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Abstract: The estimated ultimate recovery (EUR) of a single well must be predicted to achieve scale-
effective shale gas extraction. Accurately forecasting EUR is difficult due to the impact of various
geological, engineering, and production factors. Based on data from 200 wells in the Weiyuan block,
this paper used Pearson correlation and mutual information to eliminate the factors with a high
correlation among the 31 EUR influencing factors. The RF-RFE algorithm was then used to identify
the six most important factors controlling the EUR of shale gas wells. XGBoost, RF, SVM, and MLR
models were built and trained with the six dominating factors screened as features and EUR as labels.
In this process, the model parameters were optimized, and finally the prediction accuracies of the
models were compared. The results showed that the thickness of a high-quality reservoir was the
dominating factor in geology; the high-quality reservoir length drilled, the fracturing fluid volume,
the proppant volume, and the fluid volume per length were the dominating factors in engineering;
and the 360−day flowback rate was the dominating factor in production. Compared to the SVM
and MLR models, the XG Boost and the RF models based on integration better predicted EUR. The
XGBoost model had a correlation coefficient of 0.9 between predicted and observed values, and its
standard deviation was closest to the observed values’ standard deviation, making it the best model
for EUR prediction among the four types of models. Identifying the dominating factors of shale gas
single-well EUR can provide significant guidance for development practice, and using the optimized
XGBoost model to forecast the shale gas single-well EUR provides a novel idea for predicting shale
gas well production.

Keywords: shale gas; EUR forecast; dominating factors; RF-RFR algorithm; XGBoost model;
machine learning

1. Introduction

Oil, natural gas, and coal are the three traditional energy sources dominating the
global energy supply today. The proposed “double carbon” goal accelerates the transition
of the global energy system [1]. As a clean and low-carbon fossil energy source, natural gas
serves as a “bridge” and “pillar” in the energy transition process [2,3]. There are two types
of natural gas: conventional and unconventional. Unconventional natural gas plays a vital
role in exploration and development and will be the primary field in the present and future.
Shale gas is a significant unconventional natural gas resource with extensive global reserves.
The production of gas is also expected to increase as extraction technology advances.

The estimated ultimate recovery (EUR) is critical for accurately assessing the develop-
ment potential of shale gas with abundant resources and, ultimately, achieving beneficial
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development [4]. EUR is the foundation for developing shale gas reservoirs, linked to
the design of gas well production and workover systems. It also forms the basis for gas
fields’ scientific and efficient development. Shale gas reservoirs have nanoscale pore char-
acteristics, distinguishing them from conventional natural gas [5]. The production mode
for gas wells is “non-constant pressure, non-constant production”. The reservoirs’ fluid
flow characteristics are complex, with multiple flow phases and a fluctuating, declining
production index. These factors raise the uncertainty of shale gas production forecasts and
EUR valuations [6–8].

The empirical, numerical simulation, and analytical methods are the three most com-
monly used methods for evaluating EUR [9–12]. The empirical method is primarily an
analytical method based on data fitting, which is simple to use and typically has broad
applicability. Still, the human factor has a significant impact, and accuracy is difficult to
ensure. The numerical simulation method uses basic seepage theory to create a detailed
numerical gas reservoir model and estimate production. Nevertheless, the complexities
of its modeling make it inaccessible. Finally, analytical methods typically rely on certain
assumptions, such as the formation’s homogeneity and the fluid’s single-phase seepage
nature. These methods have been widely used to guide shale gas development for many
years. However, these methods have limited applicability, and the methods used at differ-
ent stages vary greatly, as does the calculated EUR. Furthermore, due to the heterogeneity
of shale reservoirs, the uncertainty of the transport mechanism, and the complexity of
the fracture network, these methods have significant uncertainties in characterizing the
reservoir and predicting the EUR [13,14].

