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Abstract: The pseudo-spin symmetry (PSS) provides an important angle to understand nuclear
microscopic structure and the novel phenomena found in unstable nuclei. The relativistic Hartree–
Fock (RHF) theory, that takes the important degrees of freedom associated with the π-meson and
ρ-tensor (ρ-T) couplings into account, provides an appropriate description of the PSS restoration
in realistic nuclei, particularly for the pseudo-spin (PS) doublets with high angular momenta (l̃).
The investigations of the PSS within the RHF theory are recalled in this paper by focusing on the
effects of the Fock terms. Aiming at common artificial shell closures appearing in previous relativistic
mean-field calculations, the mechanism responsible for the PSS restoration of high-l̃ orbits is stressed,
revealing the manifestation of nuclear in-medium effects on the PSS, and thus, providing qualitative
guidance on modeling the in-medium balance between nuclear attractions and repulsions. Moreover,
the essential role played by the ρ-T coupling, that contributes mainly via the Fock terms, is introduced
as combined with the relations between the PSS and various nuclear phenomena, including the shell
structure and the evolution, novel halo and bubble-like phenomena, and the superheavy magicity.
As the consequences of the nuclear force in complicated nuclear many-body systems, the PSS itself
and the mechanism therein can not only deepen our understanding of nuclear microscopic structure
and relevant phenomena, but also provide special insight into the nature of the nuclear force, which
can further enrich our knowledge of nuclear physics.

Keywords: pseudo-spin symmetry; relativistic Hartree–Fock theory; nuclear in-medium effects;
artificial shell; halo structure; bubble-like structure; superheavy magicity

PACS: 21.60.Jz; 24.10.Jv; 24.30.Cz; 23.40.-s

1. Introduction

The global development of new-generation radioactive-ion-beam (RIB) facilities and
advanced nuclear detectors has significantly expanded the field of research in nuclear
physics, extending it from a few stable nuclei to several thousand unstable ones. This has
greatly enriched nuclear science [1–6]. In contrast to the stable nuclei, numerous nuclear
phenomena have been observed in the unstable nuclei, including the dilute matter distribu-
tions, the halo structure [7–10]; the emergence of new magicity and the disappearance of
traditional magic shells [11–18]; and the occurrence of the central density depression, the
bubble-like structure [19–32]; etc. These observations challenge our conventional under-
standing of nuclear physics. Moreover, a significant number of unstable nuclei are involved
in the rapid neutron capture process (r-process) in the synthesis of heavy elements. This
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indicates that the unstable nuclei play a crucial role in understanding the origin of the
elements in the universe [33,34].

One of the most challenging issues in nuclear physics is the exploration of the existence
limit of very heavy nuclei, which are known as the superheavy elements (SHEs), with
Z ⩾ 104, and the so-called stability island of superheavy nuclei (SHN). Experimentally,
the discoveries of new elements up to Z = 118 have been reported in Refs. [35,36]. It is
evident that an enhanced shell effect is observed with increasing atomic number Z, which
may indicate the emergence of a proton magic shell at Z ⩾ 120. This is evidenced by the
increasing survival probabilities observed in SHEs from Z = 114 to 118 [37]. However,
the current experimental conditions limit the ability to synthesize and precisely measure the
expected SHN. Consequently, there is a need for pioneering theoretical studies to advance
our understanding on both unstable nuclei and superheavy ones.

The pseudo-spin symmetry (PSS) [38,39] represents a significant phenomenon in
nuclear structure [40–43]. It is characterized by the quasi-degeneracy of two single-particle
(s.p.) orbits with the quantum numbers (n, l, j = l + 1/2) and (n−1, l + 2, j = l + 3/2).
The pseudo-spin (PS) doublet is designated by a set of quantum numbers (ñ = n−1, l̃ = l + 1,
j̃ = j = l̃ ± 1/2) [38,39]. Significant research has been conducted to understand the origin of
the PSS, which is recognized as a relativistic symmetry [40,42,44], and the pseudo-orbit l̃
is simply the orbital angular momentum of the lower component of the Dirac spinor [44].
According to the effective field theory, the nuclear force contains both strong attractive and
repulsive components, which are described, respectively, by the exchanges of the scalar and
vector mesons [45]. The exact PSS condition is then generalized as S(r) + V(r) = 0 [44] or
d[S(r) + V(r)]/dr = 0 [46]. It is important to note that both conditions indicate a balance
between strong attractive and repulsive nuclear interactions, which are propagated mainly
by the scalar and vector mesons, respectively.

On the other hand, the delicate in-medium balance between nuclear attractions and
repulsions is crucial to comprehend how a number of nucleons form a bound nucleus,
a fundamental challenge in nuclear physics. The mean-field potential for nucleons in a
nucleus is then approximated as a counteraction between the scalar and vector potentials,
namely, S(r) + V(r). Consequently, any variation in this balance would directly influence
the microscopic nuclear structure. In light of its origin, the PSS can be a valuable tool for
elucidating the nature of the nuclear force and various nuclear phenomena. For instance,
the pseudo-spin orbit (PSO) splitting, which measures the breaking of the PSS, can be help-
ful in comprehending the shell structure and the evolution [47–49], the halo structure [50],
the superheavy nuclei [51,52], the nuclear superdeformed configurations [53,54], etc.

At the level of the mean-field approach [55], the meson-exchange diagram of the
nuclear force [56] can be divided into the Hartree and Fock terms. The significant π-meson
contributes only via the Fock terms. The relativistic mean-field (RMF) theory [55,57], which
contains only the Hartree terms, has the advantage of providing a self-consistent treatment
of strong spin–orbit coupling in nuclei, in contrast to the non-relativistic Skyrme or Gogny
Hartree–Fock models. The incorporation of the Bogoliubov transformation with the RMF
theory, namely, the relativistic Hartree–Bogoliubov (RHB) theory [58–63], unifies the de-
scriptions of both mean-field and pairing correlations. Furthermore, the continuum effects
are taken into account automatically, which promises extensive reliability in the description
of novel phenomena in unstable nuclei, such as the novel halo phenomena observed in
both spherical and deformed nuclei [64–68]. The relativistic scheme has facilitated nu-
merous investigations into the origin of the PSS [44,46,69], the relationship between PSS
and spin-orbit effects [70], the PSS’s dynamical properties [71–73] and non-perturbative
nature [74–76], the PSS in deformed nuclei [77–83], the PSS in hypernuclei [84,85], and the
resonant states [83,86–96], etc.

However, limited by the Hartree approach, significant degrees of freedom associated
with the π-meson and ρ-tensor (ρ-T) couplings are missing in the RMF models. Moreover,
an important ingredient of the nuclear force—the tensor force—cannot be considered effi-
ciently either. Once the Fock terms have been implemented, the relativistic Hartree–Fock
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(RHF) theory [97–99] can introduce the π-pseudo-vector (π-PV) and ρ-T couplings in a
natural manner. In recent decades, RHF theory [48,100], as well as the extensive relativistic
Hartree–Fock–Bogoliubov (RHFB) theory [50], has achieved comparable accuracy to the
popular RMF models in describing various nuclear phenomena. Furthermore, the incorpo-
ration of Fock terms has led to significant improvements in the self-consistent description
of nuclear shell evolution [49,101,102], the PSS restoration [48,100,103,104], symmetry
energy [105], etc. In particular, the tensor force components can be taken into account natu-
rally by the Fock terms [106–108], which is essential for extensive reliability from the stable
to unstable nuclei. The RHFB theory [50], which benefits from the Bogoliubov scheme,
provides a reliable description of various novel phenomena, including the bubble-like
structures [31,32], halo structures [109], and new magicity [51,110,111], etc. Given these
achievements, it is important to investigate systematically the relationship between the PSS
and various nuclear phenomena within the RHF framework. This could provide valuable
insight into the nature of the nuclear force and the properties of unstable nuclei.

For both the RMF and RHF models mentioned above, the modeling of the in-medium
effects of the nuclear force is significant to ensure the accuracy in describing various
nuclear phenomena, for instance, an appropriate incompressibility of nuclear matter [112].
In the RMF theory, the in-medium effects are evaluated by either collaborating with the
nonlinear self-couplings of mesons [113–115] or by considering the density dependencies
in the meson–nucleon coupling strengths [116–119]. For the RHF theory [99], theoretical
accuracy can be improved by incorporating the self-couplings of the σ-meson or scalar fields
(ψ̄ψ) [120,121]. Significantly, assuming the meson–nucleon coupling strengths to be density-
dependent [48,50,122], the density-dependent relativistic Hartree–Fock (DDRHF) theory
has been demonstrated to achieve comparable accuracy to the RMF theory in describing
nuclear structures. In this review, the density dependencies of the coupling strengths will
be briefly recalled in Section 2.2. In comparison to the modeling of in-medium effects via
self-coupling schemes [120,121], the density dependencies in the meson–nucleon coupling
strengths, as guided by ab initio calculations [116,117,119,123], are of critical importance
for the theoretical consistency of the RHF approach [122].

