pitch angles is used, the maximum value of the stability limits does
not appear in the right area of the SLD, but in the middle area (near the spindle speed of
5400 rpm), which is different from using a cutter with symmetric pitch angles. Also, the SLD
displayed in Figure 5a–c agrees well with the reference SLD. This shows that the milling
stability analysis method proposed in this work is also suitable for multiple-time-delay
milling models.
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Figure 5. SLD of the multiple-time-delay milling model obtained by the method proposed in this
work. (a) radial immersion 1.0 (m = 100, d = 5); (b) radial immersion 0.6 (m = 100, d = 5); (c) radial
immersion 0.2 (m = 100, d = 5).

5. Conclusions

This work mainly studies the analysis of the chatter stability in the milling process.
A method for analyzing the chatter stability of the milling process is derived based on
the barycentric rational interpolation DQM. Firstly, the milling process considering the
regeneration effect is modeled as a DDE. Then, the differential and delay terms of the
milling state equation are approximated as a linear combination of discrete state vectors
using the barycentric rational interpolation DQM. The state equation is approximated as a
system of linear equations. Finally, the state transition matrix on adjacent milling periods
is constructed, and the stability of the milling process is studied based on the Floquet
theory. The accuracy and computational efficiency of the method are validated using two
widely used milling models. The results of the simulation experiments show that the
method proposed in this work has good accuracy and computational efficiency. The main
characteristics of the method proposed in this article are listed as follows:

1. Using the barycentric rational interpolation DQM can effectively improve the short-
comings of the classical DQM, avoiding the generation of the ill-conditioned matrix
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when there are a large number of discrete nodes, thereby improving the stability and
accuracy of numerical calculations.

2. The proposed method approximates the state equation of the milling system to an
algebraic system of equations through interpolation and numerical differentiation
techniques, which can quickly obtain the state transition matrix, and thus obtain the
SLD of the system.

3. The proposed milling stability analysis method is applicable to single-time-delay and
multiple-time-delay milling systems, and is suitable for the machining conditions of
both large and small radial depths of cutting.
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Nomenclature

M Mass matrix of the milling system
K Stiffness matrix of the milling system
x(t) Vibration displacement of the tool in the x direction
f(t) Milling force vector
Fy(t) The component of the milling force in the y direction
ϕj The pitch angle between the tooth (j − 1) and the tooth (j)
zu,j The upper bound of the cutting edge participating in cutting on the tooth (j)
φst The start angle of the tooth
ϕlag(z) The lag angle of the cutting edge at height z
D The diameter of the milling cutter
fc The static component of the milling force
N The number of teeth

y
(

t − Tj

)
The vibration displacement vector of the previous tooth-passing period of the tooth (j)

T The spindle period
Kn The radial cutting force coefficient
.
y(t) Vibration velocity vector
Bj(t) Time-varying parameter matrix corresponding to the tooth (j) in the state equation
li(x) The Lagrange interpolation basis function
r(x) The barycentric rational interpolation function
wj The barycentric weight of the barycentric rational interpolation
qj(x) The barycentric rational interpolation basis function
Wpq The corresponding weighted coefficient of the milling state vector
C Damping matrix of the milling system
y(t) Vibration displacement vector
y(t) Vibration displacement of the tool in the y direction
Fx(t) The component of the milling force in the x direction
φj(t, z) The angular position of the cutting edge on the tooth (j) with a height z
β The helix angle of the milling cutter
zl,j The lower bound of the cutting edge participating in cutting on the tooth (j)
φex The exit angle of the tooth
ϕs The tooth sweep angle
Ω The spindle speed
fd The dynamic component of the milling force
Tj The time delay of the tooth (j)
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Hj(t) The dynamic milling force coefficient matrix corresponding to the tooth (j)
Kt The tangential cutting force coefficient
x(t) The state vector
A Time-invariant parameter matrix in the state equation
p(x) The polynomial interpolation function
wi The barycentric weight of the barycentric Lagrange interpolation
λi Blending function
Jj The index set
Aij Weight coefficient of the barycentric rational interpolation differential quadrature method
Φ The Floquet transition matrix
DQM Differential quadrature method
SLD Stability lobe diagram
SDM Semi-discretization method
LDQM Localized differential quadrature method
DDE Delay differential equation
TFEA Temporal finite element analysis
FDM Full-discretization method
DOF Degree of freedom
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9. Altintaş, Y.; Budak, E. Analytical prediction of stability lobes in milling. CIRP Ann.-Manuf. Technol. 1995, 44, 357–362. [CrossRef]
10. Budak, E.; Altintas, Y. Analytical prediction of chatter stability in milling—Part I: General formulation. J. Dyn. Syst. Meas. Control

