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Abstract: Quantitative precipitation estimation (QPE) by radar observation data is a crucial aspect
of meteorological forecasting operations. Accurate QPE plays a significant role in mitigating the
impact of severe convective weather. Traditional QPE methods mainly employ an exponential Z–R
relationship to map the radar reflectivity to precipitation intensity on a point-to-point basis. However,
this isolated point-to-point transformation lacks an effective representation of convective systems.
Deep learning-based methods can learn the evolution patterns of convective systems from rich
historical data. However, current models often rely on 2 km-height CAPPI images, which struggle
to capture the complex vertical motions within convective systems. To address this, we propose a
novel QPE model: combining the classic extrapolation model ConvLSTM with Unet for an encoder-
decoder module assembly. Meanwhile, we utilize three-dimensional radar echo images as inputs
and introduce the convolutional block attention module (CBAM) to guide the model to focus on
individual cells most likely to trigger intense precipitation, which is symmetrically built on both
channel and spatial attention modules. We also employ asymmetry in training using weighted mean
squared error to make the model concentrate more on heavy precipitation events which are prone to
severe disasters. We conduct experiments using radar data from North China and Eastern China.
For precipitation above 1 mm, the proposed model achieves 0.6769 and 0.7910 for CSI and HSS,
respectively. The results indicate that compared to other methods, our model significantly enhances
precipitation prediction accuracy, with a more pronounced improvement in forecasting accuracy for
heavy precipitation events.

Keywords: quantitative precipitation estimation; three-dimensional radar reflectivity images; deep
learning

1. Introduction

Quantitative precipitation estimation (QPE) is estimating the intensity of precipitation
based on provided meteorological data. It plays a crucial role in meteorological forecasting,
hydrological observations, and various other domains. The primary objective of QPE is
to provide pixel-level estimates of precipitation intensity within the forecasted area [1–3].
Accurate QPE is the key to precipitation forecasting operations, holding significant impor-
tance in mitigating the impact of hazardous intense convective rainfall and minimizing
societal and economic losses.

Radar observation data has the following advantages: high spatiotemporal resolution,
information richness, and broad coverage [4]. Moreover, the strength of radar reflectivity is
closely linked to precipitation intensity [5]; rendering radar observations plays a crucial role
in quantitative precipitation estimation [6]. Currently, methods for estimating precipitation
intensity at the pixel level using radar reflectivity data primarily include the traditional Z–R
relationship and deep learning methods based on neural networks. The Z–R relationship
characterizes the relationship between radar reflectivity intensity (Z) and precipitation
intensity (R) using a simple power law equation [7–9]: Z = aRb. The coefficients a and b
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need to be determined based on local geographical conditions. However, the sensitivity of
these parameters to different seasons is often ignored. Additionally, the Z–R relationship
only considers a unilateral connection between reflectivity intensity at a single height level
and precipitation [10], typically performing well in predicting laminar precipitation but
struggling to forecast convective heavy rainfall [11–13]. This limitation is due to the fact
that convective rainfall differs from laminar rainfall, as it involves not only horizontal
airflow, but also intense vertical convection movements [14]. This characteristic stresses the
disparity of Z–R relationships between convective and laminar precipitation [15]. These
shortcomings illustrate the challenge in deriving a simple, universally applicable Z–R
relationship for quantitative precipitation estimation that holds true for any location and
time, given the diverse and dynamic nature of precipitation systems.

Many studies have attempted to improve the accuracy of quantitative precipitation
estimation based on the traditional Z–R relationship. For example, Yoon et al. [16] intro-
duced a significant amount of historical data and employed least squares regression to
minimize point-wise errors, resulting in optimal fitting parameters for the radar reflectivity
and precipitation intensity relationship. Bringi et al. [17] introduced differential reflectivity
and differential phase shift from dual-polarization radar to the Z–R relationship, providing
additional information about particle morphology and motion characteristics. While these
approaches have enriched the Z–R relationship to some extent, they still do not address
the problem of its applicability to different precipitation types. Chumchean et al. [18]
and Ramli et al. [19] determined distinct Z–R relationships based on various precipitation
types. However, selecting the appropriate Z–R relationship based on precipitation type is
challenging in practical applications due to the lack of clear boundaries between different
precipitation types. The choice of Z–R relationship often relies on subjective decisions
made by radar operators or meteorologists, resulting in a lack of objectivity in precipita-
tion estimation outcomes. In summary, the Z–R relationship has significant limitations in
predicting precipitation accurately.

In recent years, deep learning models based on neural networks have provided new re-
search directions for QPE due to their powerful nonlinear representation capabilities [20–23].
Compared with the traditional Z–R relationship, the deep learning model can learn the com-
plex mapping relationship between radar data and precipitation intensity from extensive
historical data, significantly improving the accuracy of QPE. For example, Tan et al. [24]
proposed a deep neural network with both radar and surface precipitation observations for
QPE. Chen et al. [25] designed a neural network that fuses dual-polarization radar data and
satellite observations to jointly estimate precipitation intensity. Wang et al. [26] employed a
convolutional neural network with a fused attention mechanism to guide the model’s focus
toward regions most likely to experience precipitation. When compared to the traditional
Z–R relationship, deep learning methods have shown superior performance in the task of
quantitative precipitation estimation.