Actually, the relativistic Brueckner–Hartree–Fock (RBHF) theory [43], which is based
on a realistic nuclear force, can help us to understand the PSS. The relativistic effects, such
as nucleon–antinucleon excitations, can be expressed in a non-relativistic framework in
terms of a three-body force. The results of RBHF using the Bonn interaction are similar
to those of non-relativistic Brueckner–Hartree–Fock containing the two- and three-body
forces [124,125]. For relativistic ab initio calculations, the spin symmetry in Dirac sea is
supported by the bare nucleon–nucleon interaction without three-body forces [126], and the
evolution of the spin-orbit and PSO splittings in neutron drops can be explained by the
tensor force [127,128]. Therefore, the RBHF calculations will provide crucial information,
such as the splitting of PS partners, which is helpful when developing density functional
theory. It is also interesting to study the microscopic nuclear structure by using RBHF
theory with covariant chiral interactions [129].

Despite their successes, both RMF calculations and RHF ones with PKOi (i = 1, 2, 3)
can lead to the emergence of artificial shell closures N/Z = 58 and 92 [48,109], accompanied
by largely overestimated binding energies around 140Ce (Z = 58) and 218U (Z = 92) [130].
In fact, these artificial shell closures correspond to large PSO splitting of the high-l̃ PS
doublets near the Fermi surfaces. Fortunately, the RHF Lagrangian PKA1 [48] has been
developed to address this issue. It benefits from an improved in-medium balance between
nuclear attractions and repulsions due to the strong ρ-T coupling [104]. Currently, due to
the uncertainty in the decomposition of nucleon self-energy in the ab initio calculations [43]
it remains challenging to constrain the density dependencies of the coupling strengths for
specific channels in an efficient manner. Alternatively, suitable physical measurements,
which can guide the modeling of nuclear in-medium effects, are still welcomed for both
RMF and RHF models, for instance, qualitatively by the PSS restoration.
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On the other hand, an increasing abundance of novelties in unstable nuclei can be
taken as a new standard for testing the reliability of theoretical models which are established
from the stable nuclei. It should be noted that some novel phenomena, such as the halo and
bubble-like structures, are closely related to the restoration of the PSS [31,32,109]. Aiming
at the role of the Fock terms in the PSS restoration, as well as the relationship between the
PSS and various novel nuclear phenomena, the progress of the RHF descriptions of the PSS
are reviewed. The manuscript is organized as follows. In Section 2, the RHF formalism
is briefly introduced, and in Section 3 the influence of Fock terms on the PSS restoration
is recalled. Then, in Section 4, the elimination of artificial shell closures and the physical
mechanism responsible for the PSS restoration of the high-l̃ PS doublets are introduced.
Focusing on the role of the Fock terms and their relation to the PSS, Section 5 reviews the
RHF descriptions of various nuclear novelties, including the halo structure for Ce isotopes,
the bubble-like structure, and the superheavy magicity. Finally, a summary is given in
Section 6.

2. Relativistic Hartree–Fock Model

In order to provide a comprehensive overview of the theoretical framework, the gen-
eral formalism of the RHF theory, including the effective Hamiltonian and energy functional,
are recalled briefly in the following. In this review, the modeling of nuclear in-medium
effects represents a significant topic. In order to address this issue, the density dependencies
of the meson–nucleon coupling strengths will be introduced. These will be further detailed
by analyzing the density-dependent feature of the popular RMF and RHF Lagrangians.

2.1. Hamiltonian and Energy Functional

In the context of the meson-exchange diagram [56], the nuclear force is posited to be
propagated by massive virtual mesons. In the RMF and RHF approaches, two isoscalar
mesons, namely, σ and ωµ, and two isovector ones, namely, ρ⃗µ and π⃗, are considered.
These mesons, possessing the following quantum numbers (IP, τ), are considered to be the
effective fields which propagate the nucleon–nucleon interactions:

σ(0+, 0), ωµ(1−, 0), ρ⃗µ(1−, 1), π⃗(0−, 1). (1)

The spin, parity and isospin of selected mesons are represented by I, P, and τ, respectively.
Specifically, the π-meson, with a low mass of about 138 MeV, is responsible for the long-
range part of the nucleon–nucleon (NN) interaction. It is also thought to be the main origin
of the tensor force in the relativistic framework [99]. The scalar meson σ, with a mass about
500 MeV, provides the intermediate-range attraction of the NN interaction. The repulsive
inner part of the NN potential is thought to arise mainly from the exchange of a massive
vector meson, the ω-meson. The repulsion can be understood by analogy with the Coulomb
interaction, which is repulsive between electrons of the same charge [131]. The attraction
and repulsion contributed by the σ- and ω-mesons, respectively, primarily determine the
binding of a nuclear many-body system. The isovector–vector ρ⃗-meson is introduced to
describe the isovector nature of the nucleon–nucleon interaction. The photon field Aµ

accounts for the electromagnetic interactions between protons. In this review, arrows are
employed to represent isovectors and bold type is used to denote the space vectors.

When restricting to the mean-field approach, the meson-exchange diagram of the
nuclear force can be divided into the Hartree and Fock terms, as illustrated in Figure 1.
Despite the fact that the two-body interactions propagated by mesons are not instantaneous,
the retardation effects are ignored in the Hartree–Fock description of nuclear ground states,
i.e., neglecting the time component of the four–momentum carried by the meson [99].
In fact, the masses of the σ-, ω-, and ρ-mesons, which have several hundred MeV, are
much larger than the energy transfers. Such an approximation is valid for heavy mesons,
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and also to a lesser extent for the π-meson. Following the standard procedure as described
in Ref. [99], the Hamiltonian of nuclear systems can be expressed in the following form:

H =
∫

drψ̄(r)
(
− iγ ·∇+ M

)
ψ(r) +

1
2 ∑

ϕ

∫
drdr′ψ̄(r)ψ̄(r′)ΓϕDϕ(r − r′)ψ(r)ψ(r′), (2)

where the symbol ϕ represents various two-body interaction channels, including the
Lorentz scalar (σ-S), vector (ω-V, ρ-V, A-V), tensor (ρ-T), vector–tensor (ρ-VT), and pseudo–
vector (π-PV) couplings. The corresponding vertex Γϕ(r, r′) can be expressed in the follow-
ing form:

Γσ-S ≡− gσ(r)gσ(r′), (3)

Γω-V ≡
(

gωγµ

)
r(gωγµ)r′ , (4)

Γρ-V ≡
(

gργµτ⃗
)

r ·
(

gργµτ⃗
)

r′ , (5)

Γρ-T ≡ 1
4M2

(
fρσνkτ⃗∂k

)
r
·
(

fρσνl τ⃗∂l

)
r′

, (6)

Γρ-VT ≡ 1
2M

(
fρσkντ⃗∂k

)
r
·
(

gργντ⃗
)

r′ +
1

2M
(

gργντ⃗
)

r ·
(

fρσkντ⃗∂k

)
r′

, (7)

Γπ-PV ≡−1
m2

π

(
fπ τ⃗γ5γµ∂µ

)
r · ( fπ τ⃗γ5γν∂ν)r′ , (8)

ΓA-V ≡ e2

4
(
γµ(1 − τ)

)
r(γ

µ(1 − τ))r′ . (9)

For the meson and photon fields, the propagator Dϕ is of the following form:

Dϕ =
1

4π

e−mϕ |r−r′ |

|r − r′| , DA =
1

4π

1
|r − r′| . (10)

where ϕ = σ, ω, ρ, π. In the above expressions, M and mϕ are the masses of the nucleon
and meson respectively, and the symbols gϕ (ϕ = σ, ω, ρ) and fϕ′ (ϕ′ = ρ, π) represent the
meson–nucleon coupling strengths.

Figure 1. Feynman diagrams of the Hartree and Fock terms under the meson-exchange picture of the
nuclear force, where the solid lines with arrows represent the interacting nucleons, and the blue and
red colors are used to identify the nucleons dressed by different quantum numbers.

