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Abstract: Weak interaction processes continue to be hot topics in fundamental physics research.
In this paper, we briefly review some recent advances in the theoretical study of beta and double-
beta decays that include both the nuclear and atomic part of these processes. On the nuclear side,
we present a statistical approach for the computation of the nuclear matrix elements (NME) for
neutrinoless double-beta (0νββ). A range of NME values, the most probable value for NME, and the
associated theoretical uncertainty are given. Correlations with other related observables are shown
as well. On the atomic side, we first briefly review the methods used to obtain the electrons’ wave
functions. Further, we use them for the computation of some relevant kinematic quantities such as
Fermi functions, electron spectra, and angular correlation between the emitted electrons. Then, we
present applications of these calculations to the experimental data analysis related to the search of the
Lorentz invariance violation in two-neutrino double-beta (2νββ) decay and description of the decay
rates and decay rate ratios for allowed and unique forbidden electron capture (EC) processes.

Keywords: beta decay; double-beta decay; space phase factors; nuclear matrix elements; decay rates;
Lorentz violation

1. Introduction

The study of weak interaction transitions plays an essential role in physics research
because they can provide critical information on various hot topics in atomic, nuclear,
particle physics, and astrophysics. For example, the study of beta transitions is essential in
describing the reactor processes [1] and the properties of the nuclei far from stability [2],
as well as in understanding the evolution of the stars [3,4]. Also, the study of double-beta
decay (DBD) offers a broad range of very current topics related to the nuclear structure,
validity of some symmetry laws, yet-unknown properties of neutrinos, and constraining
physics scenarios beyond the Standard Model (SM) [5–10].

Beta and double-beta decay rates can be written as a product of an atomic and a nuclear
part. The atomic part, namely, the phase space factors (PSF), encompasses the perturbation
of the movement of the emitted leptons (electrons, protons) due to their interaction with
the Coulomb field and electron cloud of the daughter nucleus, while for the nuclear part,
the nuclear matrix elements (NME) is related to the nuclear structure of the nuclei involved
in the decay. For the (0νββ) decay channel, a third term appears as follows:(

T2ν
1/2

)−1
= G2ν(Qββ, Z)g4

A | mec2M2ν |2(
T0ν

1/2

)−1
= ΣkG0ν(Qββ, Z)g4

A | M0ν
k |2 (< ηk >)2 (1)

where G2ν,0ν and M2ν,0ν are PSF and NME for the 2ν and 0ν decay modes, gA is the axial
vector coupling constant, and <ηk> is a beyond SM parameter associated with different
possible mechanisms that can trigger the 0νββ decay.
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For beta transitions, the probability per unit time that a nucleus with atomic mass A
and charge Z decays for a nth-forbidden β-branch is given by [11]:

λn = g2/2π3
∫ W0

1
pW(W0 − W)2Sn(Z, W)dW, (2)

where g is the weak interaction coupling constant, p is the momentum of β-particle,
W =

√
p2 + 1 is the total energy of β-particle, and W0 is the maximum β-particle en-

ergy. W0 = Q − 1, in β decay (Q is the mass difference between initial and final states of
neutral atoms). Equation (2) is written in natural units ( h̄ = m = c = 1 ) so that the unit
of momentum is mc, the unit of energy is mc2, and the unit of time is h̄ /mc2. The shape
factors Sn(Z, W), which appear in Equation (2), are defined as:

Sn(Z, W) =
∞

∑
ke ,kv=1

[
λk M2

L + λ′
km2

L − 2λ′′
k MLmL

]
(3)

where ML and mL contain the nuclear matrix elements and λk, λ′, and λ′′ are bilinear
combinations of radial components of the electron wave function.

As seen from the above formulas, in order to reliably predict beta and double-beta
decay half-lives, interpret the measured electron spectra, extract information about neu-
trino properties, or constrain different BSM scenarios for 0νββ decay occurrence, both the
nuclear and atomic parts require accurate computation. The two terms, PSF and NME, are
calculated separately with atomic and nuclear methods. NME calculation is a hot topic in
the description of the weak interaction processes that lasts for a long time and that is still
not satisfactorily solved. For DBD, a second-order weak interaction process, this problem is
crucial since NME appears in the half-life formulas at a power of two and any uncertainty
in the computation is amplified in terms of half-lives prediction. For beta decay, the NME
calculation is important as well for quantitative predictions of the decay rates, and it is not
an easy task since the nuclei undergoing beta transitions belong to different nuclear mass
regions and have various nuclear structures.