Predicting shale gas production using data-driven machine learning techniques has
become popular in the oil and gas industry as artificial intelligence technologies have been
developed and improved [15]. Training machine learning models with data from older
wells and using them to predict the production of new wells is now a viable approach using
machine learning techniques. The oil and gas industry generates geological, engineering,
and production data, the foundation for applying and popularizing machine learning
models. In production prediction, Niu et al. [16] used multiple regression to predict the EUR
of shale gas wells, which provided a new idea for EUR prediction. Hui et al. [17] conducted
a shale gas production prediction study that combined geological and operational factors
and used four models: linear regression, neural networks, gradient-boosting decision
trees, and extra trees. Liu et al. [18] predicted the EUR of shale gas wells using a deep
feed-forward network and integrating geological, engineering, and production factors.
Han et al. [19] used a deep neural network based on a multilayer perceptron to predict
natural gas production and achieved good results.

In this paper, the dominating factors influencing the production of a single well
were screened from three perspectives—geology, engineering, and production—using
Pearson correlation and mutual information value analysis, followed by combining the
random forest algorithm (RF) with the recursive feature elimination (RFE) algorithm, the
abbreviation of which is RF-RFE. Using the screened dominating factors as features and
EUR as the label, we selected the multiple linear regression and support vector machine
models in the single model, and the random forest and extreme gradient boosting models
in the integrated model. From these, we could train and optimize the EUR prediction
model, analyze the prediction effect, and finally select the best prediction model.

2. Methodology

This research is divided into three significant steps. First, the dominating factors were
determined based on the feature set using Pearson’s correlation and mutual information
value analysis and combined with the RF-RFE algorithm. Second, prediction models were
established using the dominant factors as inputs and EUR as the target. Third, the models’
prediction performance was analyzed and evaluated to determine the best production
prediction model.
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2.1. Pearson Correlation

Correlation analysis analyzes the interdependence of two or more variables to de-
termine the degree and direction of correlation and investigate the intrinsic relationship
between variables [20]. The correlation coefficient measures the degree of correlation be-
tween two variables, whereas the Pearson correlation coefficient measures the degree of
linear correlation [21]. In this case, we have two random variables, X = (x1, x2, x3, . . ., xn)
and Y = (y1, y2, y3, . . ., yn). The Pearson correlation coefficient is thus denoted by [22]:

P(X, Y) =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(1)

where: P (X, Y) is the Pearson correlation coefficient; x and y represent the corresponding
sample values of the two variables; and x and y are the corresponding sample value means
of the two variables.

P (X, Y) has values ranging [−1, 1]. The higher the absolute value, the stronger the
correlation between the two variables. P (X, Y) > 0 indicates a linear positive correlation,
while P (X, Y) < 0 indicates a linear negative correlation. When the value of P (X, Y) is close
to 1 or −1, it indicates a strong linear correlation between the two variables. When the
value of P (X, Y) is close to 0, it signifies a lack of linear correlation. Pearson’s criteria for
evaluating the degree of linear correlation are as follows: |P (X, Y)| = 0 indicates no linear
correlation, 0 < |P (X, Y)| < 0.3 indicates a low linear correlation, 0.3 ≤ |P (X, Y)| < 0.8
indicates a moderate linear correlation, 0.8 ≤ |P (X, Y)| < 1.0 indicates a high linear
correlation, and |P (X, Y)| = 1.0 indicates a fully linear correlation.

2.2. Mutual Information

The mutual information value measures the correlation between two sets of events.
This paper used the mutual information value to determine the degree of correlation be-
tween various features in the sample and EUR. Removing features from the chosen feature
pairs with lower mutual information values can reduce the impact of redundant features.

Let P (x, y) be the joint distribution function of (X, Y), and P(x) and P(y) be the marginal
distribution functions of X and Y, respectively. Thus, the mutual information value of X, Y,
denoted as I (X, Y), is [23]:

I(X, Y) = ∑
y∈Y

∑
y∈Y

P(x, y) log
(

P(x, y)
p(x)p(y)

)
(2)

I (X, Y) measures the information that X and Y share. It demonstrates how much
uncertainty about one variable is reduced when the value of another is known. Mutual
information can be used to determine the level of interdependence between two variables.
If two variables are independent of one another and one does not reveal anything about
the other, their mutual information value will be zero.