Under the mean-field approach, the no-sea approximation is considered as usual,
which amounts to neglecting the contributions from the Dirac sea [112]. Consequently,
in terms of the particle creation and annihilation operators, namely, c†

α and cα, defined by
the positive-energy solutions of the Dirac equation, the Dirac field ψ that describes nucleons
can be quantized as

ψ(x) = ∑
α

ψα(x)e−iεαtcα. (11)
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where ψα represents the Dirac spinor of positive-energy state α. According to the no-sea
approximations, the Hartree–Fock ground state of nuclear systems can be defined as

|HF⟩ =
A

∏
l

c†
l |−⟩, (12)

where the symbol |−⟩ represents the vacuum state, and A denotes the nuclear mass number.
Eventually, starting from the meson-exchange diagram of the nuclear force, combined

with the quantization of the nucleon field (11), the expectation of the Hamiltonian (2) with
respect to the Hartree–Fock ground state |HF⟩ gives the energy functional E of nuclear
systems [99,132]:

E =⟨HF|H|HF⟩ = Ek + ∑
ϕ

(
ED

ϕ + EE
ϕ

)
, (13)

including the kinetic energy Ek, and the Hartree and Fock terms of the potential energies
from various coupling channels ϕ, named as ED

ϕ and EE
ϕ , respectively. In accordance with

the variational principle, the single-particle Dirac equations of nucleons can be derived
from the energy functional (13), which allows for the derivation of two types of self-
energies, the local Hartree and non-local Fock ones [133,134]. It should be noted that in
the RMF models, only the Hartree terms ED

ϕ are considered. Consequently, the degrees of
freedom associated with the π-PV and ρ-T couplings, which contribute mainly via the Fock
diagrams, cannot be taken into account explicitly.

In open-shell nuclei, the pairing correlations play a significant role in determining
the properties of the ground state, particularly for the nuclei situated close to the drip
line [58,61,64–66]. In general, the pairing correlations are treated using the BCS [135] or Bo-
goliubov [136–138] methods. In particular, for unstable nuclei, the one- and/or two-nucleon
separation energies may be less than 1 MeV. For such weak-bound systems it is crucial to
use an appropriate treatment of pairing correlations and continuum effects. The Bogoliubov
scheme offers a unified treatment of both mean fields and pairing correlations, which is a
distinct advantage over the traditional BCS method. Starting from the quantization (11)
and combining the Bogoliubov transformation [139], one can also quantize the Dirac spinor
in the Bogoliubov quasi-particle space as follows:

ψ(x) =∑
k

(
ψU

k (x)e−iEktβk + ψV
k̃ (x)eiEktβ†

k
)
, (14)

where the indexes k and k̃ represent the time-reversal conjugated states, the U and V
components of the Bogoliubov quasi-particle spinors are denoted by ψU and ψV , and Ek is
the quasi-particle energy. By considering the expectation of the Hamiltonian with respect
to the Bogoliubov ground state, namely, the quasi-particle vacuum βk|HFB⟩ = 0, one can
obtain a unified energy functional that contains the kinetic, potential, and pairing energies:

E =⟨HFB|H|HFB⟩ = Ek + ∑
ϕ

(
ED

ϕ + EE
ϕ + Epp

ϕ

)
,

where Epp
ϕ represents the pairing energy contributed by the coupling channel ϕ. From the

full energy functional presented above, one can derive the RHFB equations by applying
the variational principle.

In practice, the phenomenological pairing force was adopted, including the zero-range
δ-force [58], and finite-range Gogny force [50,58] and separable one [140]. The details of the
RHFB formalism are provided in Refs. [50,134,141]. In the following, we will focus on the
RHB and RHFB calculations, with the aim of discussing novel nuclear phenomena.
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2.2. Effective Lagrangian and In-Medium Effects

For both the RMF and RHF theories, the meson masses and the meson–nucleon
coupling strengths in the effective Hamiltonian (2) define the effective interactions (also
referred to as effective Lagrangians); these are determined by fitting the bulk properties of
nuclear matter and observable nuclei, such as 16O, 40Ca, 48Ca, 56Ni, 132Sn, 208Pb, and so
on. More than that, the modeling of nuclear in-medium effects is also essential for an
accurate description of nuclear properties; these are evaluated by considering the nonlinear
self-couplings of mesons [113–115,120,121] or introducing the density dependence into the
meson–nucleon coupling strengths [116–119,122]. In this review, the PSS and novel nuclear
phenomena will be discussed by utilizing the density-dependent effective Lagrangians.

For better understanding, the density dependence of the meson–nucleon coupling
strengths is presented as follows. As shown in Equation (3), the Hamiltonian of nuclear
systems includes the σ-S, ω-V, ρ-V, ρ-T, ρ-VT, and π-PV meson–nucleon coupling channels.
The density dependencies of the coupling strengths gσ and gω in the isoscalar channels σ-S
and ω-V are adopted as the following form [119]:

gϕ(ρb) = gϕ(ρ0) fρ(x) ϕ = σ-S, ω-V, (15)

where x = ρb/ρ0, and ρ0 is the saturation density. For the function fϕ(x), it has the
following explicit form:

fρ(x) = aϕ
1 + bϕ

(
x + dϕ

)2

1 + cϕ(x + dϕ)2 , (16)

where aϕ, bϕ, cϕ, and dϕ are the parameters determining the density dependencies of gσ and
gω, and the constraint conditions fϕ(1) = 1, f ′′ϕ (0) = 0, and f ′′σ (1) = f ′′ω(1) are generally
introduced to reduce the number of free parameters.

For the isovector mesons, an exponential density dependence is utilized:

gϕ(ρb) = gϕ(0) exp
(
−aϕx

)
. (17)

In the above expression, gϕ(0) corresponds to the free-coupling constants gρ, fρ, and fπ of
the ρ-V, ρ-T, and π-PV couplings, respectively, and aϕ to the relevant density-dependent
parameters.

In order to understand the difference between the density-dependent effective La-
grangians used in this review, Table 1 presents the details of the meson–nucleon coupling
channel for effective Lagrangians PKA1, PKOi (i = 1, 2, 3), DD-ME2, PKDD, and DD-LZ1,
respectively. One can see that the RMF effective Lagrangians DD-ME2, PKDD, and DD-LZ1
do not contain the Fock terms. Hence, the significant degrees of freedom associated with
the π-meson and ρ-T couplings cannot be taken into account. For the RHF Lagrangians,
PKO2 shares the same degrees of freedom as the RMF ones, whereas PKO1 and PKO3
take the π-PV coupling into account, and PKA1 contains both the π-PV and ρ-T couplings,
the latter of which plays an important role in the PSS restoration, in particular for the high-l̃
PS doublets.

Table 1. Details for the density-dependent effective Lagrangians PKA1 [48], PKO1 [122], PKO2 [101],
PKO3 [101], DD-ME2 [142], DD-LZ1 [143], and PKDD [115] which are used in this review.

Hartree Fock σ-S ω-V ρ-V π-PV ρ-T (VT)
PKA1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
PKO1 ✓ ✓ ✓ ✓ ✓ ✓ ×
PKO2 ✓ ✓ ✓ ✓ ✓ × ×
PKO3 ✓ ✓ ✓ ✓ ✓ ✓ ×
DD-ME2 ✓ × ✓ ✓ ✓ × ×
PKDD ✓ × ✓ ✓ ✓ × ×
DD-LZ1 ✓ × ✓ ✓ ✓ × ×
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3. The PSS and the Fock Term

Due to numerical limitations, the early RHF model does not include the ρ-T coupling.
Moreover, the energy functional contributed by the π-PV coupling is relatively small
compared to those contributed by the σ- and ω-couplings. Consequently, despite the
implementation of the Fock terms leading to significant and remarkable differences in
different meson channels [122], the sums of strong attraction (σ-S) and strong repulsion
(ω-V), and the balance of attraction and repulsion will be similar to those of the RMF theory
after the counteraction between the Hartree and Fock terms. According to the condition of
PSS conservation, S(r) + V(r) = 0 [44] or d[S(r) + V(r)]/dr = 0 [46], the PSS restoration is
less influenced by the Fock term [100].

To understand the influence of the Fock terms on the PSS, the Schrödinger-type
equation deduced from the Dirac equation is quite helpful [46,100]. Under spherical
symmetry, the radial Dirac equation can be derived as

EG(r) =−
[

d
dr

− κ

r

]
F(r) + [ΣS(r) + Σ0(r)]G(r) + Y(r), (18)

EF(r) = +

[
d
dr

+
κ

r

]
F(r)− [2M + ΣS(r)− Σ0(r)]G(r) + X(r), (19)

where G(r) and F(r) are the radial wave functions of the upper and lower components,
respectively, the quantity κ = ±(j + 1/2) with j = l ∓ 1/2, and the scalar potential ΣS and
the time component of the vector potential Σ0 contain the contributions from the Hartree
terms and the rearrangement term due to the density dependence of the meson–nucleon
couplings. The non-local integral X and Y terms can be transformed into the equivalent
local contributions XG, XF, YG, and YF; the details can be found in Ref. [100]. Thus, from the
integral Equations (18) and (19), the Schrödinger-type equation for the lower component F
can be derived as

d2

dr2 F + V1
d
dr

F + (VPCB + VPSO + V2)F = −(VD − E)(∆D − E)F, (20)

where VPCB and VPSO represent the pseudo-centrifugal barrier (PCB) and pseudo-spin
orbital potential (PSOP), respectively, and V1 and V2 are of more complicated forms than in
the RMF case [46].