In this paper, we give a brief review of some recent advances in the computation of
NME for DBD and kinematic quantities such as Fermi functions, electron spectra, and
angular correlation between electrons relevant for data analysis. In Section 2, we present
an analysis and new estimations of the NME for 0νββ decay. We comment on the present
status of the NME computation and briefly present a statistical model aiming to study
the stability of NME calculated with the interacting Shell model (ISM) method, at small,
random variations of some model effective Hamiltonians. Also, we predict a range of
the NME values and give the most likely value of it with a predicted theoretical error.
In Section 3, we resume different approaches for obtaining the wave function (w.f.) of the
emitted electrons, which are the basic ingredients in the computation of other relevant
kinematic quantities for beta and double-beta transitions. In Section 4, we resume the
theoretical framework developed for investigating the Lorentz invariance violation (LIV)
in 2νββ decay, while in Section 5 we present a study of the electron capture (EC) processes
using the Dirac–Hartree–Fock–Slater (DHFS) method. Finally, we end up with conclusions
to this review.

2. Nuclear Matrix Elements

The computation of the NME for DBD is a long-standing problem that still needs to be
satisfactorily solved. Until recently, their computation was performed with nuclear meth-
ods that use phenomenologically effective NN potentials. The most well known are: the
interaction shell model (ISM) [12–17], proton–neutron quasi-random phase approximation
(pnQRPA) methods [7,18–22], interacting boson model (IBM) [23], Energy Density Func-
tional [24], PHFB [25], Coupled-Cluster method (CC) [26], in-medium generator coordinate
method (IM-GCM) [27], and valence-space in-medium similarity renormalization group
method (VS-IMSRG) [28]. The current situation is that there are still significant differences
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between NME values calculated with different methods [29]). These methods have their
strengths or weaknesses, depending on the different approximations on which they are
built. These are mainly related to the dimension of the model spaces for the single-particle
basis and the number and type of the NN correlations involved in the calculation. For ex-
ample, pnQRPA and IBM can use large model spaces for the single-particle states but only a
few types of correlations between nucleons, while ISM can use only a restricted model space
(only one shell) that includes all types of correlations and preserves the symmetries. As
mentioned above, the common feature of these methods is that they all employ phenomeno-
logical effective NN potentials in the NME computation. Here, an important aspect is that
while pnQRPA derives the NN effective potential from infinite matter using the Brueckner
approach and adapts their form by multiplying with specific parameters, ISM uses effective
NN potentials built for specific model spaces for different nuclear regions and checks their
reliability by comparing the theoretical estimations with the data for other observables
in the same nuclear mass region. However, as mentioned above, these methods still give
differences between NME values, sometimes calculated with the same method (pnQRPA or
ISM), which can amount to factors of three or more, depending on the specific isotope and
values of the input parameters considered in the calculation. Because of these uncertainties,
there is a need for more fundamental approaches for the NME computation for DBD. In this
regard, there is currently a coherent program for advancing such calculations [30], with
the main idea being to obtain NME values with minimal dependence on the computational
model and provide a quantified theoretical uncertainty. It is hoped that this will result
in progress in developing methods based on particle and nuclear effective field theories
(EFT) [31], lattice quantum chromodynamics (QCD) [32], and ab-initio nuclear-many-body
techniques [33]. However, the current NME values obtained with these methods are still
far from good predictions. The available results are only for the NME of 48Ca [26,34],
76Ge [35], and 82Se [35,36]. In this context, the traditional methods still predict 2νββ NME
values close to the experimental measurements. One missing thing would be finding a
reliable range of NME values with a predicted uncertainty to provide experimenters with a
better plan to calibrate their set-ups and interpret the results.

In this context, we propose a statistical analysis of 0νββ NME and applied it to 48Ca [37]
and 136Xe [38] isotopes. We only consider the standard light LH neutrino exchange mass
mechanism, which is most likely to contribute to the 0νββ decay process. Details of these
models can be found in the cited references, and here we give only the relevant ingredients.
We employed three independent effective Hamiltonians for each isotope, suitable for each
nuclear mass region, namely, FPD6, GXPF1A, and KB3G for 48Ca, and SVD, GCN5082, and
jj55t for 136Xe, and we investigated the effect of small, random variations of the shell model
effective Hamiltonians on 0νββ NME. These effective Hamiltonians are described by a
small number of single-particle energies and a finite number of two-body matrix elements.
The wave functions produced by these Hamiltonian can also be used to describe and
predict other observables, such as the electromagnetic and Gamow–Teller (GT) transition
probabilities, nucleon occupation probabilities, and spectroscopic factors, using relative
simple changes of the transition operators in terms of effective charges and quenching
factors. These effective charges and quenching factors are calibrated to the existing data.
For 0νββ NME, such calibrations are not yet possible due to the lack of data. However,
different existing effective Hamiltonians for nuclei involved in a given 0νββ decay produce
smaller ranges of the NME values.