2.3. RF-RFE Algorithm

In the study of this paper, a large number of factors affecting EUR were selected,
31 in total, from which important factors need to be selected and their number determined.
Commonly used methods, such as grey correlation analysis and the distance correlation
coefficient, can analyze the correlation or distance correlation coefficient of each factor with
EUR, but they cannot accurately give the number of important influencing factors, and
they need to be selected by human beings, which increases the uncertainty of the inputs to
the model [24,25].The RF-RFE algorithm is very suitable for solving the problem of feature
selection, especially in the case of a large number of features and uncertainty about which
ones are the most important, and it is able to give the number of important influencing
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factors. Recursive feature elimination (RFE) is a feature selection algorithm that ranks
feature variables [26]. Its main goal is to find the subset of features that contribute the most
to the model’s performance improvement by gradually removing features from it.

The RF-RFE algorithm analyzes the importance of variables using a random forest
(RF) [27,28]. Then, it selects the important variables using the RFE method by ranking them
in order of importance [29].

The basic steps are shown in Figure 1:

(1) Calculate and rank the importance of each feature in the initial variable training set
data using RF.

(2) Remove the variable from the end of the feature importance degree ranking.
(3) Repeat steps (1) and (2) for the remaining variables, calculating the model’s perfor-

mance evaluation index each time, until all feature variables have been identified.
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The variable importance measurement (VIM), which describes how much each variable
contributes to the target variable, indicates the importance of each variable to the target
variable [30]. RF can perform “variable importance measurement (VIM)” in the analysis
process. The Gini index and out-of-band (OOB) index are commonly used as evaluation
indexes. In this paper, the Gini index is used for evaluation with the following formulas [31].

The statistic VIMj
(Gini) denotes the average change in node-splitting impurity for the

jth variable across all trees in RF. The Gini index is calculated as follows:

GIm =
|k|

∑
k=1

P̂mk
(
1 − P̂mk

)
(3)

where K is the number of classes in the self-help sample set, and P̂mk represents the
probability estimate that the sample of node m belongs to the kth class when the sample is
dichotomous (K = 2). The Gini index of node m is:

GIm = 2P̂m
(
1 − P̂m

)
(4)

where P̂m is the probability estimate that the sample belongs to any class at node m.
The importance of variable Xj at node m, or the amount of change in the Gini index

before and after branching at node m, is as follows:

VIM(Gini)
jm = GIm − GIl − GIr (5)

where GIl and GIr are the Gini indexes of two new nodes split by node m.
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If a variable Xj occurs M times in the ith tree, its importance in the ith tree is:

VIM(Gini)
ij =

M

∑
m=1

VIM(Gini)
jm (6)

The Gini importance of a variable Xj in RF is defined as follows:

VIM(Gini)
j =

1
n

n

∑
i=1

VIM(Gini)
ij (7)

where n is the number of classification trees in the RF.
After evaluation, each element has a positive value that adds up to 1.0. The higher an

element’s value, the more important the corresponding feature.
The advantages of the RF-RFE algorithm are: (1) Since random forest has good ro-

bustness to outliers and noise, the RF-RFE algorithm is able to resist the influence of these
factors in feature selection. (2) Random forests can provide a quantitative assessment of
feature importance, which helps to understand which features in the data are most critical
for prediction. (3) The random forest model has good interpretability, which, combined
with the feature selection process of RFE, makes the final set of selected features easy to
understand. The limitations of the RF-RFE algorithm are: (1) The RFE algorithm has se-
quential dependency problems during feature elimination; the features that are eliminated
first may affect the importance assessment of the subsequent features. (2) The performance
of the algorithm may be affected by parameters such as the number of trees in the random
forest, the maximum depth of the tree, etc., and careful tuning of the parameters is required
to obtain optimal performance.

2.4. Prediction Models

Linear regression is a statistical analysis method commonly used to determine the
quantitative relationship between two or more variables in mathematical statistics [32].
Multiple linear regression (MLR) is a useful multivariate statistical analysis technique that
determines the significance of each independent variable for the dependent variable [33].
The MLR model is expressed as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn (8)

where y is the target variable for prediction, β0 is the intercept, x1, x2 . . . , xn, are the feature
variables to predict y, and β1, β2, . . . , βn are the weights of the feature variables. In this
paper, y corresponds to EUR, and x1, x2, . . . , xn correspond to the screened dominant
factors. The linear model is simple in form, easy to model, does not require very complex
calculations, runs quickly even with large data volumes, and contains some critical machine
learning fundamentals. However, it does not fit nonlinear data well.