So far, existing research has been found to mainly use 2D images from the 2 km
altitude plane (CAPPI) of radar data as model inputs for estimating precipitation intensity.
However, 2D images have limitations in capturing the spatiotemporal morphological
characteristics and motion information of intense convective systems. For instance, single
height horizontal reflectivity images cannot capture the vertical characteristics of strong
convective cells. When observing new cells in a sequence of images at a single height level,
these cells might represent newly formed cells within the convective system, or they could
have moved vertically from other levels to their current positions. This uncertainty can
impact the model’s ability to learn features of the entire convective system accurately.

Currently, 3D radar data has begun to be applied to radar echo extrapolation tasks.
Otuska [27] used 3D volumetric scan data from phased-array weather radar for echo corre-
lation tracking and forecasting. Tran et al. [28] treated the height levels as channels and
used PredRNN for extrapolation prediction. Based on Tran’s work, Sun et al. [29] further
improved the method by treating the height dimension as an independent dimension and
employing 3D convolutions for extracting height information. Compared to 2D extrapola-
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tion results from the 2 km altitude, 3D extrapolation provides richer forecast information
and offers more accurate predictions at that particular height level. This demonstrates the
irreplaceable role of 3D inputs in depicting the convective systems.

Three-dimensional radar echo extrapolation provides a solid foundation for quan-
titative precipitation estimation. The 3D echo images can reflect the spatial structural
information of precipitation and predict the potential locations of future precipitation cells.
However, there are seldom QPE models specifically designed for 3D radar inputs. To
address this gap, this study proposes a deep neural network-based model for QPE using
3D radar inputs. The model takes a sequence of continuous multi-level radar reflectiv-
ity CAPPI images as input and employs an encoding module based on the ConvLSTM
model [30] to extract the spatiotemporal information from the input images. The con-
volutional attention module (CBAM) [31] was introduced to guide the model to focus
on crucial regions where precipitation is likely to occur. CBAM considers the symmetry
of channel and spatial attentions and pays attention to precipitation events using both
channel and spatial attention modules. The model also incorporates a skip-connection
structure inspired by the Unet model [32] to achieve multi-level spatial feature matching.
This architecture allows the model to simultaneously calculate the precipitation intensity
for each coordinate point from both temporal and spatial perspectives, aligning better with
meteorological interpretations. In addition, to make the model concentrate more on heavy
precipitation events, the asymmetry loss function for different precipitation events is also
used to improve the performance.

In summary, the contributions of this paper are as follows:

• We use 3D radar echo data for quantitative precipitation estimation, which aims to
capture the complex vertical motions within convective systems;

• We introduce the convolutional attention module to guide the model to focus on
crucial regions as well as the asymmetry loss function for different precipitation events
to further improve the performance;

• We conduct an empirical exploration of our proposed model and show its superior
performance compared to existing representative methods.

The organization of this paper is as follows: Section 2 introduces the data used in
this study. Section 3 presents the proposed method. Section 4 shows the test results and
analysis of different cases. Section 5 provides a summary and discussion.

2. Data
2.1. Radar Data

The data used in this study consists of S-band Doppler weather radar data, which
is provided by the China Meteorological Administration. The spatial coverage includes
North China and Eastern China, spanning 12 different radar stations. The locations of these
stations and their scanning ranges are illustrated in Figure 1 (indicated by the symbol ‘+’ in
the figure). The data was collected from May 2015 to October 2016. The radar performs
scans every 6 min on average, with a scanning radius of up to 230 km from each radar
station. Each scan includes nine elevation angles ranging from 0.5◦ to 19.5◦. The raw
radar data is transformed from polar coordinates to Cartesian coordinates in the horizontal
dimension by bilinear interpolation. Subsequently, vertical interpolation is applied to
achieve 3D equidistant grid field data with a horizontal resolution of 4 km × 4 km and a
vertical resolution of 0.5 km. Samples are composed of a sequence of 10 CAPPI images
corresponding to different height levels (0.5 km, 1 km, 1.5 km, 2 km, 2.5 km, 3 km, 4 km,
5 km, 6 km, 7 km) for each continuous 10-volume scan (1 h). Samples containing sufficiently
strong echo signals are selected and were randomly divided into training, validation, and
test sets in a ratio of 4:1:1. The final dataset consists of 4811 samples in the training set,
1169 samples in the validation set, and 1209 samples in the test set.
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Figure 1. Radar Station Distribution and Scanning Range.

2.2. Precipitation Data

The corresponding precipitation data for the radar observations is from historical
records of rain gauges. Rain gauges are irregularly distributed across land areas, thus
inverse distance interpolation with the six nearest rain gauge observations is employed in
this study to interpolate the precipitation records into a 128 × 128 grid with a resolution
of 4 km × 4 km. To account for the limited availability of precipitation records over the
sea, a masking technique is applied to exclude precipitation data over ocean areas, as their
accuracy could be compromised. Taking the Tanggu station as an example, the distribution
of rain gauge stations and the interpolated precipitation grid for this station are illustrated
in Figures 2a and 2b, respectively. The masking technique is used in Figure 2a to mask the
data from ocean observation stations.
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3. Method
3.1. ConvLSTM Cell

The convolutional long short-term memory (ConvLSTM) cell was introduced by Shi
et al. [30]; being a classic type of recurrent neural network (RNN) structure, the ConvLSTM
cell performs well in capturing spatiotemporal dependencies within sequential data. This
is achieved by simultaneously extracting spatial and temporal information from the data
sequence, effectively addressing the challenges of gradient vanishing and exploding often
encountered in traditional RNN models.