The main goals of our study were: (a) for each starting effective Hamiltonian find
correlations between 0νββ NME and the other observables that are accessible experimen-
tally; (b) find theoretical ranges for each observable; (c) establish the shape of different
distributions for each observable and starting Hamiltonians; (d) use this information to find
weights of contributions from different starting Hamiltonians to the “optimal” distribution
of the 0νββ NME; and (e) find an “optimal” value of the 0νββ NME and its predicted
probable range (theoretical error). We refer further to the relevant results obtained for 136Xe,
which is one of the most experimentally studied isotope.
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For example, in Table 1, we present the correlations that we found between several
relevant observables. The notations are obvious, and the letters “P” and “D” added to the
name of the observables denote “parent” and “daughter” nuclei. The calculations were
carried out with the ISM in the jj55 model space consisting of the 0g7/2, 1d5/2, 1d3/2,
2s1/2, and 0h11/2 orbitals that assume 100Sn as a core, covering the sector of the nuclear
chart between (N, Z) = 50–82. The correlation coefficients between observables shown
in Table 1 were obtained using the Pearson method and the approach described in [37].
A set of 1000 Hamiltonians was generated from each starting Hamiltonian, after applying
random perturbations on the two-body matrix elements of maximum amplitude ±10%.
This size of the maximum amplitude was chosen so as not to produce changes in the
single particle energies on which the initial Hamiltonians were fitted. The methodology
of calculating the 0νββ NME (M0ν) within ISM was extensively described elsewhere [13],
and here we do not repeat the details of the calculation. First of all, as expected, M0ν

and M2ν are strongly correlated, so an accurate computation of M2ν may help in the
computation of M0ν. Comparing the theoretical results with the experimental values in
Table 1, one can see that the SVD starting Hamiltonian produces M2ν NMEs that are
more accurate, thus needing the least amount of quenching when compared to those of
GCN5082 or jj55t. For the PGT and DGT, one observes that the SVD results are closest
to the experimental data for the parent nucleus, overestimating the result by much less
than GCN5082 and jj55t. However, for the daughter’s GT, GCN5082 was best, with SVD
underestimating the result the most. For PB(E2)↑ and DB(E2)↑, SVD shows values closest
to the experiment. The excitation energies are better described by GCN5082, in large
part because the GCN5082 starting Hamiltonian was fine-tuned with data for more nuclei
and energy levels than SVD and jj55t. Interestingly, the correlations between the 0νββ
NME and the strengths of the parent and daughter GT transitions to the first 1+ state in
136Cs are significantly reduced, while the correlation with the 2νββ NME is very strong.
One explanation for this phenomenon could be related to the fact that the product of the
GT matrix elements describing transitions to the first 1+ state in 136Cs does not significantly
contribute to the total sum of all excited 1+ states in the intermediate nucleus.

Table 1. Correlation matrix for 9 observables of 136Xe using the SVD effective Hamiltonian and
comparison between experimental data and theoretical calculations for the same observables [38].

M0ν M2ν DE2+ DE6+ DE4+ DGT PGT PB(E2) DB(E2)

M0ν 1 0.8 0.78 0.74 0.72 0.38 0.25 −0.18 −0.42

M2ν 0.8 1 0.47 0.43 0.42 0.52 0.44 −0.049 −0.24

DE2+ 0.78 0.47 1 0.95 0.96 0.53 0.34 −0.54 −0.79

DE6+ 0.74 0.43 0.95 1 0.99 0.5 0.32 −0.56 −0.84

DE4+ 0.72 0.42 0.96 0.99 1 0.55 0.35 −0.55 −0.88

DGT 0.38 0.52 0.53 0.5 0.55 1 0.76 −0.23 −0.58

PGT 0.25 0.44 0.34 0.32 0.35 0.76 1 −0.25 −0.43

PB(E2) −0.18 −0.049 −0.54 −0.56 −0.55 −0.23 −0.25 1 0.65

DB(E2) −0.42 −0.24 −0.79 −0.84 −0.88 −0.58 −0.43 0.65 1

[39] [40] [40] [40] [41] [41] [42] [42]
Data N/A 0.018 0.819 2.207 1.867 0.012 0.15 0.286 0.413

