Lattice-Boltzmann-Method-Based Numerical Simulation for Heavy Metal Migration Process during Deep-Sea Mining
Abstract
:1. Introduction
2. Transfer-Transformation Model of Heavy Metal Pollutants in Deep-Sea Mining
2.1. Convection–Diffusion Model of Heavy Metals in Water
2.2. Model of Adsorption–Desorption Process
2.3. Model of Sediment Settlement and Resuspension
3. Lattice Boltzmann Model for Migration–Transformation of Heavy Metals
- (1)
- Collision. The particles collide at the lattice point, generating velocity to the surrounding area.
- (2)
- Flow. After the collision, the particles flow in accordance with the direction of the discretized velocity, which is embodied in the movement of particles at each lattice point to the surrounding neighboring lattice points.
3.1. Lattice Boltzmann Model
3.2. The Chapman–Enskog Analysis
4. Numerical Simulations for the Migration–Transformation of Heavy Metals in Deep-Sea Mining
4.1. Spatiotemporal Distribution of Heavy Metal Concentrations
- (1)
- The biological enrichment and decay processes of heavy metals are not considered.
- (2)
- The diffusion of heavy metals in the sedimentary phases is small and negligible.
- (3)
- The exchange between flowing waters and the consequent exchange of heavy metals are negligible.
- (4)
- The specificity of the water body itself is not taken into account.
4.2. Compare with Finite Difference Schemes
4.3. Analysis for the Concentration Variation of Heavy Metals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jankowski, J.A.; Malcherek, A.; Zielke, W. Numerical modeling of suspended sediment due to deep-sea mining. J. Geophys. Res-Ocean. 1996, 101, 3545–3560. [Google Scholar] [CrossRef]
- Tran-Duc, T.; Phan-Thien, N.; Khoo, B.C. A three-dimensional smoothed particle hydrodynamics dispersion simulation of polydispersed sediment on the seafloor using a message passing interface algorithm. Phys. Fluids 2019, 31, 043301. [Google Scholar] [CrossRef]
- Ma, W.; Schott, D.; van Rhee, C. Numerical calculations of environmental impacts for deep sea mining activities. Sci. Total Environ. 2019, 652, 996–1012. [Google Scholar] [CrossRef]
- Ma, W.; van Rhee, C.; Schott, D. A numerical calculation method of environmental impacts for the deep sea mining industry a review. Environ. Sci. Process. Impacts 2018, 20, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.L.; Wan, Z.H.; Smith, P. Numerical modeling of heavy metal pollutant transport-transformation in fluvial rivers. J. Hydraul. Res. 2007, 45, 451–461. [Google Scholar] [CrossRef]
- Huang, S.L. Equations and their physical interpretation in numerical modeling of heavy metals in fluvial rivers. Sci. China Technol. Sci. 2010, 53, 548–557. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.T. Study of the model of heavy metal pollutants transport. Adv. Water Sci. 2004, 15, 576–583. [Google Scholar]
- Periáñez, R. Environmental modelling in the Gulf of Cadiz: Heavy metal distributions in water and sediments. Sci. Total Environ. 2009, 407, 3392–3406. [Google Scholar] [CrossRef]
- Wang, C.; Shen, C.; Wang, P.F.; Qian, J.; Hou, J.; Liu, J.J. Modeling of sediment and heavy metal transport in Taihu Lake, China. J. Hydrodyn. 2013, 25, 379–387. [Google Scholar] [CrossRef]
- Geng, N.; Bai, Y.; Pan, S. Research on heavy metal release with suspended sediment in Taihu Lake under hydrodynamic condition. Environ. Sci. Pollut. Res. 2022, 29, 28588–28597. [Google Scholar] [CrossRef]
- Horvat, Z.; Horvat, M. Two dimensional heavy metal transport model for natural watercourses. River Res. Appl. 2016, 32, 1327–1341. [Google Scholar] [CrossRef]
- Bouragba, S.; Komai, K.; Nakayama, K. Assessment of distributed hydrological model performance for simulation of multi-heavy-metal transport in Harrach River, Algeria. Water Sci. Technol. 2019, 80, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhao, Q.L.; Yu, K.P.; Xiao, G.G.; Chen, C. Impact of deep-sea mining of manganese nodules on seawater quality. Min. Metall. Eng. 2019, 39, 78–80+84. [Google Scholar]
- Igoni, A.H.; Tegu, T.B.; Okparanma, R.N. Estimation of Mg, Cd, and Ni levels in urban waterfront using one-dimensional transport model. Int. J. Water Resour. Environ. Eng. 2020, 12, 71–80. [Google Scholar]
- He, Y.; Li, B.; Zhang, K.; Li, Z.; Chen, Y.; Ye, W. Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond. Environ. Pollut. 2019, 252, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hu, G.; Wu, D.; Zhu, K.; Zhangu, K. Contaminant migration and the retention behavior of a laterite–bentonite mixture engineered barrier in a landfill. J. Environ. Manag. 2022, 304, 114338. [Google Scholar] [CrossRef] [PubMed]