Support vector machine (SVM) is a popular and effective supervised learning al-
gorithm applied in various fields [34]. It is a binary classification model with the basic
model being a maximally spaced linear classifier defined on the feature space. The basic
idea behind SVM learning is to solve a separating hyperplane that correctly divides the
training dataset while obtaining the maximum geometric spacing. A linearly divisible
dataset has infinite hyperplanes (perceptual machines), but the hyperplane with the largest
geometric interval is unique. SVM algorithms are intended to handle nonlinear data using
a kernel function to map the original input data samples to a higher-dimensional space,
making the samples linearly differentiable in the new feature space [35,36]. SVMs have
the following advantages. First, they can solve high-dimensional problems with large
feature spaces. Second, they can deal with nonlinear feature interactions. Third, they do not
require the entire dataset. Fourth, their generalization ability is relatively strong. However,
computational efficiency is low when there are many observation samples. There is no
generalized solution for nonlinear problems, and finding a suitable kernel function can
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be challenging. Therefore, SVM is commonly used to solve machine learning problems
involving small samples.

Breiman et al. proposed RF in 2001 [27,28]. It is an extended variant of bagging that
incorporates random attribute selection into the training process of decision trees, using
the decision tree as the base learner to construct the bagging integration. It is trained by
randomly selecting a subset of the original data and applying multiple models trained on
that subset for regression and classification. For the regression problem, the RF predicts an
average of all the decision trees’ predicted results; for the classification problem, the RF
determines the final result using the majority voting method. The advantages of RF are the
following. First, it can handle high-dimensional (many features) data without having to be
downscaled. Second, it can determine the importance of features as well as the interactions
between features. Third, it is faster to train and easy to convert into a parallel method.
Fourth, it is relatively simple to implement. However, RF has been shown to overfit in
some noisy classification or regression problems.

Extreme gradient boosting (XGBoost), a machine learning algorithm, is based on
the integration concept proposed by Chen et al. [37]. It systematically and efficiently
implements gradient boosting, with a linear classifier or a tree as the base learner. Unlike
traditional integrated learning, XGBoost boosts performance by reducing model bias.
The main idea is to add another model based on the current model, resulting in a better
combined model than the current one. Its advantages include the following. First, adding
regularization simplifies the learned model and prevents overfitting. Second, for samples
with missing feature values, XGBoost can automatically learn its split direction. Third, it
supports parallel processing and has high computational efficiency. Fourth, it has a good
processing speed and accuracy for low- and medium-dimensional data. However, it is
unsuitable for processing high-dimensional feature data and does not perform well with
unstructured data; the algorithm has too many parameters and complex tuning parameters,
limiting its use to some extent.

2.5. Bayesian Optimization

Bayesian optimization is a global algorithm based on Bayes’ theorem that can pro-
duce an approximate optimal solution with minimal evaluation cost [38]. For a given
optimized objective function, it first samples randomly in the parameter space to create a
preliminary objective function distribution, then continuously searches for solutions that
maximize or minimize the objective function based on historical information, iterating until
the distribution fits through the sampling points and approximates the actual objective
function. The relationship between the integrated learning model’s numerous parameters
and its performance exhibits a black-box characteristic with a complex structure, making it
impossible to determine its internal structure. In Bayesian optimization, an agent model
can describe the relationship between parameter selection and objective function. During
the evaluation of the sample points, the entire search history is used to identify the most
likely extreme points, which contributes to improving the probabilistic agent model. The
method has the advantages of fast convergence and fewer optimization iterations, and
it is beneficial for solving problems with multiple peaks, nonconvexity, a black box, and
observation noise [39].

3. Development of Production Forecast Models
3.1. Experimental Data and Pre-Processing

The Weiyuan shale gas field is in the southwestern part of the Sichuan Basin, specif-
ically in southwest Sichuan’s low-fold zone of the ancient central slope. The Weiyuan
backslope tectonics has developed against the backdrop of ancient uplift, with the overall
performance being a large-scale, wide, and slow monoclinic tectonics tilted northwest to
southeast. The shale thickness ranges from 180 to 600 m, the burial depth is between 2000
and 4000 m, and the built-up area is 1520 km2 [40]. The marine shale in the Weiyuan shale
gas field has a low total organic carbon (TOC) value, low porosity, low gas saturation, a



Symmetry 2024, 16, 600 7 of 16

thin layer of high-quality reservoir, a high degree of thermal evolution, complex formation
conditions, and a significant horizontal stress difference [41,42]. By June 2023, 566 hori-
zontal wells had been produced, with a total gas production of 236 × 108 m3. The drilled
horizontal well has a lateral length of between 816 m and 3210 m, with an average of 1676 m
and a well spacing of 300 m to 400 m. In terms of production, the wells exhibit low output
and high variability.