The ConvLSTM network consists of a stack of ConvLSTM cells, and its structure is
shown in Figure 3. Each ConvLSTM cell takes three inputs: the input at the current time
step xt, the long-term memory cell state from the previous time step ct−1, and the previous
time step’s hidden state output ht−1. It produces two outputs: the updated long-term
memory cell state ct and the hidden state output at the current time step ht. The input
xt and input ht−1 are convolved after being stacked along the channel dimension. The
convolution outputs are then separately fed into the forget gate f, update gate i, activation
gate a, and output gate o. These gates output feature maps, which are combined with
the memory cell state by element-wise multiplication (Hadamard product) to update the
memory cell. The operations performed by these four gates and the resulting ct and ht are
described by Equations (1)–(6) as follows:

f = Sigmoid
(

ht−1 ∗ w f h + x ∗ w f x + b f

)
; (1)

i = Sigmoid(ht−1 ∗ wih + x ∗ wix + bi); (2)

a = Tanh(ht−1 ∗ wah + x ∗ wax + ba); (3)

o = Sigmoid(ht−1 ∗ woh + x ∗ wox + bo); (4)

ct = f ◦ ct−1 + i ◦ a; (5)

ht = o ◦ Tanh(ct). (6)
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Here is how each symbol corresponds to an operation: * represents the convolution
operation, w represents the corresponding convolutional kernel weights, and ◦ represents
the Hadamard product (element-wise multiplication).

3.2. Convolutional Block Attention Module (CBAM)

The attention mechanism is a crucial processing mechanism in human vision; it guides
the human brain to focus on the most informative and important local regions within
visual input images while selectively ignoring less relevant areas. In computer vision, the
attention mechanism dynamically selects the importance of different regions within input
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images, allocating significant computational resources to the crucial portions of an image
while discarding irrelevant areas. This helps models in extracting input information from
a global perspective. The attention mechanism can be categorized into four types based
on the dimensions of attention they affect: channel attention, spatial attention, temporal
attention, and branch attention.

The convolutional block attention module (CBAM) [31] is a lightweight module that
symmetrically integrates both channel attention and spatial attention mechanisms. Its
structure is shown in Figure 4. The CBAM module consists of two sub-modules: the
channel attention module and the spatial attention module, which are connected in series.
Each of these attention modules generates weight matrices that are multiplied element-wise
with the input features. This process effectively filters valuable information and discards
less relevant information.
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The channel attention module operates on the spatial dimensions by employing both
max pooling and average pooling to abstractly aggregate spatial information. The results
of these two types of pooling are then separately passed through a shared fully connected
network with the same set of weights. The outputs of this network are then added and
processed through a sigmoid activation function. The resulting one-dimensional vector
from this module has a length equal to the number of channels in the input feature maps.
Each element in this vector represents the weight assigned to the corresponding channel of
the input feature map.

The spatial attention mechanism is similar to the channel attention mechanism, with
the distinction that spatial attention operates max pooling and average pooling along the
channel dimension. The results of these two pooling operations are then stacked along the
channel dimension and fed into a convolutional neural network for fusion. The outcome is
processed through a sigmoid activation function to generate a spatial attention weight map.
The output of this module is a single-channel 2D image. Its size matches those of the input
feature map, where each element signifies the weight value assigned to that spatial location.

Since the input and output of the convolutional attention module have the same
size, and the pooling operation greatly reduces the computational amount of the attention
mechanism, the module can act as a plug and act as a lightweight unit in the neural
network. It addresses the shortcomings of traditional convolutional neural networks, whose
convolutional kernel receptive fields have a small range and have difficultly capturing
large regional semantic information; computing resources are consequently tilted toward
the airspace with higher reflectivity and more complex convective motion, thus effectively
improving the model performance.
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3.3. Network Architecture

The task of our model in this paper is to input ten consecutive 3D radar reflectivity
images over the span of one hour and output a gridded map of accumulated precipitation
for that hour. Time information is crucial for the calculation of accumulated precipitation.
Therefore, we propose a quantitative precipitation estimation model based on ConvLSTM
and 3D convolution. Its architecture is shown in Figure 5.
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This model uses the encoding part of the ConvLSTM model for feature extraction from
the 3D radar echo sequences. The ConvLSTM unit comprises two types of outputs: the
hidden state h and the memory cell c. The h only influences the next layer and the next
time step of the ConvLSTM unit, whereas c can be updated throughout the entire time
sequence. Considering the task of estimating the accumulated precipitation within the
hour, we discard the output of the hidden state h from the last time step (t10), retaining the
memory cell c as the carrier of precipitation information. In this paper, each 2D convolution
within the ConvLSTM unit is replaced with a 3D convolution, facilitating better processing
of spatial data. Between each layer of ConvLSTM units, the feature maps undergo a
process of spatial dimension reduction, channel adjustment, and attention filtering through
a combination of a 3D convolution and a CBAM module.