V1 ≡(XG − YF)−
1

∆ − E
d∆
dr

, (21)

V2 ≡YF
1

∆ − E
d∆
dr

− XGYF −
d
dr

YF + YG

(
VD − E

)
+ XF(∆ − E), (22)

VPSO ≡κ

r

[
1

∆ − E
d∆
dr

− (XG + YF)

]
, (23)

VPCB ≡κ(1 − κ)

r2 . (24)

In the above expressions, ∆ ≡ ∆D + YG, V ≡ VD + XF, with ∆D ≡ ΣS + Σ0 and
VD ≡ Σ0 − ΣS − 2M, respectively. As indicated in Ref. [46], the PSS will be recovered
under the limitation of VPSO ≪ VPCB. Compared to the RMF case, the Fock terms present
new contributions, namely, the XG and YF terms in the VPSO. Moreover, the V2 term is
entirely due to the Fock term.

In finite nuclei, the PSO and spin-orbit (SO) splittings show some systematics with
respect to the s.p. energies [46]. Coincidentally, the RHF calculations present a similar
tendency as well [100]. Taking 132Sn as an example, Figure 2 shows the PSO and SO splitting
as functions of the average s.p. energy Ē. Despite the minor differences in the s.p. energies,
an obvious monotonous decreasing behavior of ∆EPSO with respect to Ē is observed for
both RHF and RMF models, similar to that observed for 88Zr and 120Zr [46]. Compared to
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the ∆EPSO, the energy dependence of ∆ESO is relatively weak. This is due to the fact that the
VPSO in Equation (23) is divided by a smaller factor ∆ − E than V − E for the SO potential
VSO [46]. Specifically, ∆ and E have the magnitude of a few tens of MeV, whereas V can be
as large as several hundred MeV. It should be noted in Figure 2 that the PSO splitting is
rescaled by dividing by (2l̃ + 1), namely, ∆EPSO = (El̃ j=l̃−1/2 − El̃ j=l̃+1/2)/(2l̃ + 1). In the
following context, the PSO splitting will not be rescaled, i.e., ∆EPSO = El̃ j=l̃−1/2 − El̃ j=l̃+1/2.
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Figure 2. The PSO splitting ∆EPSO = (El̃ j=l̃−1/2 − El̃ j=l̃+1/2)/(2l̃ + 1) versus the average s.p. energy

ĒPSO = (El̃ j=l̃−1/2 + El̃ j=l̃+1/2)/2 for neutron PS doublets ν1p̃, ν1d̃, ν1 f̃ , and ν2p̃ for 132Sn. The SO
splitting ∆ESO = (El j=l−1/2 − El j=l+1/2)/(2l + 1) is also given for ν1p, ν1d, ν1 f , ν1g, and ν2p ν2d
pairs as a function of ĒSO = (El j=l−1/2 + El j=l+1/2)/2. The results are obtained by the RHF with
PKO1 (filled symbols) and the RMF with PKDD (open symbols), respectively. The figure is taken
from Ref. [100].

In Figure 2, it is obvious that the PSS is restored well for the PS partners
ν2p̃ = (ν3s1/2, ν2d3/2) in both RHF and RMF calculations. Regarding the restoration
condition VPCB ≫ VPSO given by Ref. [46], Figure 3 presents the VPSO and VPCB of PS
partners ν2p̃, both of which are scaled by the factor F2/(VD − E). For the PS partner ν3s1/2,
the PSOP is much smaller than the PCB after considering cancellation at the nodal points.
However, for the partner ν2d3/2, the PSOP becomes comparable with the PCB, even after
considering the cancellation. This seems to be conflict with the conclusion drawn from the
RMF calculations [46].
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Figure 3. The PCB and PSOP scaled by the factor F2/(VD − E) for the PS partner ν2p̃ in 132Sn.
The PCB contributions are shown by the red lines, while the PSOP are shown by the blue shadows.
The RHF with PKO1 is used for the calculations. The figure is taken from Ref. [100].
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In order to understand such inconsistency, Figure 4 shows the Fock contributions to
the VPSO and V1, namely, VE

PSO = κ
r

[
1

∆−E
dYG
dr − (XG + YF)

]
and VE

1 = (XG − YF)− 1
∆−E

dYG
dr ,

which are scaled by the factors F2/(VD − E) and FF′/(VD − E), respectively. It is obvious
that there exist distinct cancellations for the Fock contributions VE

PSO and VE
1 at the nodal

points, which lead to tiny contributions for the PS partner ν3s1/2. Referring to the VPSO
in Figure 3, the condition VPCB >> VPSO becomes invalid for the PS partner ν2d3/2 due
to the substantial contributions from the Fock terms. Even though, such contributions
are largely canceled by the Fock contributions VE

1 , particularly in the interior region; see
Figure 4. Due to such counteractions among the Fock contributions, mainly in the VE

PSO and
VE

1 terms, the PSS is still properly restored for the PS partners ν2p̃, despite considerable
PSOP originating from the Fock terms.
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Figure 4. The functions VE
PSOF2/(VD − E) and VE

1 FF′/(VD − E) given by the exchange (Fock) terms
of the RHF with PKO1 for the PS partner ν2p̃ of 132Sn. The figure is taken from Ref. [100].

Different from the Hartree terms, the Fock terms present non-local mean-field potentials,
corresponding to the non-local terms X and Y in the radial RHF Equations (18) and (19),
both of which are state dependent. For explicit illustration, Figure 5 shows the radial wave
functions G and F (left panels), and the Y and X terms (right panels), as functions of radial
distance r. It is interesting to see that the Y (X) terms and radial wave functions G (F) have
rather similar radial dependencies for both PS partners ν3s1/2 and ν2d3/2. Thus, one can
reach the approximate relations as

X(r) ≃ X0(r)F(r), Y(r) ≃ Y0(r)G(r), (25)

where the X0 and Y0 terms can be treated as the local representations of the non-local Fock
terms. In fact, it is not striking to see such a result. According to the principle of density
functional theory, the contributions from the exchange correlations, here the Fock terms,
can be expressed universally as the functional of local density [144,145]. Consistently,
following the relation (25), the non-local RHF Equations (18) and (19) can be reduced to the
equivalent local ones, which are of the same form as the radial Dirac equations in the RMF
calculations [46]. From this point of view, it is not difficult to understand the approximately
preserved PSS given by both RHF and RMF models, despite the fact the Fock terms present
substantial contributions to the pseudo-spin orbit potentials.
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Figure 5. The radial wave functions G and F (left panels), and the non-local terms X and Y (right
panels) given by the RHF with PKO1 for the PS partner ν2p̃ in 132Sn. The figure is taken from
Ref. [100].

4. The PSS and Nuclear In-Medium Effects

In realistic nuclei, the binding of the systems is ensured by the balance between the
attraction and repulsion, which manifests itself as the PSS restoration. Therefore, any
change in the balance will affect the microscopic nuclear structure. In the last section,
the effects of Fock terms on the PSS restoration were discussed. It seems that the PSS
restoration described by the RHF model is similar to the RMF one due to the significant
cancellation between the Fock contributions, mainly the VE

PSO and VE
1 terms, and the

similarity between the radial wave functions and the non-local Fock terms [Y and X in
Equations (18) and (19)]. Coincidentally, both RMF and RHF calculations with PKOi
(i = 1, 2, 3) suffer greatly from the notable PSS breaking of the high-l̃ PS doublets near
the Fermi surfaces, which present artificial shell closures N/Z = 58 and 92 and lead to
systematically overestimated binding energies for the nuclei around 140Ce (Z = 58) and
218U (Z = 92) [130].

With advances in numerical capability, ρ-T coupling was later introduced explicitly
into the RHF model. It has been shown that ρ-T coupling contributes a rather strong attrac-
tion, which can even change the balance between the dominant σ-S and ω-V channels [48].
In addition, ρ-T coupling contributes significant nuclear in-medium effects due to its strong
density dependence [104]. Consequently, the RHF calculations with PKA1 show a rather
different PSO splitting for the high-l̃ PS doublets close to the Fermi surfaces, accompanied
by the disappearance of the artificial shell closures [49,51,109]. This is attributed to the
implementation of the degree of freedom associated with the ρ-T coupling. Furthermore,
the calculations also benefit from this improvement, for example, in the shell structure
and the evolution, in the description of novel nuclear phenomena, etc. Given these im-
provements, the elimination of the artificial shell closures Z = 92 and Z = 58 and the
physical mechanisms behind the PSS restoration of high-l̃ PS doublets will be recalled in
this section by focusing on the nuclear in-medium effects. Furthermore, the implications for
the thermal properties of nuclear matter and the development of new effective Lagrangians
are briefly mentioned.