The dataset for this paper was derived from the Weiyuan 202 and Weiyuan 204 well
areas. In total, 31 features were identified for dominant-factor screening. There were
thirteen geological features, and the features related to reservoir thickness were selected
as high-quality reservoir thickness and type I reservoir thickness based on a comprehen-
sive interpretation of well-logging data. The remaining features were Young’s modulus,
Poisson’s ratio, formation fracture pressure, horizontal stress difference, permeability, ver-
tical depth, TOC, porosity, pressure coefficient, total gas content, and average brittleness
index, which were obtained from core sample testing and logging interpretations. Five
drilling-related features—horizontal section length, high-quality reservoir length drilled,
type I reservoir length drilled, drilling rate of high-quality reservoir, and drilling rate of
type I reservoir—were obtained from drilling construction reports. Nine features regarding
reservoir modification were obtained from fracturing construction summaries: fractur-
ing section length, fracturing fluid volume, fluid volume per length, proppant volume,
proppant volume per length, the number of fracturing stages, fracture clusters, proppant
volume per cluster, and average pump rate. Four features regarding production were
obtained from production dynamics summaries: 30−day flowback rate, 90−day flowback
rate, 180−day flowback rate, and 360−day flowback rate.

In this study, 200 wells were collected as samples, with all data complete, with 80%
serving as a training set and 20% as a test set.

To improve the model’s prediction accuracy, eliminate the influence of magnitude,
and improve training speed and classification effect, input and output data must be prepro-
cessed. The data were more stable and there were no extreme maximum and minimum
values. Therefore, this paper adopted the normalization processing method to normalize
the data to the interval [0, 1]. The normalization formula is:

yi =
xi − xmin

xmax − xmin
(9)

where xi is the original data, yi is the normalized data, xmax is the maximum value of the
original data, and xmin is the minimum value of the original data.

The model’s performance was evaluated using three metrics: mean absolute error
(MAE), mean square error (MSE), and coefficient of determination (R2). These two metrics,
MAE and MSE, are used to measure the difference between predicted and observed values,
and their values range from 0 to positive infinity; the closer the value of MAE and MSE
are to 0, the more accurate the prediction of the model is, and the better the model’s
performance is. R2 is a statistic that measures the fit of a regression model and can take
values from 0 to 1. The closer the value of R2 is to 1, the closer the predicted values are to
the observed values and the better the model performs. The equations are as follows [33]:

MAE =
1
m

m

∑
i=1

|yi − ŷi| (10)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (11)

R2 = 1 −

m
∑

i=1
(yi − ŷi)

2

m
∑

i=1
(yi − yi)

2
(12)
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where yi is the observed value of EUR, ŷi is the predicted value of EUR, yi is the average
value of observed value of EUR, and m is the number of samples.

3.2. Screening of Dominating Factors

The Pearson correlation analysis of the dataset’s 31 features yielded the Pearson
correlation coefficient mapping shown in Figure 2a.
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Based on the evaluation of Pearson correlation coefficients, Figure 2a shows a strong
correlation between some of the features, indicating that the features selected from the
dataset contained redundant features. All features in the dataset that had a strong correla-
tion were chosen as feature pairs with an absolute Pearson correlation coefficient greater
than 0.6, and the mutual information values of these feature pairs were compared to
eliminate redundant features.

Table 1 displays the mutual information values of each feature with EUR. The features
with the highest mutual information values from each pair were high-quality reservoir
length drilled, high-quality reservoir thickness, 360−day flowback rate, pressure coefficient,
proppant volume, and fracturing fluid volume.

Table 1. Mutual information value between features and EUR.