SVD 1.763 0.025 0.662 2.157 1.389 0.001 0.163 0.154 0.342

GCN 2.645 0.069 0.842 2.196 1.873 0.009 0.545 0.121 0.194

jj55t 2.314 0.06 0.917 2.502 2.113 0.004 0.512 0.096 0.158

Figure 1 (taken from [38]) shows the probability distribution functions (PDF) for the
three starting effective Hamiltonians and their weighted sum. The distribution weights
were obtained using the Bayesian Model Averaging method, described in Section IV of [38].
Of the three Hamiltonians, only the SVD Hamiltonian accurately reproduces the experimen-
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tal 2νββ decay NME with the same quenching factor typical for shell model GT calculations
(q∼0.7). Thus, its contribution to the 0νββ decay NME is expected to have a larger weight in
the probability distribution functions than the other Hamiltonians. Based on our statistical
analysis summarized in this Figure, one can infer that with 90% confidence, the NME lies
between 1.55 and 2.65, with a mean value of about 1.99 and a standard deviation of 0.37. We
note that correlations between 0νββ NMEs and other observables were also studied in other
works but in the context of finding useful experimental data for extracting information
about 0νββ NME values. In [43], the 0νββ NMEs and double GT (DGT) transitions were
calculated for 48Ca with shell model using GXPF1B and KB3G effective Hamiltonians and
then for heavier isotopes with the EDF and pnQRPA methods. In [44], the relation between
double gamma (γγ) decay NMEs and 0νββ NMEs was investigated. The calculations were
performed within the shell model approach for a wide range of nuclei, using different
effective Hamiltonians for the configuration spaces specific to different nuclear regions.
In both of these works, the authors found a good correlation between the 0νββ NME values
and the other observables (DGT and γγ), revealing valuable information tools for 0νββ
NMEs.

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
0nbb_me

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 SVD
jj55t
GCN5082
weighted sum

Figure 1. PDFs of neutrinoless ββ NME distribution for the gen5082, jj55t, and SVG Hamiltonians,
and their weighted sum [38].

We mention that the present analysis can help ab-initio studies, such as [26,34,35], to
better identify correlations and further reduce the uncertainties of the 0νββ NME.

3. Electron Wave Functions

To calculate the kinematic part of the beta and double-beta transitions, one needs
to obtain reliable w.f. for the emitted electrons, which includes their interaction with the
Coulomb-type field given by the protons and electronic cloud of the daughter nucleus.
They are the essential ingredients to compute Fermi functions, PSF, electron spectra, decay
rates, and all other needed kinematic quantities (experimentally measurable). Until now,
several methods have been used to calculate the electron w.f. for continuous and bound
states to describe the beta and double-beta transitions. Here, we cover some of them.

Approach A. In a non-relativistic treatment used in early calculations of the DBD
decay rate [45,46], the electron w.f were taken as solutions of the Schrödinger equation in
a Coulomb potential given by a point-like nucleus, and the Fermi function was built as a
scattering solution for a point charge Z f to a plane wave, evaluated at the origin:

FNR(Z f , ϵ) =
2πη

1 − e−2πη
(4)

where η = ±αZ f ϵ/p, “+” (“−”) are for electrons (positrons), α ≃ 1/137 is the fine structure
constant, ϵ is the energy of the outgoing lepton, and p = | p⃗| is its momentum.
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This approximation fails badly for heavy nuclei, but it has the advantage that the DBD
rate can be integrated analytically, resulting in a polynomial in powers of Q-values.

Approach B. In a relativistic treatment, the electron w.f. were obtained as solutions
of the Dirac equation with a Coulomb potential given by a point charge, and the Fermi
function can be written as [7]:

F0(Z f , ϵ) = 4(2pR)2(γ−1)eπy |Γ(γk + iy)|2

[Γ(2γ + 1)]2
, (5)

with
γ =

√
1 − (αZ f )2, y = ±αZ f ϵ/p (6)

with the same sign convention as above. R is the cut-off radius in the evaluation of the Dirac
equation, which is taken to match the radius of the daughter nucleus (i.e., R = 1.2A1/3 fm).
In another version of this relativistic treatment, the electron w.f. and Fermi functions were
obtained by solving a Dirac equation with Coulomb potential given by a spherical finite-size
charge (nucleus). The Fermi function can be also obtained in an analytical form by retaining
the first term in a series expansion of the electron w.f. in spherical functions [5].

Fk−1(Z, ε) =

[
Γ(2k + 1)

Γ(k)Γ(2γk + 1)

]2

(2pR)2(γk−k)|Γ(γk + iy)|2eπy (7)

These analytical forms of the Fermi functions were extensively used for computing
DBD half-lives in many works [5,7]. We also note that the screening effect, which proved to
be important, was not included in both of these methods.

Approach C. The Fermi functions are built from the exact electron w.f. [47], which are
obtained by numerically solving the Dirac equation in a spherical Coulomb potential given
by a finite-size charged nucleus and including the electron screening effect. The details of
the calculations can be found in refs. [47–49].(

d
dr

+
κ + 1

r

)
gκ(ϵ, r) = (ϵ + V(r) + 1) fκ(ϵ, r)(

d
dr

+
κ − 1

r

)
fκ(ϵ, r) = −(ϵ + V(r)− 1)gκ(ϵ, r) (8)

where RA = 1.2A1/3 fm is the nuclear radius. To compute the Fermi function and PSF, we
have to obtain the electron factors f = f (0)11 [6]:

f (0)11 =| f−1−1 |2 + | f11 |2 + | f−1
1 |2 + | f −1

1 |2 (9)

with

f−1−1 = g−1(ϵ1)g−1(ϵ2) ; f11 = f1(ϵ1) f1(ϵ2), (10)