Upon encoding through the ConvLSTM network, the model produces three layers of
feature maps. Each layer of feature maps has a different spatial size and number of channels,
with deeper layers representing higher-level semantic information. Inspired by the skip-
connection structure of the UNet network, this paper performs feature fusion and decoding
on feature maps from different levels. Each layer of feature maps is dimensionally matched
in the spatial domain with the previous layer’s feature maps using 3D convolutions and
upsampling operations. After stacking them along the channel dimension, they are fused
with feature maps from lower layers. Finally, a 2D convolution operation is applied to fuse
the various feature maps, obtaining the ultimate output of precipitation estimation.
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3.4. Loss Function

In the context of quantitative precipitation estimation, the goal is to accurately pre-
dict the occurrence of heavy precipitation events. However, the number of grid points
corresponding to heavy precipitation is a small fraction of the total grid points in the entire
training dataset. During training, the model may struggle to focus on the heavy precipita-
tion regions and tends to prioritize improving accuracy in regions with light precipitation.
To address this, we opt to employ the weighted mean squared error (WMSE) loss func-
tion [33] for training, which is an asymmetric loss function for different precipitation events.
Strong precipitation regions are assigned higher weights, directing the model’s attention
toward improving accuracy for predicting heavy precipitation events. The formulation of
WMSE is expressed as Equation (7) (where the weights are calculated as in Equation (8)).

WMSE = mask
128

∑
y=1

128

∑
x=1

Weight(h,x,y)

(
I′(h,x,y) − I(h,x,y)

)
. (7)

Weight(h,x,y) =



1, I(h, x, y) ∈ (−∞ , 1 dBZ]

2, I(h, x, y) ∈ (1dBZ, 5dBZ]

3, I(h, x, y) ∈ (5 dBZ, 10 dBZ]

5, I(h, x, y) ∈ (10dBZ, 20dBZ]

10, I(h, x, y) ∈ (20 dBZ,+∞)

(8)

In the equation, I(h,x,y) represents the precipitation intensity at position (x,y) in the
observed image, I′(h,x,y) represents the predicted precipitation intensity at position (x,y) in
the predicted image, and Weight(h,x,y) is the weight assigned to the corresponding point.
mask is the land mask; the precipitation estimate at sea will not be included in the total loss.

4. Experimental Results and Discussions
4.1. Experimental Setup and Evaluation Metrics

This paper’s model takes ten consecutive 3D radar reflectivity images as input and
predicts the precipitation intensity grid field at the same resolution for this hour. The
model is trained by the PyTorch framework, utilizing the Adam optimizer for parameter
updates with a learning rate of 0.0001 and decay rates of (0.9, 0.999). The batch size is set to
four. The final dataset introduced in Section 2 consists of 4811 samples in the training set,
1169 samples in the validation set, and 1209 samples in the test set. The model is trained
with 50 epochs and the model with the lowest WMSE in the validation set was selected as
the final model for testing.

This paper employs a threshold-based pixel-wise forecast lead-time evaluation method
to assess the accuracy of precipitation event prediction. By setting various precipitation
thresholds, points in the precipitation grid field greater than the threshold are labeled as
“yes”, whereas those below the threshold are labeled as “no”. Next, the predicted image and
the ground truth image are used to compute the counts of true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN), as shown in Table 1. Subsequently,
critical success index (CSI), Heidke skill score (HSS), and root mean square error (RMSE)
for quantitative precipitation estimation accuracy assessment can be calculated using
Equations (9)–(11) as follows:

CSI =
TP

TP + FN + FP
; (9)

HSS =
2 × (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
; (10)
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RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2. (11)

Table 1. Confusion Matrix for Classification Results.

Observations as “Yes” Observations as “No”

Predicted as “Yes” TP FP
Predicted as “No” FN TN

In Equation (11), yi represents the actual grid point precipitation intensity, ŷi represents
the predicted grid point precipitation intensity, and N represents the total number of grid
points in the precipitation grid field.

4.2. Test Results and Analysis

In this section, we compare our proposed model with the Z–R relationship (Z–R), a
two-dimensional convolution-based quantitative precipitation estimation model (2D-Conv),
and a quantitative precipitation estimation model incorporating self-attention mechanism
(Attention) [26] as baseline experiments. Additionally, ablation experiments are conducted
using the proposed model without the CBAM module (3D-QPE) and using the proposed
model using two-dimensional radar echo images as input (2D-QPE) to elucidate the roles
of the different components in our proposed model (3D-QPE-CBAM). The test results are
presented in Table 2 and Figure 6.

Table 2. Pixel-wise prediction scores of various methods at different precipitation thresholds.