Features Mutual Information Value Features Mutual Information Value

Length of horizontal section 0.613 30−day flowback rate 0.806

Fracturing section length 0.742 90−day flowback rate 0.823

High-quality reservoir
length drilled 0.825 180−day flowback rate 0.826

Drilling rate of
high-quality reservoir 0.714 360−day flowback rate 0.854

Type I reservoir length drilled 0.652 Number of fracturing stages 0.816

Formation fracture pressure 0.796 Proppant volume per length 0.796

Vertical depth 0.812 Proppant volume 0.931

Pressure coefficient 0.846 Fracturing fluid volume 0.947

Type I reservoir thickness 0.699 Fracturing clusters 0.813

High-quality reservoir thickness 0.816

Figure 2b depicts a plot of the correlation coefficients after removing the redundant
factors. As shown in the figure, the 18 features retained were high-quality reservoir
length drilled, drilling rate of type I reservoir, high-quality reservoir thickness, Young’s
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modulus, Poisson’s ratio, horizontal stress difference, permeability, TOC, porosity, pressure
coefficient, total gas content, average brittleness index, fracturing fluid volume, fluid
volume per length, proppant volume, proppant volume per cluster, average pump rate,
and 360−day flowback rate.

The importance of the 18 initial features was assessed using the RF-RFE algorithm,
and important features were chosen from them.

The initial features were arranged in descending order of importance, as illustrated in
Figure 3. Each time, the features ranked last in importance were removed, and the R2 value
of the five-fold cross-validation was recalculated. R2 explains the variance score in the
regression model, reflecting the degree of regression fit. The closer it is to one, the closer the
predicted value is to the observed value, which is used to evaluate the model’s performance.
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Figure 3. Distribution of feature importance.

Figure 4 depicts the five-fold cross-validation curve for the variation in R2 value with
the number of features. When the number of features was 18, the initial feature set, the
R2 value gradually increased as unimportant features were removed. That was because
removing unimportant features could lessen the impact of redundant data on the algorithm.
When the number of features was 6, the R2 value was highest. However, as the number of
features decreased, the R2 value changed significantly due to deleting the most important
features. As shown in Table 2, the six features with the highest R2 scores were high-quality
reservoir thickness, high-quality reservoir length drilled, fracturing fluid volume, proppant
volume, fluid volume per length, and 360−day flowback rate. These features corresponded
to the first six features in the importance ranking of the initial feature set. These six features
were the most optimal feature set and were the primary factors for determining the EUR of
a single well.
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Table 2. Distribution of dominating factors.

Number of Features Feature Types Features

6

Geology High-quality reservoir thickness,
Drilling high-quality reservoir length drilled,

Reservoir modification fracturing fluid volume, proppant
volume, fluid volume per length,

Production 360−day flowback rate,
Geology high-quality reservoir thickness

3.3. EUR Forecast

MLR and SVM models in single models and XGBoost and RF models in integrated
learning were selected for EUR prediction. These four types of models were trained using
EUR as the label. Six dominating factors were screened as inputs. Bayesian optimization
algorithms were introduced in the model training process to perform super-parameters
and improve the model (MLR models are excluded because the Bayesian algorithms are not
used for parameter optimization in MLR models). Finally, the model simulation results and
assessment indicators were compared and analyzed to determine the best model among
the four.

3.3.1. Comparative Analysis of Model Simulation Results

The six dominating factors screened out using the RF-RFE algorithm were used as
inputs for the four models. The models were trained and parameters optimized, and the
EUR values predicted by the four models were obtained on the test set. As shown in
Figure 5, A–D are XGBoost, RF, SVM, and MLR models, respectively. The predicted values
of EUR by two models, XGBoost and RF, were closer to the observed values. The predicted
values of the SVM model slightly deviated from the observed values. The predicted
values of the MLR model further deviated from the observed values. The XGBoost and RF
models predicted values closer to the observed values than the SVM and MLR models. The
predicted values differed significantly from the observed values in a few cases. However, on
average, the predicted values were more similar to the observed values, and the predictions
were more accurate.
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Figure 6 depicts scatter plots of predicted and observed values from the four models.
The black line represents the linear regression line, and the red diagonal line serves as
the reference line. Overall, the scatters of the XGBoost model exhibited a concentrated
distribution along the diagonal line, indicating that the predicted and observed values
were more consistent. In the RF model, when observed values were <1 × 108 m3, most
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scatter points were distributed above the diagonal line, indicating an overestimating of
the predicted value. When observed values were >1 × 108 m3, most scatter points were
distributed below the diagonal line, indicating an underestimation of the predicted value.
Compared to the XGBoost and RF models, the scatters of the SVM and MLR models were
more dispersed. The scatters of the two models were distributed above the diagonal
line when the observed values were <1 × 108 m3, indicating an overestimation of the
predicted values. The scatters of the two models were distributed below the diagonal
line when the observed values were >1 × 108 m3, indicating that the predicted value was
generally underestimated.
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3.3.2. Comparative Analysis of Model Assessment Indicators