f−1
1 = g−1(ϵ1) f1(ϵ2) ; f −1

1 = f1(ϵ1)g1(ϵ2) (11)

which are related to the electron radials w.f., f, and g:

g−1(ϵ) = g−1(ϵ, RA) ; f1(ϵ) = f1(ϵ, RA) (12)

for which g and f are the radial solutions of the above Dirac equation.
We note that in ref. [47], the Coulomb potential (V(r)) from the Dirac equation has the

form given by a finite size charged nucleus, while in refs. [48,49] the Coulomb potential
was built from a realistic distribution of the protons in the daughter nucleus. The difference
between the Coulomb-type potentials can be seen in Figure 2 (taken from [48]). Notably,
the differences in the PSF values for DBD with double-electron emission, computed with
the two types of Coulomb potentials, amount at most to a few percent, while for other
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decay channels the differences may be relevant. We mention that in both of these methods,
the screening effect was introduced as a renormalization of the Coulomb potential with
a Thomas Fermi function [47–49]. To obtain the radial electron/positron w.f., the Dirac
equation was solved using the subroutines package RADIAL [50].

Figure 2. Realistic proton density for 150Sm (thick line) obtained by solving the Schrödinger equation
for a Woods–Saxon potential in comparison with the constant proton density (dot-dashed line) taken
from [48].

There are differences when applying the approaches (A–C) to calculating the electron
spectra. For example, in Figure 3 the summed energy electron spectra for the 2νββ decay
of 136Xe and its deviation due to LIV effects are presented, with methods A, B, and C as is
specified in the caption. One can see a large difference between the non-relativistic and
relativistic treatments and between the B and C approaches.

Figure 3. Summed energy spectra of electrons in 2νββ decay (a) and deviations due to LIV (b) for
136Xe. Calculations are performed with the methods A, B, and C described in the text [51].



Symmetry 2024, 16, 390 8 of 15

Approach D. In this approach, the electron w.f. are obtained with the DHFS method
using a Coulomb potential given by a nucleus with a diffuse surface. More details can be
found in [52]. This method also gives accurate calculations of the kinematic quantities that
appear in the beta and double-beta decay studies and better applies to EC processes, as we
will see in Section 5. The Dirac equation is solved iteratively: one starts with predefined
w.f. and computes the potential, then the equation is solved to obtain the new w.f., and the
potential is recalculated until a convergence criterion is reached. The DHFS method
constructs the potential as a sum of three components: the nuclear potential generated by
a nucleus with a realistic Fermi proton charge distribution, the electronic potential as a
mean field generated by the charge distribution of the electronic cloud, and the exchange
potential assuring the asymptotic condition at r → ∞ as [50]:

VDHFS(r) = Vnuc(r) + Vel(r) + Vex(r), (13)

In this approach, the screening effect is considered by including the mean-field treat-
ment of the electronic potential component, Vel(r).

4. Lorentz Violation in the Neutrino Sector

Lorentz invariance violation is a current topic that joins the increasing effort to test the
SM limits. The theoretical framework that introduces LIV contributions is the SM extension
(SME) theory [53], including operators that break Lorentz invariance for all the particles
in the SM. Direct observation of LIV implies an investigation of processes at Plank scale
(∼1019GeV), which is not currently possible. However, LIV can manifest in processes at
low energy scales by suppressed effects potentially observable with current or near future
experimental techniques. In particular, the neutrino sector of SME provides the theoretical
framework for a rich phenomenology for searching evidence of LIV [54]. The operators that
couple to neutrinos in SME affect neutrino flavour oscillations, neutrino velocity, and the
electron spectra of beta decay and double-beta decay. The first experimental searches of
LIV in this sector were carried out in the neutrino oscillations experiments [55–57]. There
are, however, distinct LIV signatures (so-called counter-shaded effects) associated with the
oscillation-free operators of mass dimension three, which cannot be investigated in these
experiments. An analysis of electron spectra in beta and double-beta decays offers the
possibility to investigate the LIV effects related to the time-like (isotropic) component of this

oscillation-free operator, whose size is controlled by the coefficient
◦

aof
(3)

In ref. [58], the LIV
effects in 2νββ decay were calculated for the summed energy spectra of electrons employing
a non-relativistic approximation for the electron radial w.f. Currently, the accuracy required
in the DBD experiments far exceeds this approximation. Therefore, precise computation of

the electron spectra is needed. So far several experiments have reported limits for the
◦

aof
(3)

parameter from the analysis of the summed energy spectra of electrons in 2νββ decays, using
theoretical predictions of these spectra performed with approximate methods: EXO-200 [59]

−2.65× 10−2 <
◦

aof
(3)

< 7.6× 10−3 MeV, CUPID-0 [60]
◦

aof
(3)

< 4.1× 10−3 MeV, NEMO-3 [61]

(−4.2 <
◦

aof
(3)

< 3.5)× 10−4 MeV, GERDA [62] (−2.7 <
◦

aof
(3)

< 6.2)× 10−3 MeV. In [51],
we examined the LIV effects on summed energy spectra of electrons and quantities related
to them using Fermi functions built with exact electron w.f. (Approach C is described in
Section 3). First, we derived the complete formalism for LIV analyses in 2νββ decay. For the
sake of consistency, here we give the final formulas, while the detailed derivation of them
can be found in refs. [51,63,64].