1998, 120, 22–30. [CrossRef]
11. Budak, E.; Altintas, Y. Analytical prediction of chatter stability in milling—Part II: Application of the general formulation to

common milling systems. J. Dyn. Syst. Meas. Control 1998, 120, 31–36. [CrossRef]
12. Bayly, P.; Halley, J.; Mann, B.P.; Davies, M. Stability of interrupted cutting by temporal finite element analysis. J. Manuf. Sci. Eng.

2003, 125, 220–225. [CrossRef]
13. Mann, B.P.; Young, K.A.; Schmitz, T.L.; Dilley, D.N. Simultaneous stability and surface location error predictions in milling. J.

Manuf. Sci. Eng. 2005, 127, 446–453. [CrossRef]
14. Insperger, T.; Stépán, G. Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng. 2002, 55, 503–518. [CrossRef]
15. Insperger, T.; Stépán, G. Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J.

Numer. Methods Eng. 2004, 61, 117–141. [CrossRef]
16. Insperger, T.; Stépán, G.; Turi, J. On the higher-order semi-discretizations for periodic delayed systems. J. Sound Vib. 2008, 313,

334–341. [CrossRef]
17. Ding, H.; Ding, Y.; Zhu, L. On time-domain methods for milling stability analysis. Chin. Sci. Bull. 2012, 57, 4336–4345. [CrossRef]
18. Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf.

2010, 50, 502–509. [CrossRef]
19. Butcher, E.A.; Ma, H.; Bueler, E.; Averina, V.; Szabo, Z. Stability of linear time-periodic delay-differential equations via Chebyshev

polynomials. Int. J. Numer. Methods Eng. 2004, 59, 895–922. [CrossRef]
20. Butcher, E.A.; Bobrenkov, O.A.; Bueler, E.; Nindujarla, P. Analysis of milling stability by the Chebyshev collocation method:

Algorithm and optimal stable immersion levels. J. Comput. Nonlinear Dyn. 2009, 4, 031003. [CrossRef]
21. Lin, L.; He, M.; Wang, Q.; Deng, C. Chatter Stability Prediction and Process Parameters’ Optimization of Milling Considering

Uncertain Tool Information. Symmetry 2021, 13, 1071. [CrossRef]

https://doi.org/10.1016/j.cirp.2016.06.004
https://doi.org/10.1016/S0890-6955(96)00032-6
https://doi.org/10.1016/j.jsv.2015.06.011
https://doi.org/10.1016/j.ijmachtools.2008.11.008
https://doi.org/10.1115/1.1580852
https://doi.org/10.1007/s00170-003-1562-9
https://doi.org/10.1115/1.1948393
https://doi.org/10.1016/S1000-9361(08)60022-9
https://doi.org/10.1016/S0007-8506(07)62342-7
https://doi.org/10.1115/1.2801317
https://doi.org/10.1115/1.2801318
https://doi.org/10.1115/1.1556860
https://doi.org/10.1115/1.1948394
https://doi.org/10.1002/nme.505
https://doi.org/10.1002/nme.1061
https://doi.org/10.1016/j.jsv.2007.11.040
https://doi.org/10.1007/s11434-012-5499-y
https://doi.org/10.1016/j.ijmachtools.2010.01.003
https://doi.org/10.1002/nme.894
https://doi.org/10.1115/1.3124088
https://doi.org/10.3390/sym13061071


Symmetry 2024, 16, 384 18 of 18

22. Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. Numerical integration method for prediction of milling stability. J. Manuf. Sci. Eng. 2011,
133, 031005. [CrossRef]

23. Niu, J.; Ding, Y.; Zhu, L.; Ding, H. Runge–Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn. 2014,
76, 289–304. [CrossRef]

24. Zhang, Z.; Li, H.; Meng, G.; Liu, C. A novel approach for the prediction of the milling stability based on the Simpson method. Int.
J. Mach. Tools Manuf. 2015, 99, 43–47. [CrossRef]

25. Mei, Y.; Mo, R.; Sun, H.; He, B.; Wan, N. Stability prediction in milling based on linear multistep method. Int. J. Adv. Manuf.
Technol. 2019, 105, 2677–2688. [CrossRef]