- Dukes, A.D.; Eklund, R.T.; Morgan, Z.D.; Layland, R.C. Heavy metal concentration in the water and sediment of the Lake Greenwood Watershed. Water Air Soil Pollut. 2020, 231, 11. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Application in Engineering; World Scientific: Singapore, 2013. [Google Scholar]
- Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Wang, H.L.; Yuan, X.L.; Liang, H.; Chai, Z.H.; Shi, B.C. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity 2019, 2, 33–52. [Google Scholar] [CrossRef]
- Jiang, F.; Matsumura, K.; Liao, K.P.; Ohgi, J.; Chen, X. Simulation of fluid-structure interaction problems with thin elastic plate via the coupling of finite element and lattice Boltzmann methods. Int. J. Comput. Methods 2020, 17, 2050013. [Google Scholar] [CrossRef]
- Huang, X.; Chen, J.; Zhang, J.; Wang, L.; Wang, Y. An Adaptive Mesh Refinement-Rotated Lattice Boltzmann Flux Solver for Numerical Simulation of Two and Three-Dimensional Compressible Flows with Complex Shock Structures. Symmetry 2023, 15, 1909. [Google Scholar] [CrossRef]
- Dai, H.P.; Chen, D.D.; Zheng, Z.S. Modelling the sintering neck growth process of metal fibers under the surface diffusion mechanism using the Lattice Boltzmann method. Metals 2019, 9, 614. [Google Scholar] [CrossRef]
- Du, R.; Liu, Z.X. A lattice Boltzmann model for the fractional advection-diffusion equation coupled with incompressible Navier-Stokes equation. Appl. Math. Lett. 2020, 101, 106074. [Google Scholar] [CrossRef]
- Dai, H.P.; Zheng, Z.S.; Tan, W. Lattice Boltzmann model for the Riesz space fractional reaction-diffusion. Therm. Sci. 2018, 22, 1831–1843. [Google Scholar] [CrossRef]
- Du, R.; Sun, D.K.; Shi, B.C.; Chai, Z.H. Lattice Boltzmann model for time sub-diffusion equation in Caputo sense. Appl. Math. Comput. 2019, 358, 80–90. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, C.H.; Du, R.; Wei, Y.K. Lattice Boltzmann method for fractional Cahn-Hilliard equation. Commun. Nonlinear Sci. Numer. Simul. 2020, 91, 105443. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhu, H. A General Single-Node Second-Order Dirichlet Boundary Condition for the Convection-Diffusion Equation Based on the Lattice Boltzmann Method. Symmetry 2023, 15, 265. [Google Scholar] [CrossRef]
- Huang, S.L.; Wan, Z.H.; Wang, L.X. Study on the effects of concentrations of heavy metals in sediment and initially in water phase on their adsorption. Acta Sci. Circumstantiae 1995, 15, 66–76. [Google Scholar]
- Huang, S.L. Adsorption of cadmium ions onto the yellow river sediment. Water Qual. Res. J. 2003, 38, 413–432. [Google Scholar] [CrossRef]
- Bai, B.; Rao, D.Y.; Chang, T.; Guo, Z.G. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J. Hydrol. 2019, 578, 124080. [Google Scholar] [CrossRef]
- Dou, M.; Ma, J.X.; Xie, P.; Li, G.Q. Numerical simulation for the transformation process of heavy metal contamination transport in rivers. Water Resour. Power 2007, 25, 22–25. [Google Scholar]
- Mohamad, A.A. Lattice Boltzmann Method; Springer: London, UK, 2011. [Google Scholar]
Physical Quantities | Parameters | Physical Quantities | Parameters |
---|---|---|---|
ss | 1.8378 kg/m3 | k1w | 7.6 × 10−3 L/(mg·s) |
k1b | 7.6 × 10−4 L/(mg·s) | k2w | 8.4 × 10−4 L/s |
k2b | 8.4 × 10−5 L/s | bb | 5.34 g/m2 |
K | 1.1 × 10−6 | bw | 0.534 mg/g |
Kw | 9.0 × 10−5 | p | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Chen, D.; Yang, Y.; Wei, X.; Dai, H.; Zeng, J.; Huo, H. Lattice-Boltzmann-Method-Based Numerical Simulation for Heavy Metal Migration Process during Deep-Sea Mining. Symmetry 2024, 16, 557. https://doi.org/10.3390/sym16050557
Yin L, Chen D, Yang Y, Wei X, Dai H, Zeng J, Huo H. Lattice-Boltzmann-Method-Based Numerical Simulation for Heavy Metal Migration Process during Deep-Sea Mining. Symmetry. 2024; 16(5):557. https://doi.org/10.3390/sym16050557
Chicago/Turabian StyleYin, Lei, Dongdong Chen, Yunqi Yang, Xuedan Wei, Houping Dai, Juan Zeng, and Hanxin Huo. 2024. "Lattice-Boltzmann-Method-Based Numerical Simulation for Heavy Metal Migration Process during Deep-Sea Mining" Symmetry 16, no. 5: 557. https://doi.org/10.3390/sym16050557
APA StyleYin, L., Chen, D., Yang, Y., Wei, X., Dai, H., Zeng, J., & Huo, H. (2024). Lattice-Boltzmann-Method-Based Numerical Simulation for Heavy Metal Migration Process during Deep-Sea Mining. Symmetry, 16(5), 557. https://doi.org/10.3390/sym16050557