4.1. Elimination of Artificial Shell Closures

Taking the artificial shell closure Z = 92 as an example, Figure 6 presents the proton s.p.
energy (SPE) of 208Pb, by taking the RHF effective Lagrangians PKA1 [48] and PKO3 [101],
and RMF’s one DD-ME2 [142], as the representatives. It can be seen that the splittings
between the PS partner π1g̃ = (π2 f7/2, π1h9/2) given by PKO3 and DD-ME2 are rather
large, indicating the existence of the artificial shell Z = 92 that even compresses the size of
the magic shell N = 82. In contrast, PKA1 provides consistent results with the experimental
data, showing a properly restored PSS that eliminates the artificial shell Z = 92. In fact,
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an experiment on the short-lived isotope 223Np has already ruled out the possibility of
the sub-shell Z = 92 [146]. Not only for Z = 92, the elimination of the artificial shell
Z = 58 was also detailed in Ref. [48], and the relevant consequences will be introduced in
the following.
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Figure 6. Proton SPE of 208Pb. The results are calculated by RHF with PKA1 and PKO3, and RMF
with DD-ME2. The experimental data are from Ref. [147].

In heavy nuclei, due to the increasing s.p.-level densities, the occurrences of (semi-)
magic shells can be essentially related to the PSS restoration. For instance, as shown in
Figure 6, there exist two PS doublets π1g̃ and π2p̃ = (π3s1/2, π2d3/2), above and below
the magic shell N = 82, respectively, and it is already seen that the size of the shell can be
affected by the PSO splittings. As another typical example, the experimentally confirmed
sub-shell Z = 64, which shows systematic enhancement towards Z = 64 along the isotonic
chain of N = 82 [47], can be treated as the result of the PSS restoration. However, the sub-
shell Z = 64 is not properly described by the RMF models, which generally give an artificial
shell Z = 58 due to the obvious PSS breaking [48,130].

To further understand the relation between the sub-shell Z = 64 and artificial shell
closure Z = 58, 146

82 Gd64 is taken as an example here. Figure 7 presents the proton SPE of
146Gd calculated by the RHF model with PKA1 [48], the Gogny HFB model with D1S [148],
the Skyrme HF model with SLy4 [149], and the RMF model with PKDD [115]. In addition
to the magic shell Z = 50, the RHF, Gogny, and Skyrme models present the evident
sub-shell Z = 64, consistent with a properly restored PSS for the PS doublets π2p̃ and
π1 f̃ = (π2d5/2, π1g7/2), which are located above and below the sub-shell, respectively. It
is obvious as well that small PSO splittings are beneficial for the arising of the sub-shell
Z = 64. On the contrary, the RMF calculation gives an unphysically large gap between the
PS doublet π1 f̃ , leading to the artificial shell Z = 58, that suppresses the emergence of the
sub-shell Z = 64; see Figure 7.

Following the evolution of the π2d splittings that gives the Z = 64 sub-shell in
Figure 8a, one can see a strong enhancement in the π2d splitting towards Z = 64, and the
RHF calculations with PKA1 provide the best agreement with the experimental data. More
specifically, the sum of the Fock terms of isoscalar σ- and ω-couplings, and the Coulomb
field, play a determining role in giving such an enhancement towards Z = 64; see Figure 8b;
while the isovector π- and ρ-couplings present a tiny contribution for the enhancement in
the π2d splitting towards Z = 64, due to the counteractions between the opposite tensor
force contributions carried by the π-PV and ρ-T couplings, respectively. Combining the
results in Figures 7 and 8, it can be concluded that the PSS restoration may be essential not
only for the occurrence of the sub-shell, but also for the evolution. It is worthwhile to stress
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that the enhancement in the π2d splitting cannot be simply attributed to the tensor force,
which indeed plays a tiny role in this case.
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Figure 7. Proton SPE for 146Gd, calculated by RHF with PKA1 [48], Gogny HFB with D1S [148],
Skyrme HF with SLy4 [149], and RMF with PKDD [115]. The figure is taken from Ref. [49]. Reprinted
with permission from Ref. [49]. Copyright 2009 Elsevier.
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Figure 8. (a) SO splittings ∆E2d of proton π2d partner extracted from the calculations of RHF with
PKA1, Gogny HFB with D1S, Skyrme HF with SLy4, and RMF with PKDD, in comparison with
experimental data [47]. (b) Detailed contributions of ∆E2d from different channels given by the RHF
calculations with PKA1. The figure is taken from Ref. [49]. Reprinted with permission from Ref. [49].
Copyright 2009 Elsevier.

4.2. New Mechanism of PSS Restoration

As previously, there is a systematic difference between PKA1 and other RHF/RMF
effective Lagrangians in the description of the PSS restoration. This difference can be closely
linked to the magic or semi-magic shells. Taking the doubly magic nuclei 48Ca, 90Zr, 132Sn,
and 208Pb and the predicted superheavy one 310126 [110] as examples, Figure 9a,b illustrate
the relevant proton shell gaps and the splittings of the PS doublets with high l̃ neighboring
the shells, as predicted by the RHF and RMF models. When compared to experimental
data [147], PKA1 shows appropriate agreements, whereas the others distinctly overestimate
the PSO splittings. This has implications for the emergence of the neighboring shells in
heavy nuclei. For example, less pronounced proton shells Z = 82 and Z = 50 are typically
accompanied by a larger value of ∆Eπ

PSO for the PS doublets π1g̃ in 208Pb and π1 f̃ in 132Sn;
see Figure 9. Furthermore, the close correlation between the emergence of shell closures
and the PSS is also predicted for SHN, which will be discussed in detail in Section 5.3.

Conceptually, the condition V + S = 0 or d(V + S)/dr = 0 can preserve the PSS
precisely, which cannot be satisfied in realistic nuclei. On the other hand, such a condition
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indeed indicates certain in-medium balance between nuclear attractions and repulsions.
Taking 208Pb as an example, Table 2 shows the contributions to the energy functional from
the sum of kinetic energy and the isoscalar σ-S and ω-V couplings, that of the isovector ρ
and π fields, and that of the electromagnetic field. Following the implementation of the
Fock terms and further the ρ-T coupling, one can observe changes from the RMF to RHF ap-
proaches on modeling the in-medium balance between nuclear attractions and repulsions.
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Figure 9. Proton shell gaps (MeV) (a) and the splittings of neighboring PS partners Eπ
PSO (MeV) (b) for

the traditional magic nuclei 48Ca, 90Zr, 132Sn, and 208Pb, and the superheavy one 310126. The results
are calculated by PKA1, PKO3, DD-ME2, PK1 [115], and NL3* [150]. The shadow areas denote the
spreading of the PSO splittings given by PKA1 and the other selected models. Experimental data are
taken from Ref. [147]. The figure is taken from Ref. [104]. Reprinted with permission from Ref. [104].
Copyright 2019 American Physical Society.

Table 2. Contributions to the total energy functional ETotal (MeV) of 208Pb from the kinetic and
isoscalar potential energies (Ekin.+σ+ω), the isovector potential energies (Eρ+π), and the Coulomb
ones (Ecou.). The results are calculated by PKA1, PKO3, and DD-ME2. The table is taken from
Ref. [104]. Reprinted with permission from Ref. [104]. Copyright 2019 American Physical Society.

208Pb Ekin.+σ+ω Eρ+π Ecou. ETotal

DD-ME2 −2559.81 100.27 827.23 −1637.39
PKO3 −1781.19 −648.75 798.38 −1636.80
PKA1 −795.09 −1634.84 798.62 −1636.27

As demonstrated in Table 2, all the effective Lagrangians give comparable total bind-
ing energies for 208Pb, whereas the specific contributions, except Ecou., exhibit notable
difference. In the RMF approach, the binding of the nucleus is primarily influenced by the
counteraction between the strong attractive σ-S and repulsive ω-V couplings. The isovector
contribution Eρ+π is notably enhanced by the Fock terms when moving from the RMF
to the RHF approach. In contrast, the dominant isoscalar term Ekin.+σ+ω is reduced in
order to maintain the proper binding of 208Pb. Within the RHF approach, the isovector
term Eρ+π is considerably enhanced from PKO3 to PKA1 due to the ρ-T coupling in PKA1,
which contributes a fairly strong attraction. In contrast, the isoscalar term Ekin.+σ+ω is
significantly reduced [104].