Table 3 shows the evaluation results for the four models. The MAE and MSE of the
predicted and observed values of the XGBoost model were 0.130 and 0.024, respectively.
These were correspondingly reduced by 18.2% and 38.5% compared to the RF model, by
37.5% and 59.3% compared to the SVM model, and by 44.4% and 64.7% compared to the
MLR model. On the test set, the XGBoost model outperformed the RF, SVM, and MLR
models (all with an R2 lower than 0.70), with an R2 of 0.804.

Table 3. Evaluation of the results of the four model predictions.

Parameters XGBoost RF SVM MLR

MAE 0.130 0.159 0.208 0.234

MSE 0.024 0.039 0.059 0.068

R2 0.804 0.688 0.522 0.459

As shown in Figure 7a, the Taylor diagrams of the prediction results of the four models
show that the correlation coefficient between the XGBoost predicted and observed values
was the highest, reaching 0.9. In contrast, the correlation coefficients between the RF,
SVM, and MLR predicted and observed values were relatively low, at 0.85, 0.72, and 0.69,
respectively. The standard deviations of the XGBoost predicted values were the closest to
the observed values.
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Statistical analyses of the observed and predicted values are shown in Figure 7b. The
data distribution of the observed values is approximately symmetrical, with EUR = 0.7 × 108 m3

as the axis. Among the four types of models, the XGBoost model has the closest data
distribution pattern between predicted and observed values and is also symmetrical, with
EUR = 0.7 × 108 m3 as the axis, indicating that the XGBoost model is the closest to the
observed values in terms of both the overall EUR prediction mean and the prediction of
the high and low EUR values.

3.3.3. Analysis of Model Application Performance

To test the efficacy of the dominating factor screened, the same method was used to
train models and optimize the parameters using the 31 influencing factors that were not
subjected to dominating factor screening as inputs, as well as to make predictions on the
test set. The test set’s prediction results were compared to those after the dominating factor
screening, as shown in Table 4.

Table 4. Comparison of model performance under different methods before and after screening of
the dominating factor.

Method Data Set Number of Features R2

XGBoost
Original dataset 31 0.776

Dominating factors 6 0.804

RF
Original dataset 31 0.662

Dominating factors 6 0.688

SVM
Original dataset 31 0.501

Dominating factors 6 0.522

MLR
Original dataset 31 0.421

Dominating factors 6 0.459

Table 4 shows that using dominating factors as inputs improved the prediction effect
of various machine learning methods, with the R2 increasing by 3.6% and 3.9% for the
XGBoost and RF methods and by 4.2% and 9% for the SVM and MLR methods, respectively.

4. Discussion

The six dominating factors identified by the RF-RFE algorithm cover parameters
in each category of geology, drilling, reservoir modification, and production, providing
comprehensive information coverage. The geological aspect is characterized by high-
quality reservoir thickness. The greater the thickness of the high-quality reservoir, the
greater the shale gas reserves and the EUR of a single well under a given level of fracturing.
The drilling parameter is the length of the high-quality reservoir drilled. The length of
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high-quality reservoir drilled is an essential factor in determining a single well’s control
range; the longer the length of high-quality reservoir drilled, the greater the control range of
a single well. The fracturing fluid volume, proppant volume, and fluid volume per length
reflect the degree to which the reservoir has been modified. The degree of modification
determines the utilization of shale gas reserves. The production side is characterized by
the 360−day flowback rate, reflecting the fracturing fluid flowback effect on EUR. The
six dominating factors screened out by applying the method in this paper are basically
consistent with the conclusions summarized by the production practice in reference, which
verifies the accuracy of the high-quality reservoir thickness, the high-quality reservoir
length drilled, and the degree of reservoir modification as the dominating factors of EUR,
and also illustrates the reasonableness of the screened-out dominating factors for predicting
the EUR [40]. Combining these dominating factors allows for a more comprehensive and
accurate forecast of the EUR of a single shale gas well.