Method 1 mm 5 mm 10 mm 20 mm 30 mm

RMSE (mm)

Z–R 3.2791 6.6773 9.8833 15.5758 20.3844
2D-Conv 2.7030 4.0120 5.4371 9.4990 15.1890
Attention 2.1926 3.6887 5.2277 8.7684 12.9836
2D-QPE 2.0318 3.5780 5.2479 8.7767 12.9256
3D-QPE 1.7869 3.1108 4.2957 6.9058 9.7460

3D-QPE-CBAM 1.7378 3.1241 4.2776 6.4597 8.9216

CSI

Z–R 0.4337 0.2446 0.1759 0.0964 0.0426
2D-Conv 0.5562 0.4149 0.3208 0.1962 0.0681
Attention 0.5734 0.4612 0.3808 0.2795 0.1564
2D-QPE 0.5998 0.4930 0.4267 0.3260 0.1875
3D-QPE 0.6710 0.5700 0.5041 0.3980 0.2658

3D-QPE-CBAM 0.6769 0.5819 0.5192 0.4114 0.2868

HSS

Z–R 0.5810 0.3852 0.2959 0.1750 0.0814
2D-Conv 0.6872 0.5765 0.4819 0.3274 0.1274
Attention 0.7030 0.6232 0.5485 0.4363 0.2704
2D-QPE 0.7264 0.6530 0.5953 0.4912 0.3157
3D-QPE 0.7856 0.7200 0.6678 0.5688 0.4199

3D-QPE-CBAM 0.7910 0.7300 0.6812 0.5825 0.4457

(1) Overall, with the increase in precipitation threshold, the accuracy of predicting heavy
precipitation decreases significantly for all methods. This is because heavy precipita-
tion is often generated by convective systems, characterized by sudden intensity, rapid
movement, and irregular intensity changes. Moreover, heavy precipitation events
constitute a small proportion of all the precipitation events. During the learning
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process, models find it challenging to adequately capture the characteristic patterns
of heavy precipitation events from a limited number of instances, resulting in lower
predictability for such events.
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(2) Combining the precipitation estimation scores under different precipitation thresholds,
the model accuracies ranked from highest to lowest are as follows: 3D-QPE-CBAM,
3D-QPE, 2D-QPE, Attention, 2D-Conv, and Z–R. From the Z–R relationship to the
proposed 3D-QPE-CBAM, there are two significant leaps in the CSI scores and two no-
ticeable drops in the precipitation estimation error (RMSE). The first leap occurs with
the transition from the Z–R relationship to deep learning models, and the second leap
happens when shifting from 2D to 3D input for the deep learning model. According
to Table 2, the relative increments in CSI scores during these two leaps are 39.3% and
17.4%, whereas the relative decrements in precipitation estimation errors are 33.4%
and 17.8%. The former (first leap) indicates the significant advantage of deep learning
models in capturing the complex nonlinear mapping relationship between reflectivity
and precipitation compared to the Z–R relationship. The latter (second leap) suggests
that building a precipitation estimation model based on three-dimensional observa-
tional data is reasonable and effective, affirming the feasibility of the proposed 3D
modeling approach in this study.

(3) When comparing the proposed model’s 2D-QPE (using 2D data) with the 2D-Conv
baseline model, which also uses 2D data, the average relative improvement in CSI
scores is 30.1%, and the average relative reduction in precipitation estimation errors is
12.3%. This demonstrates that the temporal data utilization approach of the proposed
model effectively enhances the performance of the precipitation estimation model.

(4) Precipitation exceeding 20 mm is generally considered to be generated by intense
convective systems. Under high precipitation threshold conditions, the accuracy
improvement of the proposed model compared to the baseline models is even more
significant. For hourly precipitation amounts exceeding 20 mm and 30 mm, the
3D-QPE-CBAM model proposed in this study demonstrates an improvement of
approximately 10 percentage points in precipitation accuracy compared to the best-
performing baseline model, Attention, among the three comparison models. This
indicates that the proposed model exhibits a more pronounced advantage in predicting
intense convective precipitation.
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4.3. Case Studies

To visually demonstrate the advantages of the proposed model in quantitative precipi-
tation estimation, we have selected two instances. Figure 7 illustrates the radar observation
sequence (displaying composite reflectivity) from the Cangzhou station between 5:00 a.m.
and 6:00 a.m. on 3 August 2015, along with the visual comparison of the predicted pre-
cipitation amounts from various models and the actual precipitation field. This can be
observed in Figure 7.
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In the radar reflectivity image, there is a squall line moving from west to east in the
upper left corner, and two single-cell thunderstorms gradually developing in the lower
left corner. All three areas experienced heavy rainfall within that hour. The upper left area
corresponds to a long and intense rainfall band, and the larger single cell corresponds to
a high-intensity and wide-ranging precipitation area. A rain band extends diagonally to-
ward the upper right between the areas corresponding to the larger and smaller single-cell
thunderstorms. Based on the radar data and actual precipitation observations: (1) Z–R
Relationship Prediction: The predicted precipitation areas are fragmented. The predicted
rain band associated with 4–8 mm/h precipitation and the precipitation area corresponding
to the larger single cell shift rightwards. (2) 2D-Conv Model (2D-Conv) Prediction: The
squall line region’s band-shaped heavy precipitation area and the larger single cell’s corre-
sponding intense precipitation. The predicted precipitation area greater than 1 mm is more
complete than that of the Z–R relationship. However, the band-shaped heavy precipitation
area is notably shorter than the observed results. (3) Attention Model (Attention) Prediction:
Similar to the 2D-Conv model, it predicts the band-shaped heavy precipitation region of
the squall line and notices the intensity of the smaller single-cell area. However, it fails to
predict the rain band between the two single-cell regions. (4) 2D-QPE and 3D-QPE without
Convolutional Attention Module Prediction: Successfully predicts the rain band of the
squall line, the intense precipitation events in both single-cell areas, and the strip-shaped
rain band between them. However, the intensity of the squall line’s rain band is slightly
lower than the actual results. (5) 3D-QPE-CBAM Model (3D-QPE-CBAM) Prediction: Build-
ing upon the previous model, it enhances the intensity of the squall line’s rain band and
further improves the precipitation estimation accuracy.