In fact, the systematic differences in the modeling of the binding of the nucleus can
be manifested on the PSS restoration, not only in several doubly magic nuclei, shown in
Figure 9b, but also in a single nucleus. Figure 10a shows the proton PSO splittings, ∆Eπ

PSO,
in 208Pb with respect to the pseudo-orbit l̃ calculated by RHF Lagrangians PKA1 and PKO3,
and the RMF one DD-ME2. In contrast to the results obtained with the PKO3 and DD-ME2,
the PKA1 results show a rapid reduction with respect to l̃ and well-restored PSS for the
PS doublet l̃ = 4, which is in good agreement with the experimental data. Moreover, from
a comparison of the results presented in Figure 10a,b it is evident that the sum contribution
Ekin.+σ+ω, which contains the kinetic term, and the dominant σ-S and ω-V couplings,
has a significant impact on the systematic behavior of ∆Eπ

PSO. It is thus revealed that the
discrepancies in the PSS restoration are primarily due to the in-medium balance between the
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attractive σ-S and repulsive ω-V couplings. In particular, these balances are systematically
altered from the RMF Lagrangian DD-ME2 to the RHF one PKO3 and subsequently to
PKA1. This is evidenced by the reduction in the sum contributions Ekin.+σ+ω, as shown
in Figure 10b, which is consistent with the contribution of the binding energy, as shown
in Table 2. It is noteworthy that the dependencies of Ekin.+σ+ω on the l̃ exhibit a nearly
parallel shift from DD-ME2 to PKO3, but undergo a significant change from PKO3 to PKA1.
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Figure 10. Proton (π) PSO splittings ∆Eπ
PSO (MeV) (a) in 208Pb as functions of pseudo-orbit l′, and the

sum contributions from kinetic energy, σ, and ω potential energies Ekin.+σ+ω (b). The results are
extracted from the calculations with PKA1, PKO3, and DD-ME2. Meson–nucleon coupling constants,
namely, (c) the isoscalar gσ and gω , (d) the isovector gρ, and (e) κρ [κρ(0) = fρ(0)/gρ(0)] and fπ ,
as functions of the density ρb (fm−3) for PKA1, PKO3, DD-ME2, and DD-LZ1. The figure is taken
from Refs. [104,143]. Reprinted with permission from Ref. [104]. Copyright 2019 American Physical
Society. Reprinted with permission from Ref. [143]. Copyright 2020 Chinese Physical Society and the
Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern
Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.

Combining the results in Table 2 and Figure 10, the in-medium balance between
nuclear attractions and repulsions can be significantly changed by the inclusion of the Fock
terms, particularly in the context of the ρ-T coupling. Consequently, it can be reasonably
anticipated that these findings will have implications for the modeling of nuclear in-
medium effects, as evaluated by the density dependencies of the meson–nucleon coupling
strengths. As shown in Figure 10c, both the values and density dependencies of the
coupling strengths gσ and gω, associated with the degrees of freedom of the σ-S and
ω-V couplings, respectively, are reduced from DD-ME2 to PKO3, due to the substantial
contributions from the isovector channel, as evidenced in Table 2. This may also indicate
that the dominant isoscalar channels (σ-S and ω-V) do not require the same strength as
in the RMF approach. On the other hand, the isovector channels can be significantly
enhanced by the Fock terms, which can incorporate more nuclear in-medium effects.
Consequently, the density dependencies of gσ and gω are reduced as well from DD-ME2 to
PKO3. Even though, gσ and gω still exhibit nearly parallel density-dependent behaviors
from DD-ME2 to PKO3, which is common for the popular RMF Lagrangians and RHF
ones PKOi (i = 1, 2, 3). However, this situation dramatically changes from PKO3 to PKA1.
As revealed in Table 2 and Figure 10e, the ρ-T coupling in PKA1 not only contributes fairly
strong attraction, which can even affect the balance between the dominant σ-S and ω-V
channels, but also takes into account much more nuclear in-medium effects than PKO3,
as shown in Figure 10e. Consequently, the implementation of the ρ-T coupling results in a
further reduction in the coupling strengths gσ and gω in PKA1, which no longer maintain
parallel density-dependent behaviors. Further, combined with the schematic Figure 11,
the consequence of the in-medium balance on the microscopic PSS restoration becomes
more apparent.

Schematically, Figure 11 shows the profiles of the matter density (ρb) and the proba-
bility densities of the s-, p-, d-, and f -orbits. Combined with the results in Figure 10c–e,
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Figure 11 can help us to understand the l̃-dependence of the PSO splitting ∆Eπ
PSO in

Figure 10. As illustrated in Figure 11, the centrifugal potentials drive nucleons outwards
as the angular momentum l increases. From the central region to the surface of the nu-
cleus, the matter density gradually decreases from a near-saturated value to zero. This
may result in a variation in the in-medium balance of nuclear attractions and repulsions,
given that the meson–nucleon coupling strengths are density-dependent. As seen from
Figure 10c, the coupling strengths gσ and gω in both DD-ME2 and PKO3 exhibit near
parallel density-dependent behaviors, whereas PKA1 provides a rather different modeling
on the in-medium balance between nuclear attractions and repulsions. In accordance
with this, the PSO splittings provided by DD-ME2 and PKO3, as well as the sum contri-
butions Ekin.+σ+ω, show a relatively weak angular momentum dependence. However,
the PKA1 results represent a pronounced l̃-dependence. Consequently, by combining the
schematic systematics of the orbits with different l quantities in Figure 11, it is evident
that the in-medium balance of nuclear attractions and repulsions can be manifested as the
l̃-dependence of the ∆Eπ

PSO values in Figure 10, which provides a qualitative guidance to
understand the nuclear in-medium effects.

Figure 11. Schematic diagrams of the matter density ρb and probability densities of the s-, p-, d-, and
f -orbits.

4.3. The Thermal Nuclear Matter and Development of New Effective Lagrangians

The ρ-T coupling, which may play an essential role in determining the nuclear in-
medium balance, is significant not only for microscopic nuclear structure, but also for
the liquid–gas (LG) phase transition of thermal nuclear matter. The LG phase transition
of thermal nuclear matter has important implications for heavy-ion collisions [151–154],
nuclear astrophysics [155–159], and so on. Numerous investigations have been devoted
to the LG phase transition of thermal nuclear matter [160–165] under the RMF and RHF
approaches. As illustrated in Table 3 and Figure 12, the effective Lagrangian PKA1, which
exhibits a robust ρ-T coupling, predicts distinctly different critical properties and LG phase
diagrams from the other effective Lagrangians.

In order to figure out the physics behind the difference between PKA1 and other effec-
tive Lagrangians, particularly for the role of ρ-T coupling and nuclear in-medium effects,
two series of temporary parameterizations were proposed, named xκρ and xκ∗ρ [166], where
x = 1.0, 0.9, . . . means the scaling factor of the ρ-T coupling strength κρ = fρ/gρ. In addi-
tion, the series xκ∗ρ maintains the density dependencies of gσ(ρb) and gω(ρb) unchanged
from PKA1, whereas the series xκρ, gσ, and gω share the same density dependencies, which
show similar systematics as the other density-dependent effective Lagrangians. As shown
in Figure 12a, nice linear correlations between the critical temperature TC and pressure PC
are preserved along the xκρ series, being coincident with the selected effective Lagrangians
except PKA1. On the contrary, PKA1 and the series xκ∗ρ present different linear correlations
due to their different in-medium balances from the other effective Lagrangian and the series
xκρ. Moreover, as shown in Figure 12b, a large expansion in the LG phase diagrams from
the original PKA1 to the series xκρ is observed, and the results of set 0.8κρ are already rather
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close to PKO3, that does not contain the ρ-T coupling. From the above discussions, it is not
hard to deduce that the in-medium balance of nuclear attraction and repulsion is essential
for the van der Waals-like behaviors of thermal nuclear matter, in which the residual nuclear
in-medium effects embedded in the balance between the dominant attractive and repulsive
channels play a significant role [166].
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Figure 12. Panel (a) shows the correlation between the critical parameters TC (MeV) and PC

(MeV fm−3). The solid circles correspond to 20 selected relativistic Lagrangians from Ref. [165]
and PKA1, and the open circles correspond to the testing sets xκρ, with x = 1.0 to 0.7 (in red) and
xκ∗ρ with x = 0.9, 0.8, and 0.7 (in blue). As the references, the solid and dashed lines represent the
linear fittings with the Pearson correlation coefficient r. Panel (b) presents LG phase diagrams of
thermal nuclear matter at temperature T = 10 MeV given by the sets xκρ (x = 1.0, 0.9, 0.8, and 0.7),
as compared to the ones given by RHF Lagrangians PKA1 and PKO3. The figure is taken from
Ref. [166]. Reprinted with permission from Ref. [166]. Copyright 2021 American Physical Society.