The DBD decay rate can be written as a sum of the SM decay rate and its deviation
due to LIV [58]:

ΓSME = ΓSM + δΓ (14)
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As was already mentioned earlier, the 2νββ decay rate can be written as a product of
NME and PSF.

ΓSM = g4
A

∣∣∣mec2M2ν
∣∣∣2G2ν (15)

Since the nuclear part does not contain neutrinos, and the LIV effects appear through
the change of the neutrino momentum, only the phase space factors G2ν are affected, where
the neutrino energy and momentum appear explicitly. The angular differential DBD rate
within the SM can be expressed as [5,63]:

dΓSM

d(cos θ12)
=

1
2
(ΓSM + ΛSM cos θ12) =

1
2

ΓSM(1 + κSM cos θ12). (16)

A similar formula can be written within SME [63]:

dΓSME

d(cos θ12)
= CGSM ×

[
1+

◦
aof

(3) δG
GSM

+

(
κSM+

◦
aof

(3) δH
GSM

)
cos θ12

]
(17)

The spectrum part ( Γ2ν) and the angular correlation part (Λ2ν) of the decay rate can
be obtained by integrating Equations (17) and (18) over the lepton energies. C is a constant,
G and H are the PSF associated with the two decay rate parts, θ12 is the angle between the
two emitted electrons, κ is the angular correlation coefficient defined as the ratio of Γ and
Λ decay rates, and a0(3)

o f f is the coefficient that governs the size of the LIV effects. Besides
the summed energy electron spectra, one can also define another quantity related to the
summed energy electron spectra that can be compared with experimental measurements,
χ+(K):

dΓSME

dK
= C

dGSM

dK

(
1+

◦
aof

(3)
χ(+)(K)

)
(18)

χ(+)(K) =
d(δG)

dK
/

dGSM

dK
(19)

The PSF expressions and their deviations due to LIV can be gathered as follows [63]:

{
GSM
δG

}
=

Ã2G2
F |Vud|2m9

e
96π7 ln 2

1
m11

e

∫ EI−EF−me

me
dε1ε1 p1

∫ EI−EF−ε1

me
dε2ε2 p2

×
∫ EI−EF−ε1−ε2

0
dω1ω2

2 a(ε1, ε2)
[
⟨KN⟩2 + ⟨LN⟩2 + ⟨KN⟩⟨LN⟩

]{ ω2
1

4
◦

aof
(3)

ω1

}
,

(20)

{
HSM
δH

}
=

Ã2G2
F |Vud|2m9

e
96π7 ln 2

1
m11

e

∫ EI−EF−me

me
dε1ε1 p1

∫ EI−EF−ε1

me
dε2ε2 p2

×
∫ EI−EF−ε1−ε2

0
dω1ω2

2b(ε1, ε2)

[
2
3
⟨KN⟩2 +

2
3
⟨LN⟩2 +

5
3
⟨KN⟩⟨LN⟩

]{
ω2

1

4
◦

aof
(3)

ω1

} (21)

Until now, the LIV investigations have been carried out in several DBD experiments
and are limited to extracting the LIV coefficient from the analysis of the summed electron
spectra. The deviation of the summed energy electron spectrum due to LIV effects was
presented in Section 3, Figure 3 (taken from [51]), and it is displayed as a shift of the
maximum of the spectrum to higher energy. This deviation was computed using improved
electron w.f. (Method C) and up-dated Q-values [51]. In our next works [63,64], we
computed the LIV deviations of the summed energy electron spectra for all DBD isotopes
of experimental interest. Then, we also extended our study to the single electron spectra
(Figure 4) and electron angular correlation (Figure 5b), thus providing additional possible
LIV investigations by analyzing these spectra as well.
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Figure 4. Normalized single electron spectra for 136Xe 2νββ; SM with solid line and the LIV first-order
corrected with dashed line [63].

(a) (b)
Figure 5. Both figure are from ref. [63] (dashed for upper limit and dot-dashed for lower limit).

(a) The χ(+)(K) quantity depicted for current limits of
◦

aof
(3)

for 136Xe. (b) The angular correlation

spectrum
◦

aof
(3)

for 136Xe.