26. Mei, Y.; Mo, R.; Sun, H.; He, B.; Bu, K. Stability analysis of milling process with multiple delays. Appl. Sci. 2020, 10, 3646.
[CrossRef]

27. Yang, Y.; Yuan, J.-W.; Tie, D.; Wan, M.; Zhang, W.-H. An efficient and accurate chatter prediction method of milling processes with
a transition matrix reduction scheme. Mech. Syst. Signal Process. 2023, 182, 109535. [CrossRef]

28. Zhang, X.; Xiong, C.; Ding, Y.; Ding, H. Prediction of chatter stability in high speed milling using the numerical differentiation
method. Int. J. Adv. Manuf. Technol. 2017, 89, 2535–2544. [CrossRef]

29. Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. Stability analysis of milling via the differential quadrature method. J. Manuf. Sci. Eng. 2013,
135, 044502. [CrossRef]

30. Bellman, R.; Kashef, B.; Casti, J. Differential quadrature: A technique for the rapid solution of nonlinear partial differential
equations. J. Comput. Phys. 1972, 10, 40–52. [CrossRef]

31. Bellman, R.; Casti, J. Differential quadrature and long-term integration. J. Math. Anal. Appl. 1971, 34, 235–238. [CrossRef]
32. Zong, Z.; Lam, K. A localized differential quadrature (LDQ) method and its application to the 2D wave equation. Comput. Mech.

2002, 29, 382–391. [CrossRef]
33. Mei, Y.; He, B.; He, S.; Ren, X. Stability Analysis in Milling Based on the Localized Differential Quadrature Method. Micromachines

2023, 15, 54. [CrossRef]
34. Floater, M.S.; Hormann, K. Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 2007,

107, 315–331. [CrossRef]
35. Gradišek, J.; Kalveram, M.; Insperger, T.; Weinert, K.; Stépán, G.; Govekar, E.; Grabec, I. On stability prediction for milling. Int. J.

Mach. Tools Manuf. 2005, 45, 769–781. [CrossRef]
36. Altintas, Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design; Cambridge University

Press: Cambridge, UK, 2012.
37. Sauer, T. Numerical Analysis, 2nd ed.; Pearson Education, Inc.: Boston, MA, USA, 2012.
38. Berrut, J.-P.; Trefethen, L.N. Barycentric lagrange interpolation. SIAM Rev. 2004, 46, 501–517. [CrossRef]
39. Schneider, C.; Werner, W. Some new aspects of rational interpolation. Math. Comput. 1986, 47, 285–299. [CrossRef]
40. Altıntas, Y.; Engin, S.; Budak, E. Analytical stability prediction and design of variable pitch cutters. J. Manuf. Sci. Eng. 1999, 121,

173–178. [CrossRef]
41. Tao, J.; Qin, C.; Liu, C. Milling stability prediction with multiple delays via the extended Adams-Moulton-based method. Math.

Probl. Eng. 2017, 2017, 7898369. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1115/1.4004136
https://doi.org/10.1007/s11071-013-1127-x
https://doi.org/10.1016/j.ijmachtools.2015.09.002
https://doi.org/10.1007/s00170-019-04379-6
https://doi.org/10.3390/app10103646
https://doi.org/10.1016/j.ymssp.2022.109535
https://doi.org/10.1007/s00170-016-8708-z
https://doi.org/10.1115/1.4024539
https://doi.org/10.1016/0021-9991(72)90089-7
https://doi.org/10.1016/0022-247X(71)90110-7
https://doi.org/10.1007/s00466-002-0349-4
https://doi.org/10.3390/mi15010054
https://doi.org/10.1007/s00211-007-0093-y
https://doi.org/10.1016/j.ijmachtools.2004.11.015
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1090/S0025-5718-1986-0842136-8
https://doi.org/10.1115/1.2831201
https://doi.org/10.1155/2017/7898369

	Introduction 
	Dynamics Model of the Milling Process 
	Algorithm Derivation 
	DQM Based on the Barycentric Rational Interpolation 
	Polynomial Interpolation and the Barycentric Formula 
	Barycentric Rational Interpolation and Its Differentiation 

	Stability Analysis of the Milling Process Based on the Barycentric Rational Interpolation DQM 

	Numerical Validation and Discussion 
	Single-Time-Delay Milling Model 
	Multiple-Time-Delay Milling Model 

	Conclusions 
	References