Figure 8 illustrates the radar observation sequence (displaying composite reflectivity)
from the Bengbu station between 10:00 p.m. and 11:00 p.m. on 14 May 2015, along with
the visual comparison of the predicted precipitation amounts from various models and the
actual precipitation field.
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In Case Study 2, it is observed that precipitation exceeding 12 mm mainly occurs
in the upper right and lower left regions of the image, which roughly correspond to the
areas where radar reflectivity exceeds 40 dBZ. There are two localized precipitation peaks
in the upper central area and the lower right area. Based on the radar data and actual
precipitation observations: (1) Z–R Relationship Prediction: The predicted results for
precipitation exceeding 4 mm/h are generally underestimated in terms of spatial coverage
and intensity. The model predicts relatively strong precipitation in the upper right area but
misses the intense precipitation event in the lower left region. (2) 2D-Conv Model (2D-Conv)
Prediction: The precipitation areas predicted by the 2D-Conv model are more continuous,
but it similarly misses the intense precipitation in the lower left area. Additionally, the
predicted intense precipitation area is smaller than the actual observed results. (3) Attention
Model (Attention) Prediction: In regions where precipitation threshold exceeds 1 mm, the
Attention model tends to match the actual results better compared to the previous two
models. However, the boundaries between intense precipitation areas remain unclear, and
it still fails to predict the intense precipitation in the lower left area. (4) 2D-QPE and 3D-QPE
without Convolutional Attention Module Prediction: Enhances the precipitation intensity in
the lower region compared to the Attention model and predicts a concentrated precipitation
area in the middle of the image. Intense precipitation areas under three-dimensional input
are more distinctly delineated compared to two-dimensional input. (5) 3D-QPE-CBAM
Model (3D-QPE-CBAM) Prediction: With the introduction of the convolutional attention
module, the proposed model successfully identifies the gradually intensifying single cell in
the lower left region of the radar image and accurately predicts the occurrence of heavy
precipitation, closely matching the actual observed results.

4.4. Discussions

Compared with traditional Z–R models and the deep learning-based self-attention
model (QPE-Attention), the proposed model demonstrates significant advantages: sub-
stantial improvements in RMSE, CSI, and other indicators. The two visualization case
studies also highlight the model’s superior performance in predicting intense convec-
tive precipitation.

However, the proposed model still has some common limitations which are typical
of comparison models. First, since the model is based on the data in North China and
Eastern China, it cannot be used for high altitude areas directly. Second, since the labels are
built on rain gauge observations, the model cannot tell the difference between liquid and
solid precipitation. Third, due to the elevation angle limitations of radar scanning modes,
the three-dimensional data used in this model still have blind spots and limitations in
describing convective systems within certain regions. Additionally, precipitation intensity
is influenced not only by water vapor density but also by the types of rainfall and various
environmental factors such as temperature, air pressure, and wind direction. Relying
solely on reflectivity data may not provide sufficient physical information for precipitation
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prediction. Thus, combining multiple data sources for quantitative precipitation estimation
is crucial to further enhance accuracy.

5. Conclusions

This paper presents a quantitative precipitation estimation model based on three-
dimensional radar reflectivity image sequences. By inputting ten consecutive time frames
of three-dimensional radar echo data, the model performs precipitation intensity estimation
within that time range. The main contributions are as follows:

(1) Transition from 2D to 3D Modeling: The conventional two-dimensional radar reflectiv-
ity data is transformed into three-dimensional modeling, incorporating an additional
vertical dimension. This enriches the model with physically meaningful quantities.
The three-dimensional reflectivity information in space provides constraints and
useful information for ground precipitation.

(2) Integration of ConvLSTM and UNet: The proposed architecture combines ConvLSTM
with the UNet network for effective information encoding and decoding. This struc-
ture enables more efficient extraction and utilization of temporal information, thereby
enhancing the model’s ability to predict precipitation intensity.

(3) Temporal-Spatial Convolutional Attention Mechanism: The introduced cascaded
spatiotemporal convolutional attention mechanism directs the model’s focus toward
regions and time frames in the three-dimensional radar echo data that are most
likely to lead to intense precipitation events. This enhances the model’s accuracy in
predicting such events.

Compared with comparison models, the proposed model shows superior performance
in RMSE, CSI, and HSS. Two case studies also visualize the model’s ability to predict intense
convective precipitation.

Research has shown that incorporating dual-polarization radar data, such as differen-
tial reflectivity and differential phase, can significantly improve the accuracy of quantitative
precipitation estimation [34]. In the future, we hope to integrate three-dimensional reflec-
tivity, three-dimensional differential reflectivity, and three-dimensional differential phase,
providing comprehensive physical information for precipitation estimation from a three-
dimensional perspective, thereby boosting estimation accuracy.