Single electron spectra can also undergo LIV deviations, but they can only be investi-
gated in experiments using detectors with tracking systems of individual electrons. Also,
we suggested the analysis of the quantities χ+ (Equation (19)) in the vicinity of the Q-values,
where larger LIV deviations of the SM spectra would be expected, as seen in Figure 5a.
By comparing the electron and angular correlation spectra computed with and without
LIV contributions, one can obtain information about the observability of the LIV effects
with the current experimental statistics. Further, we proposed a new, alternative method to
constrain the LIV parameter. This consists in comparing the measured value of the angular
correlation coefficient k, which can be determined in the DBD experiments with electron
tracking systems [65] by using the forward–backwards asymmetry, with its theoretical
value. Equation (22) shows how the kSME coefficient can be determined by measuring the
balance between the number of electrons emitted forward and backward.

A ≡
∫ 0
−1

dΓ
dx dx −

∫ 1
0

dΓ
dx dx

Γ
=

N+ − N−
N+ + N−

=
1
2

kSME (22)

Finally, we mention that the search for LIV effects will have a greater chance of
success in future DBD experiments as the statistics for the DBD events, especially in the
vicinity of the Q-values, will improve. Also, there are more chances to be observed in DBD
experiments with tracking detectors for individual electrons. We hope our works have
strenghtened the theoretical support necessary for further research into LIV effects in DBD.
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5. Decay Rates for EC Processes

Electron capture processes manifest across a broad spectrum of isotopes [66] and play
a crucial role in practical applications such as radionuclide metrology [67] and nuclear
medicine [68]. In these applications, the relevance is that most Auger electrons emitted
during EC processes possess kinetic energies in the range of a few keV, enabling pre-
cise deposition within a confined area, thus allowing targeted irradiation of tumour sites.
EC processes also play a determinant role in fundamental physics research like nuclear
astrophysics [69] and Dark Matter and DBD experiments for accurate background char-
acterization [70]. Notably, in the precise measurement of the 2νECEC in 124Xe, a critical
background contribution emerges from 125 I EC as its decay peak closely aligns with that of
the 2νECEC peak [71]. That is why there is a great interest in understanding these processes
better, and in this regard, theoretical support is crucial.

In this context, we develop a program to calculate EC processes for a wide nuclear
region, A = 7–204 [72]. Here, we give only the main ingredients of our work, highlighting
the improvements and the obtained results. The decay rate (λ) for allowed and unique-
forbidden transitions is defined as [73]:

λ = M2
L
(2L − 2)!!
(2L − 1)!! ∑

nκ

nnκ p2(|κ|−1)
nκ q2(L−|κ|+1)

nκ β2
nκ BnκSnκ

(2|κ| − 1)![2(L − |κ|) + 1]!
, (23)

where βnκ is the Coulomb amplitude, qnκ represents the energy of the emitted neutrino,
Bnκ denotes the overlap and exchange corrections, and Snκ is the shake-up and shake-
off correction. The angular momentum of the electron capture transition is represented
as L, and ML contains the nuclear matrix element. The total energy of the captured
electron is given by Wnκ = me − |Enκ |, with Enκ representing the binding energy and
me representing the electron rest-mass energy. The momentum of the bound electron is
obtained as pnκ =

√
m2

e − W2
nκ , and the momentum of the emitted neutrino is denoted qnκ .

The relative occupation number is obtained as nnκ = Nnκ/2|κ|.
The decay energy Q is calculated as the atomic mass difference between the initial and

final atom:

Q = qnκ + Rγ +
[
Bgs(Z′)− Bnκ(Z′)

]
= qnκ + Rγ + Rnκ ,

(24)

where Rγ and Rnκ are the γ and X-ray radiation energies released by the final nucleus/
atom. The total binding energy of the electronic cloud is represented as Bnκ .

More details can be found in [72]. The most important elements of the calculation are
the electron w.f., the single-electron binding energies, and the total electron binding energies.
We utilize the DHFS self-consistent framework for their computation. The framework is
validated by comparing the single-electron energies and the total binding energies we
obtained with the experimental ones, thus observing good agreement. By comparison,
other models artificially induce the convergence of energies to specific values for each
atomic number. A mention-worthy approach is the BETASHAPE (BS) program [74]. One
significant improvement of our work is a refined energy balance in Equation (24). We
consider the whole system (the initial and final atom), not only the nuclei and the captured
electron. The binding energies of electrons that do not participate directly in the decay
(spectator electrons) change between the initial and final state. This has an important effect
on the energy balance, affecting the neutrino energy, which enters directly in the decay rate
Equation (23). This approach yielded improved agreement with experimental values for
EC fractions, particularly in low-energy transitions.

For our calculations, we computed the w.f. of all electrons in the initial atom in the
ground state configuration and in the final atom, considering all possible configurations
after an electron is captured. Then, we computed the shake-up and shake-off correction
and the exchange and overlap correction using the w.f.s of the electrons.
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In Table 2 (taken from [72]), we present a comparison of the decay constant ratios for
multiple shells. We employ the use of ratios in order to reduce the NME, thus obtaining
measurable quantities independent of the nuclear model. We outline a few important cases
compared to other experimental (RD) [75] and theoretic results. The experimental values
marked with 1 are taken from [76]. We also compare our results with other results from [76]
computed using a self-interaction-corrected model, the Krieger–Li–Iafrate (KLI) [77]. In
Table 2, we present five allowed transitions 7Be, 54Mn, 55Fe, 109Cd, and 125I; a first unique
forbidden transition 41Ca; and a second unique transition 138La.