Table 3. Critical parameters of LG phase transition of symmetric nuclear matter, i.e., the critical
temperature TC (MeV), critical density ρC (fm−3), the critical pressure PC (MeV fm−3), the critical
incompressibility KC (MeV), and the compressibility factor ZC. The results are calculated by the RHF
Lagrangians with PKA1 and PKO3, and the RMF ones with DD-ME2, PK1. The table is taken from
Ref. [166]. Reprinted with permission from Ref. [166]. Copyright 2021 American Physical Society.

TC ρC PC KC ZC

PKA1 11.55 0.050 0.114 −40.69 0.196
PKO3 14.57 0.048 0.198 −75.03 0.286

DD-ME2 13.11 0.044 0.155 −62.92 0.267
PK1 15.11 0.049 0.223 −82.83 0.305

In Refs. [143,167], new RMF Lagrangians DD-LZ1 and PCF-PK1 were proposed,
guided by the consistent relation between the PSS restoration and nuclear in-medium
effects. In contrast to other popular RMF effective Lagrangians, the density dependences
of gσ and gω do not parallel each other in the case of DD-LZ1, as shown in Figure 10c.
As with PKA1, DD-LZ1 addresses the common issue in previous RMF calculations, namely,
the occurrence of artificial shell closures at N/Z = 58 and N/Z = 92, as illustrated in
the left panel of Figure 13. Similar to DD-LZ1, the new RMF Lagrangian PCF-PK1, which
incorporates local exchange terms for the four-fermion interactions by utilizing the Fierz
transformation, effectively eliminates the artificial shell closures Z = 58 and Z = 92 as well,
as shown in the right panel of Figure 13, for which the unparalleled density dependences
of gS and gV are essential. Moreover, DD-LZ1 and PCF-PK1 restore the PSS for the high-l̃
pseudo-spin doublets near the Fermi levels, which further corroborates the consistent
relation between the PSS restoration and the nuclear in-medium balance between nuclear
attraction and repulsion.
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Figure 13. Two-proton shell gap δ2p for N = 82 and 126 isotonic chains obtained from RH(F)B
calculations with the new effective interaction DD-LZ1 (left panel) and PCF-PK1 (right panel).
For comparison, the experimental data [168] and calculated results of PKA1, PKO1, DD-ME2, PC-
PK1 [169], DD-PC1 [170], and DD-MEδ [123] are also given. The results of DD-LZ1 are taken from
Ref. [143], and those of PCF-PK1 are taken from Ref. [167]. Reprinted with permission from Ref. [143].
Copyright 2020 Chinese Physical Society and the Institute of High Energy Physics of the Chinese
Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences
and IOP Publishing Ltd. Reprinted with permission from Ref. [167]. Copyright 2022 American
Physical Society.

5. The PSS and Novel Nuclear Phenomena

In Section 4, the mechanism of the PSS restoration for high l̃ are briefly recalled,
in which the in-medium balance between nuclear attraction and repulsion plays an impor-
tant role. As aforementioned, unstable nuclei exhibit plenty of novel nuclear phenomena,
such as the halo and bubble-like structures, which reveal the characteristics of the micro-
scopic structure of unstable nuclei. As one of the hottest topics in nuclear physics, the SHN
are essentially stabilized by the shell effects, which may be closely related to the PSS restora-
tion as discussed before. Therefore, in this section, the influence of PSS restoration and its
breaking on novel nuclear phenomena, as well as on the emergence of superheavy magic
shells, will be reviewed.

5.1. Halo Occurrence and PSS Restoration

As aforementioned, following the PSS restoration, the artificial shell closure Z = 58
given by the previous RMF and RHF calculations was eliminated by the RHF Lagrangian
PKA1. Extending to the drip-line region, it can have a strong impact on the halo occurrence,
for instance, in cerium (Ce) isotopes [109]. As one of the typical novel phenomena, a halo is
characterized by an extensive matter distribution [7–10], arising from nucleons populating
weakly bound low-l orbits. Due to the centrifugal barrier, the nucleons populating the
neighboring high-l orbits do not contribute to the halo, but play an important role in
stabilizing the dilute nucleons via the pairing correlations [64,65,109,171].

As revealed in Ref. [109], the neutron halo occurrence in the drip-line Ce isotopes
is tightly connected with the PSS restoration of valence proton orbits, and such a rela-
tion is enhanced strongly by the ρ-T coupling, which presents substantial contributions
to the neutron–proton interactions via the Fock terms. From Figure 14a, the two-body
interaction matrix elements Vab between the proton PS partners π1 f̃ and neutron orbits
(ν1i13/2, ν2g9/2), one can see distinct nodal effects, i.e., that orbits with same nodal num-
bers present stronger couplings than those with different nodal numbers, which can be
understood well following the principle of quantum mechanics.

As aforementioned, large PSO splitting of π1 f̃ gives rise to the artificial shell Z = 58,
and thus, the valence protons may occupy the orbit π1g7/2 mainly, namely, the proton (I)
configuration in Figure 14b. In contrast to that, following the elimination of the artificial
shell Z = 58 with properly restored PSS, valence protons can spread over the PS partners
π1g7/2 and π2d5/2, which give the proton (II) configuration in Figure 14b. Regarding
the fact that the shell gap N = 126 is determined by the neutron orbits (ν1i13/2, ν2g9/2),
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it can be deduced from Figure 14 that the valence protons populating the orbit π1g7/2
(or π2d5/2) tend to enlarge (or squeeze) the shell gap Z = 126 due to the nodal effects.
Following the PSS restoration of proton PS doublet π1 f̃ , the shell gap N = 126 is largely
reduced, and thus, the Ce isotopic chain can be extended to N = 140, as predicted by PKA1,
in contrast to the drip line N = 126 given by other effective Lagrangians.
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Figure 14. (a) Two-body interaction matrix elements Vab, where a = π2d5/2 (filled symbols) and
π1g7/2 (open symbols), and b = ν2g9/2 and ν1i13/2. The figure is taken from Ref. [109]. Reprinted
with permission from Ref. [109]. Copyright 2010 American Physical Society. (b) Schematic diagrams
of the proton–neutron configurations for the existence (I) and elimination (II) of Z = 58 artificial shell.

Due to the extension of the neutron drip line to N = 140, the occurrence of halos
becomes possible in the Ce isotopes. As shown in Figure 15, when valence neutrons grad-
ually occupy the low-l orbits above the N = 126 shell, the neutron density distributions
become more and more diffuse after the isotope 186Ce (N = 128), indicating the emergence
of ordinary and giant halos [109]. Moreover, as seen from Figure 15b, the continuum plays
a dominant role in the formation and stabilization of the neutron halos, which are, respec-
tively, contributed by the sd- and g-orbits. Combining Figures 14 and 15, the squeezed
shell gap N = 126 following the proton PSS restoration is essential for the halo occurrence,
in which the ρ-T-enhanced neutron–proton interactions play the bridge role. It is worth
mentioning that the mechanism responsible for the halo occurrences in Ce isotopes success-
fully interprets the experimental results of reduced PSO splitting π1d̃ = (π1 f5/2, π1p3/2)
approaching the N = 50 shell for Cu isotopes and the neutron skin of the unstable nucleus
78Ni [172].
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Figure 15. (a) Neutron and proton densities; (b) neutron canonical SPE, occupation probability (x-axis
error bars), and Fermi energy EF (open circles). Results are calculated by RHFB with PKA1 plus
the Gogny pairing force D1S. The figure is taken from Ref. [109]. Reprinted with permission from
Ref. [109]. Copyright 2010 American Physical Society.
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5.2. Bubble-like Structure and the PSS

Since finite nuclei are complicated many-body systems; the PSS cannot be always
conserved, even for the PS doublets near the Fermi surface. For example, the large PSO
splitting of π1p̃ = (π2s1/2, π1d3/2) in 40Ca has been verified experimentally [147]; see
Figure 16. This may show certain impacts on the emergence of bubble-like structure, which
is characterized by distinct central depressions of the matter distributions [19–32,173].
Generally speaking, the s-orbits play a decisive role in determining the central density
profiles due to the vanishing of the centrifugal barrier; see Figure 11. Therefore, the absence
of nucleon occupation in the s-orbits near the Fermi surface may lead to evident depression
in the interior region of nuclear density profiles, giving rise to the bubble-like structure.

Figure 16. Energy difference ∆Eπ
sd = επ2s1/2 − επ1d3/2

of Ca isotopes. The experimental values of 40Ca
and 48Ca are taken from Ref. [147] (up triangle), Ref. [174] (down triangle), Ref. [175] (left triangle),
and Ref. [176] (right triangle). The figure is taken from Ref. [110].