A comparison of the results of the four types of model simulations and the assessment
indicators revealed that the XGBoost model performed best in EUR prediction, which
was closer to the observed values. The RF model performed second best, while the SVM
and MLR models performed poorly. The XGBoost model was the most accurate for EUR
prediction among the four model classes. The optimized XGBoost model can complete the
prediction of EUR by six features, and the data can be easily obtained and can achieve high
accuracy, which provides a simple and convenient method for the prediction of EUR of
shale gas wells. However, the sample size used in this study was 200 wells due to limited
conditions. In general, the models based on machine learning methods have a strong
relationship with the sample size of the dataset. The larger the sample size is, the higher
the accuracy of the developed model is. Therefore, it would be helpful to develop a sample
database with a larger capacity in the future.

Table 4 shows that prediction models based on production-dominating factors can
improve prediction performance. It is not the case that the more features are input, the
better the model performance will be. The cause of this phenomenon was a moderate or
strong covariance between features with a lower importance ranking and other features,
which was equivalent to adding “noise” to the training set. Therefore, a reasonable selection
of the type and number of input features serves as the foundation for modeling.

In addition, the XGBoost and RF models based on the integration idea outperformed
the SVM and MLR models in terms of prediction performance because the integration
model was a combination of multiple base learners, which reduced the bias and variance of
the individual models, thereby improving prediction accuracy. Furthermore, the XGBoost
model outperformed the RF model in prediction accuracy. The reason could be that
XGBoost fine-tuned the model by continuously building it to minimize the loss function,
improving prediction accuracy.

5. Conclusions

This paper identified the dominating factors of EUR in a single well in the Weiyuan
area using a mathematical method and the RF-RFE algorithm. On this basis, EUR was
predicted using multiple models, and the best prediction model was chosen. The following
conclusions were drawn:

1. The RF method was used to rank the factors’ importance, and the importance of each
factor to EUR was clarified. The geological, engineering, and production factors of
200 shale gas wells in the Weiyuan block were thoroughly analyzed using Pearson
correlation and mutual information, combined with the RF-RFE algorithm. After
removing redundant and unimportant factors, six factors were chosen as the dominat-
ing factors among 31 EUR influencing factors. The results showed that the dominating
factor in geology was the thickness of high-quality reservoir. The dominating fac-
tors in engineering included high-quality reservoir length drilled, fracturing fluid
volume, proppant volume, and the fluid volume per length. The dominating factor in
production was the 360−day flowback rate.
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2. With the six dominating factors screened as features and EUR as labels, XGBoost, RF,
SVM, and MLR models were built and trained. The results showed that the XGBoost
and RF models, based on the integration idea, outperformed the SVM and MLR
models. Among the four models, the XGBoost model had an R2 of 0.804, significantly
higher than those of the RF, SVM, and MLR models. The MAE and MSE of the
XGBoost model were 0.130 and 0.024, respectively, significantly lower than those
of the other three models. The correlation coefficients between the predicted and
observed values of the XGBoost model were around 0.9, and the standard deviation
was closest to the observed values. Thus, the XGBoost model was the most effective
of the four types of models for EUR prediction.

3. Identifying the dominant factors clarified the most important factors influencing
the EUR of shale gas wells in the Weiyuan block, providing helpful guidance for
development practice. Higher production could be achieved by selecting an area with
a large thickness of high-quality reservoir for well deployment, increasing the length
of high-quality reservoir drilled, improving the scale of fracturing, and reasonably
controlling the flowback of fracturing fluids. Based on the dominating factors, the
optimized XGBoost model was used to predict the EUR of shale gas single wells in
a simple way that requires fewer data types, can significantly improve prediction
accuracy, and provides a new idea for predicting shale gas well production.
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