Table 2. Comparison between several theoretical models results and measured electron capture
decay ratios for isotopes studied in [76]. The RD marked with 1 are taken from [76].

Isotope Q − Rγ [76] Quantity BS [76] KLI [76] [72] RD [75]
(keV) Frozen Orbitals

7Be 861.89 (7) λL/λK 0.105 (8) 0.0509 (20) 0.11053 (3) 0.101 (13)
41Ca 421.64 (14) λL/λK 0.09800 (40) 0.09078 (16) 0.1046 (2) 0.102 (10)
54Mn 542.2 (10) λL/λK 0.11219 (31) 0.09590 (19) 0.1076 (6) 0.1066 (16)

λK/λ 0.88419 (34) 0.90005 (21) 0.8870 (5) 0.8896 (17)
55Fe 231.21 (18) λL/λK 0.11629 (31) 0.10073 (20) 0.1121 (3) 0.1110 (15)

λM/λK 0.01824 (12) 0.014824 (45) 0.01909 (5) 0.01786 (29) 1

λM/λL 0.1568 (11) 0.14716 (49) 0.1704 (4) 0.1556 (26) 1

109Cd 127.1 (18) λK/λ 0.8148 (14) 0.8164 (12) 0.810 (7) 0.812 (3)
λL+/λK 0.2274 (12) 0.2250 (12) 0.2344 (101) 0.2315 (8)

125I 150.28 (6) λK/λ 0.79927 (41) 0.80376 (23) 0.7983 (18) 0.8011 (17)
138La 312.6 (3) λL/λK 0.3913 (25) 0.4242 (49) 0.409 (7) 0.432 (6)

λM/λK 0.0965 (9) 0.1002 (11) 0.100 (2) 0.102 (3) 1

λM/λL 0.2465 (20) 0.2362 (24) 0.244 (1) 0.261 (9) 1

The uncertainties in Table 2 were obtained using the pseudo-experiment technique.
We took into account the experimental uncertainties of the Q-values and of the energy
levels of the final nuclei in case of the ground state to excited state transitions, and we
assumed a 3% error on the theoretical atomic relaxation energies. In the cases presented
here, the largest source of uncertainty comes from the Q-values and energy levels of the
final nuclei. In low Q-value cases, the uncertainty from the atomic relaxation energies
becomes dominant.

We noted deviations from experimental values below 2% for the λK/λ ratios across all
models, increasing to 12% for captures from higher shells. The BS model and our model
consistently provided the most accurate values. Additionally, our model’s validity was
tested by comparing theoretical predictions to experimental values across a wide range of
atomic numbers and transition energies, revealing excellent agreement (below two standard
deviations) in most cases.

Lastly, we emphasize that refined energetics contribute to improved agreement be-
tween experimental and theoretical EC ratios, particularly in low-energy transitions. This
characteristic has potential implications for determining the neutrino mass scale from
electron capture processes. Our findings have significant implications for future studies in
the EC field and related nuclear physics and astrophysics applications.

6. Conclusions

We briefly reviewed some recent advances in the theoretical study of beta and double-
beta decays. A statistical approach for determining the NME for 0νββ is presented on the
nuclear side. We studied the stability of the NME values against small, random variations
of some effective Hamiltonians used in the computation and their correlation with other
observables that are accessible experimentally. From this statistical study, we predicted
a theoretical range of the NME values and determined an optimal NME value together
with a predictable error. On the atomic side, we briefly reviewed the methods for obtaining
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the electron w.f. Then, we used them to compute relevant, measurable quantities for the
data analysis in beta and double-beta decay experiments. First, we deduced the theoretical
formulas for electron spectra deviations and angular correlation deviations in 2νββ decay
due to LIV. We proposed the search of possible LIV effects in the summed electron energy
and single electron spectra and angular correlation, as well as a new, alternative method to
constrain the coefficient aof

(3) that governs the size of the LIV effects. Then, we presented
a formalism based on the DHFS approach to compute decay rates and decay ratios from
atomic multi-shells, for allowed and unique forbidden EC processes. Our calculations
display good agreement with experimental data. We hope that the results reviewed in this
paper represent relevant advances that can improve data analyses in beta and double-beta
decay experiments.
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63. Ghinescu, S.; Niţescu, O.; Stoica, S. Investigation of the Lorentz invariance violation in two-neutrino double-beta decay. Phys. Rev.
D 2022, 105, 055032. [CrossRef]
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