Figure 16 shows the PSO splittings between the proton PS partners π1d3/2 and π2s1/2
along the isotopic chain of calcium (Ca). It can be seen that only PKA1 can properly
reproduce the experimental values at 40Ca and 48Ca, while the others show systematical
deviations. As revealed in Ref. [31], such model deviations can be found consistently
in describing the emergence of bubble-like structure in the N = 28 isotones and Ca
isotopes [111].

Figure 17 shows the proton SPE and charge density distributions of N = 28 isotones.
It can be seen from Figure 17c that 46Ar and 44S are predicted as the candidates with
bubble-like structure by various models except PKA1. Such a model discrepancy can be
traced back to the ordering of π2s1/2 and π1d3/2 in the proton SPE shown in Figure 17a,b.
Due to large PSO splitting for the PS doublet π1p̃, the RMF calculations with DD-ME2,
as well as the RHF ones with PKO3, predict bubble-like structures for the isotones 46Ar
and 44S, since valence protons populate mainly the orbit π1d3/2, instead of 2s1/2. However,
PKA1 predicts a fairly large amount of occupation on the proton orbit 2s1/2, which washes
out the bubble-like structures in 46Ar and 44S; see Figure 17a,c. Combining the results in
Figures 16 and 17, one can see a certain relation between the PSS and the emergence of
bubble-like structures in 46Ar and 44S.

For 42Si, due to the existence of a large shell gap Z = 14, all the models predict evident
bubble-like structure. Similarly, both 34Si and 34Ca are predicted by all the selected models
to have distinct proton and neutron bubble-like structures, respectively, which is attributed
to the presence of sub-shell Z/N = 14 [31]. In fact, the proton bubble-like structure in
34Si has been confirmed experimentally [177], which gives an empty proton orbit π2s1/2
and distinct sub-shell Z = 14. Moreover, the emergence of the sub-shell N = 34 in 54Ca
is also accompanied by a neutron bubble-like structure, but due to a different mechanism
from general cases [111]. Further extending to the drip line along the isotopic chain of Si
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and isotonic chain of N = 34 simultaneously, it is interestingly to see that 48Si is predicted
as a new doubly magic nucleus (N = 34 and Z = 14) with dual (neutron and proton)
bubble-like structures by the RHFB calculations with PKA1 [32].
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Figure 17. Canonical proton SPE along the N = 28 isotonic chain calculated by RHFB with PKA1 (a)
and RHB with DD-ME2 (b). The lengths of thick bars correspond with the occupation probabilities of
the proton orbits and the filled stars denote the experimental data. Charge distributions of N = 28
isotones calculated by RHFB with PKA1 and PKO3, and by RHB with DD-ME2 (c). The figure is taken
from Ref. [31]. Reprinted with permission from Ref. [31]. Copyright 2016 American Physical Society.

5.3. Superheavy Magicity and the PSS

As aforementioned, the appearance of magic and semi-magic shells may accompany
well-restored PSS, which is also predicted for the occurrence of superheavy magicity. Taking
doubly magic SHN 304120184 as the example, predicted by the RHFB calculations with
PKA1, one can see clear relations between the emergence of superheavy magic shells and
the PSS [51]. As shown in Figure 18, the s.p. spectra of 304120184, the proton shell Z = 120,
originating from large splitting of the PS doublet π2d̃ = (π3p3/2, π2 f5/2), is commonly
supported by the models. In addition, due to small PSO splitting of π1h̃ = (π2g9/2, π1i11/2)
given by PKA1, a more pronounced superheavy shell Z = 126 appears, in contrast to
the other model predictions. Moreover, such a model discrepancy can be also found in
predicting the neutron magic shells. In the right panel of Figure 18, PKA1 predicts the most
evident neutron shell N = 184. Consistent with that, both PS doublets ν1ĩ = (2h11/2, 1j13/2)
and ν3p̃ = (ν4s1/2, ν3d3/2), above and below the shell, show well-restored PSS. However,
the other selected models present large splitting for the PS doublet ν1ĩ, which gives a fairly
large shell gap N = 198. In fact, such a situation is rather similar to the results shown in
Figure 6, in which the magic shell Z = 82 can also be squeezed by the artificial one Z = 92,
as well as the one in Figure 7.
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Figure 18. Proton (left panel) and neutron (right panel) SPE of SHN 304120184. The results are
extracted from RHFB calculations with PKOi (i = 1, 2, 3) and PKA1, and compared to the RHB ones
with PKDD and DD-ME2. In all cases, the pairing force is derived from the finite-range Gogny force
D1S with the strength factor f = 0.9. The figure is taken from Ref. [51].
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To further explore the relationship between superheavy shells (Z = 120 and N = 184)
and the PSS, Figure 19 presents the proton and neutron density profiles with 126 ⩽ N ⩽ 258
and 82 ⩽ Z ⩽ 138 calculated by PKA1 and PKO3. With the numbers of neutrons and
protons increasing, the high-l orbits, such as ν1i11/2, ν2g9/2, ν1j15/2, and π1h9/2, π1i13/2,
are occupied. Since the nucleons populating the high-l orbits are driven towards the surface
of the nucleus due to the strong centrifugal potential and large Coulomb repulsion [31,178],
an obvious bubble-like structure can be commonly found in SHN, as shown in Figure 19,
in particular for the ones marked in green. Following the appearance of the bubble-like
structure, which can become even more extensive in SHN than in ordinary ones, the spin-
orbit splittings of low-l orbits are largely squeezed. For instance, as shown in the left panel
of Figure 18, fairly small splittings between the spin partners π3p and π2 f lead to large
PSO splitting for the proton PS doublet π2d̃, that gives rise to the shell Z = 120. The impact
of the bubble-like structure on SO splitting has been introduced in Ref. [32]. Combined
with the mechanism behind the PSS restoration of high-l̃ orbits, it can be concluded that
reliable modeling of the in-medium balance between nuclear attractions and repulsions is
essentially significant not only for ordinary nuclei but also for superheavy ones.
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Figure 19. The neutron (ν) and proton (π) density distributions of superheavy nuclei calculated by
the RHFB model with PKA1 (red line) and PKO3 (blue line).

6. Summary

In this paper, studies on the pseudo-spin symmetry (PSS) under the relativistic Hartree–
Fock (RHF) theory were reviewed, including the effects of Fock terms on the PSS restoration,
especially the role of ρ-T coupling, and the relations to novel nuclear phenomena such as
halo and bubble-like structures, and superheavy magicity.

Utilizing the Schrödinger-type equation, the influences of Fock terms are manifested
as the cancellation within the Fock contributions, like between pseudo-spin orbit potentials
VE

PSO and VE
1 , and the RHF models with PKOi (i = 1, 2, 3) provide a similar restoration

picture as the popular RMF ones. However, when the ρ-T coupling is incorporated into the
effective Lagrangian PKA1, the PSS can also be well conserved for the high-l̃ pseudo-spin
(PS) doublets, which eliminates the artificial shells Z = 58 and 92 appearing in the previous
RMF and RHF calculations. It is found that the PSS restoration for high-l̃ PS doublets can
be essentially connected with the modeling of the in-medium balance of nuclear attractions
and repulsions, where ρ-T coupling, that contributes mainly via the Fock diagram, plays an
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important role. This indicates that PSS restoration can provide a qualitative guidance on
understanding the in-medium effects of nuclear force.

Furthermore, the impacts of PSS restoration and breaking on various nuclear phe-
nomena are reviewed, including halos, bubble-like structure, and superheavy magicity. It
was revealed that PSS restoration, that eliminates the artificial shell Z = 58, can essentially
be connected with the emergence of halo structures in drip-line Ce isotopes, in which the
enhanced neutron–proton interactions by the ρ-T coupling play the role of a bridge. More-
over, the PSO splitting in π1p̃ and the corresponding order between π2s1/2 and π1d3/2 can
determine the prediction of bubble-like structures for 44S and 46Ar. For the superheavy
nuclei, the large PSO splitting of π2d̃ and small one of ν1ĩ are found to determine the
emergence of superheavy magicity Z = 120 and N = 184, respectively.

In fact, PSS restoration or breaking has manifested the characteristics of the micro-
scopic nuclear structure, which corresponds to the consequences of the nuclear force in
complicated nuclear many-body systems. Even though, the PSS itself and the mechanism
therein can provide us with a different insight to understand not only the nature of the
nuclear force, that accounts for the binding of nucleus, but also various nuclear phenomena,
including the shells, novel halo and bubble-like structures, superheavy magicity, etc. All
these together may deepen our knowledge of nuclear physics.
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