Author Contributions: Conceptualization, P.W. and J.Z.; methodology, Y.W. and J.Z.; software,
Y.W. and X.P.; validation, D.W., P.W., and J.Z.; investigation, Y.W. and X.P.; resources, P.W.; data
curation, Y.W.; writing—original draft preparation, Y.W.; writing—review and editing, D.W. and
P.W.; visualization, Y.W.; supervision, P.W.; project administration, P.W.; funding acquisition, D.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant 62106169).

Data Availability Statement: The data is available on request from the corresponding author upon
reasonable request.

Acknowledgments: We appreciate the China Public Meteorological Service Center and the European
Centre for Medium-Range Weather Forecasts for providing the radar data and ERA5 reanalysis data.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lakshmanan, V.; Smith, T.; Stumpf, G.; Hondl, K. The warnong decision support system-integrated information. Weather. Forecast.

2007, 22, 596–612. [CrossRef]
2. Smith, T.M.; Lakshmanan, V.; Stumpf, G.J.; Ortega, K.L.; Hondl, K.; Cooper, K.; Calhoun, K.M.; Kingfield, D.M.; Manross, K.L.;

Toomey, R.; et al. Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull.
Am. Meteorol. Soc. 2016, 97, 1617–1630. [CrossRef]

3. Zhang, J.; Tang, L.; Cocks, S.; Zhang, P.; Ryzhkov, A.; Howard, K.; Langston, C.; Kaney, B. A dual-polarization radar synthetic
QPE for operations. J. Hydrometeorol. 2020, 21, 2507–2521. [CrossRef]

https://doi.org/10.1175/WAF1009.1
https://doi.org/10.1175/BAMS-D-14-00173.1
https://doi.org/10.1175/JHM-D-19-0194.1


Symmetry 2024, 16, 555 14 of 15

4. Bhatnagar, A.K.; Rao, P.R.; Kalyanasundaram, S.; Thampi, S.B.; Suresh, R.; Gupta, J.P. Doppler radar–A detecting tool and
measuring instrument in meteorology. Curr. Sci. 2003, 85, 256–264.

5. Schleiss, M.; Olsson, J.; Berg, P.; Niemi, T.; Kokkonen, T.; Thorndahl, S.; Nielsen, R.; Ellerbæk Nielsen, J.; Bozhinova, D.; Pulkkinen,
S. The accuracy of weather radar in heavy rain: A comparative study for Denmark, the Netherlands, Finland and Sweden. Hydrol.
Earth Syst. Sci. 2020, 24, 3157–3188. [CrossRef]

6. Yoon, S.S.; Phuong, A.T.; Bae, D.H. Quantitative comparison of the spatial distribution of radar and gauge rainfall data.
J. Hydrometeorol. 2012, 13, 1939–1953. [CrossRef]

7. Wilson, J.W.; Brandes, E.A. Radar measurement of rainfall—A summary. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1060. [CrossRef]
8. Marshall, J.S.; Langille, R.C.; Palmer, W.M.K. Measurement of rainfall by radar. J. Atmos. Sci. 1947, 4, 186–192. [CrossRef]
9. Best, A.C. The size distribution of raindrops. Q. J. R. Meteorol. Soc. 1950, 76, 16–36. [CrossRef]
10. Alfieri, L.; Claps, P.; Laio, F. Time-dependent ZR relationships for estimating rainfall fields from radar measurements. Nat.

Hazards Earth Syst. Sci. 2010, 10, 149–158. [CrossRef]
11. Lee, G.W.; Zawadzki, I. Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain

estimation. J. Appl. Meteorol. 2005, 44, 241–255. [CrossRef]
12. Song, L.Y.; Chen, M.X.; Cheng, C.L.; Gao, F.; Chen, M. Characteristics of summer QPE error and a climatological correction

method over Beijing-Tianjin-Hebei region. Acta Meteorol. Sin. 2019, 77, 497–515.
13. Foufoula-Georgiou, E.; Guilloteau, C.; Nguyen, P.; Aghakouchak, A.; Hsu, K.L.; Busalacchi, A.; Turk, F.J.; Peters-Lidard, C.; Oki,

T.; Duan, Q.; et al. Advancing precipitation estimation, prediction, and impact studies. Bull. Am. Meteorol. Soc. 2020, 101, E1584.
[CrossRef] [PubMed]

14. Yu, X.D.; Yao, X.P.; Xiong, T.N.; Zhou, X.G.; Wu, H.; Deng, B.S.; Song, Y. Principle and Operational Application of Doppler Weather
Radar; China Meteorological Press: Beijing, China, 2006; pp. 92–95, ISBN 978-7-5029-4111-6.

15. Keil, C.; Heinlein, F.; Craig, G.C. The convective adjustment time-scale as indicator of predictability of convective precipitation.
Q. J. R. Meteorol. Soc. 2014, 140, 480–490. [CrossRef]

16. Yoon, S.S.; Kim, J.H.; Bae, D.H. A Comparative Analysis of Radar Rainfall Estimation Method. In Proceedings of the Korea Water
Resources Association Conference, Jeju Island, Republic of Korea, 18–19 May 2006; Korea Water Resources Association: Daejeon,
Republic of Korea, 2006; pp. 632–636.

17. Bringi, V.N.; Huang, G.J.; Chandrasekar, V.; Gorgucci, E. A methodology for estimating the parameters of a gamma raindrop size
distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos.
Ocean. Technol. 2002, 19, 633–645. [CrossRef]

18. Chumchean, S.; Seed, A.; Sharma, A. An operational approach for classifying storms in real-time radar rainfall estimation.
J. Hydrol. 2008, 363, 1–17. [CrossRef]

19. Ramli, S.; Bakar, S.H.A.; Tahir, W. Radar hydrology: New Z/R relationships for Klang River Basin, Malaysia based on rainfall
classification. In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, 5–6
December 2011; pp. 537–541.

20. Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.H.U.; Hsu, K.; Sorooshian, S.; Braithwaite, D.A.N. PERSIANN-CNN:
Precipitation estimation from remotely sensed information using artificial neural networks—Convolutional neural networks.
J. Hydrometeorol. 2019, 20, 2273–2289. [CrossRef]

21. Chen, H.; Chandrasekar, V.; Tan, H.; Cifelli, R. Rainfall estimation from ground radar and TRMM precipitation radar using hybrid
deep neural networks. Geophys. Res. Lett. 2019, 46, 10669–10678. [CrossRef]

22. Zhang, Y.; Long, M.; Chen, K.; Xing, L.; Jin, R.; Jordan, M.I.; Wang, J. Skilful nowcasting of extreme precipitation with NowcastNet.
Nature 2023, 619, 526–532. [CrossRef]

23. Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.;
et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021, 597, 672–677. [CrossRef]

24. Tan, H.; Chandrasekar, V.; Chen, H. A machine learning model for radar rainfall estimation based on gauge observations. In
Proceedings of the 2017 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder,
CO, USA, 4–7 January 2017; pp. 1–2.

25. Chen, H.; Chandra, C.V.; Tan, H.; Cifelli, R.; Xie, P. Development of deep learning based data fusion approach for accurate rainfall
estimation using ground radar and satellite precipitation products. In Proceedings of the AGU Fall Meeting Abstracts, San
Francisco, CA, USA, 12–16 December 2016.

26. Wang, C.; Wang, P.; Wang, P.; Xue, B. A spatiotemporal attention model for severe precipitation estimation. IEEE Geosci. Remote
Sens. Lett. 2021, 19, 1–5. [CrossRef]

27. Otsuka, S.; Tuerhong, G.; Kikuchi, R.; Kitano, Y.; Taniguchi, Y.; Ruiz, J.J.; Satoh, S.; Ushio, T.; Miyoshi, T. Precipitation nowcasting
with three-dimensional space–time extrapolation of dense and frequent phased-array weather radar observations. Weather.
Forecast. 2016, 31, 329–340. [CrossRef]

28. Tran, Q.K.; Song, S. Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks. Remote Sens.
2019, 11, 2303. [CrossRef]

29. Sun, N.; Zhou, Z.; Li, Q.; Jing, J. Three-dimensional gridded radar echo extrapolation for convective storm nowcasting based on
3D-ConvLSTM model. Remote Sens. 2022, 14, 4256. [CrossRef]

https://doi.org/10.5194/hess-24-3157-2020
https://doi.org/10.1175/JHM-D-11-066.1
https://doi.org/10.1175/1520-0477(1979)060%3C1048:RMORS%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1947)004%3C0186:MORBR%3E2.0.CO;2
https://doi.org/10.1002/qj.49707632704
https://doi.org/10.5194/nhess-10-149-2010
https://doi.org/10.1175/JAM2183.1
https://doi.org/10.1175/BAMS-D-20-0014.1
https://www.ncbi.nlm.nih.gov/pubmed/34045766
https://doi.org/10.1002/qj.2143
https://doi.org/10.1175/1520-0426(2002)019%3C0633:AMFETP%3E2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2008.09.005
https://doi.org/10.1175/JHM-D-19-0110.1
https://doi.org/10.1029/2019GL084771
https://doi.org/10.1038/s41586-023-06184-4
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1109/LGRS.2021.3084293
https://doi.org/10.1175/WAF-D-15-0063.1
https://doi.org/10.3390/rs11192303
https://doi.org/10.3390/rs14174256


Symmetry 2024, 16, 555 15 of 15

30. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28–37.

31. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

32. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, part III 18. pp. 234–241.

33. Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Deep learning for precipitation nowcasting: A
benchmark and a new model. Adv. Neural Inf. Process. Syst. 2017, 30–41.

34. Ryzhkov, A.; Zhang, P.; Bukovčić, P.; Zhang, J.; Cocks, S. Polarimetric radar quantitative precipitation estimation. Remote Sens.
2022, 14, 1695. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs14071695

	Introduction 
	Data 
	Radar Data 
	Precipitation Data 

	Method 
	ConvLSTM Cell 
	Convolutional Block Attention Module (CBAM) 
	Network Architecture 
	Loss Function 

	Experimental Results and Discussions 
	Experimental Setup and Evaluation Metrics 
	Test Results and Analysis 
	Case Studies 
	Discussions 

	Conclusions 
	References

