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Abstract: The traditional stratification weight is widely used in survey sampling for estimation
under stratified random sampling (StRS). A neutrosophic calibration approach is proposed under
neutrosophic statistics for the first time with the aim of improving conventional stratification weight.
This addresses the challenge of estimating the empirical cumulative distribution function (CDF) of a
finite population using the neutrosophic technique. The neutrosophic technique extends traditional
statistics, dealing with indeterminate, vague, and uncertain values. Thus, using additional informa-
tion, we are able to obtain an effective estimate of the neutrosophic CDF. The suggested estimator
yields an interval range in which the population empirical CDF is likely to exist rather than a single
numerical value. The proposed family of neutrosophic estimators will be defined under suitable
calibration constraints. A simulation study is also computed in order to assess the effectiveness of the
suggested and adapted neutrosophic estimators using real-life symmetric and asymmetric datasets.

Keywords: cumulative distribution function; stratified random sampling; neutrosophic statistics;
supplementary information; calibration; simulation study

1. Introduction

Datasets can consist of numerical or categorical variables in classical statistics. Numer-
ous writers have developed a variety of estimators for calculating the countable population
mean under classical statistics when additional data are present. In survey studies, supple-
mentary information on a finite population is typically obtainable from census databases
or from previous experience. Research on survey sampling has illustrated a vast range of
techniques for employing supplementary data in order to improve the sampling design and
also obtain progressively more accurate estimates [1]. It is noteworthy that the ratio, regres-
sion, and product procedures are appealing when auxiliary information is presented [2].
Therefore, many scholars have combined their efforts to increase the efficiency of these
methods in the hopes of developing increasingly skilled estimators of measures of central
tendency, measures of dispersion, and CDF, etc.

Neutrosophic statistics are used when there is some degree of indeterminacy in the
data. When the data contain neutrosophy, this statistical methodology, which goes beyond
the conventional approach, is used. According to [3], neutrosophic statistics are especially
helpful when data within the population or sample are unclear, indeterminate, or indefinite.

Ref. [3] referred to a variety of neutrosophic values, including quantitative data
that suggest that a given value might lie inside the interval range [L, U] even while the
precise value is unknown. The neutrosophic observation is composed of ZN = ZL + ZU IN ,
where IN ∈ [IL, IU ]. As a result, we developed a notation scheme for neutrosophic data
representation that uses the interval type ZN ∈ ZL, ZU , where “L” stands for the lower
value and “U” for the upper value.
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In the literature, the researchers have estimated the neutrosophic statistics and utilized
information on one or more supplementary variables. In simple random sampling (SRS), [4]
created neutrosophic ratio-type estimation methods. Ref. [5] developed generalized ratio
and product-type estimation methods under neutrosophic ranked set sampling (RSS).
Ref. [6] created a two-phase process loss index utilizing the neutrosophic statistical interval
technique. Refs. [7,8] developed generalized classes of neutrosophic ratio and exponential
estimation methods. Ref. [9] has suggested a generalized neutrosophic exponential robust
ratio-type estimation method. Using neutrosophic robust regression, [10] introduced a new
family of Hartley–Ross-type estimation techniques for estimating the population parameter.
Ref. [11] suggested a neutrosophic predictive estimation method of countable population
mean utilizing kernel regression.

Suppose we are interested in a population’s proportion of unclear or indeterminate yiN
values. When utilizing sample data from a survey, users often need to estimate the population
neutrosophic CDF. Alternatively, they may need to estimate the proportion of population
units whose elements are not more than or equal to a specific number tyN. For instance, we
could be curious to know how many filtration facilities have lower levels of arsenic in their
water than zero or how much agricultural area has fewer consequences of pesticide poisoning
than zero. Such a proportion is a certain value of the population’s neutrosophic CDF.

FYN
(
tyN
)
=

1
M

M

∑
i=1

I
(
yiN ≤ tyN

)
,

where I
(
yiN ≤ tyN

)
= 1 for yiN ≤ tyN and I

(
yiN ≤ tyN

)
= 0, for yiN > tyN. Frequently, when

conducting survey sampling, the research variable can only be measured for the units in a sample;
thus, the traditional technique of the CDF is based only on the chosen sampling methodology and
the sampling ratio of the population. Estimating FYN

(
tyN
)

can be undertaken as follows:

F̂yN
(
tyN
)
=

1
m

m

∑
i=1

I
(
yiN ≤ tyN

)
.

Several authors have computed the CDF utilizing information on sole or various sup-
plementary symmetric and asymmetric data. Firstly, [12] created a technique for evaluating
the countable population CDF. Ref. [13] developed both traditional and predictive techniques
for estimating the CDF using survey information. Ref. [14] use the model-calibrated pseudo-
empirical probability methodology to propose an estimation technique for the population CDF.
Ref. [15] examined the problem of CDF and quantiles estimators for a population utilizing extra
information. Ref. [16] develop a new class of estimation methods in order to estimate the CDF
using extra information. Ref. [17] proposed two new estimation methods that make use of the
mean and ranks of the supplemental data to estimate the limited population CDF under SRS
and StRS. Ref. [18] created a novel type of exponential estimation technique for evaluating the
population CDF with additional data in the form of the rank and average of the additional data
under StRS. Ref. [19] also created a novel class of estimation techniques for the population CDF
utilizing dual additional information under StRS.

The calibration approach has been a priority as a field of study for survey sampling in recent
years. The calibration approach modifies the initial design weights to improve the precision of
estimation by utilizing extra data. The calibration approach uses modified weights to minimize
the difference between modified and original weights while performing a set of conditions with
supplementary variables. See the pioneers in this discipline for more details [20]. Ref. [21]
created a calibrated technique for mean estimation. Ref. [22] presented a calibration technique for
computing the population parameter in StRS with a variety of calibrated conditions constructed
with additional data. Ref. [23] suggested calibrated mean estimation methods based on a stratified
RSS method along with calibration variance of the estimator. Ref. [24] creates a calibration
technique for the population mean of the research information utilizing novel calibrated weights
that use two additional sources of information under StRS. Ref. [25] extended the study by utilizing
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the properties of linear moments. Refs. [26–28] proposed a novel robust calibrated technique for
computing the population parameter under StRS. Ref. [29] proposed a calibration CDF estimator
using robust measures under StRS. It is important to note that [29] uses ∑m

i=0(.)mistakenly, instead
of ∑m

i=1(.) in F̂yN
(
tyN
)

and FYN
(
tyN
)
. However, this is merely a typing error. The calibration

technique proposed by Tracy et al. [21] and utilized by many researchers, as discussed above, has
not yet to receive much attention in terms of neutrosophic CDF estimation.

Research Gap of Neutrosophic Calibrated Estimation of CDF

All earlier studies on survey sampling have employed only certain, clear, and unam-
biguous symmetric and asymmetric data. These methods yield a single, clean result, which
can occasionally be problematic because it has a probability of being overstated, inaccurate,
or overlooked. However, under certain conditions, data are often of a neutrosophic type;
this is the moment at which traditional classical methods are ineffective and a neutrosophic
approach is used. Neutrosophic data include uncertain, partially unknown, inconsistent,
incomplete, and other indeterminate data. Consequently, interval-valued neutrosophic
numbers (INN) may be observed in data from populations or experiments. It had been
thought that the actual data, which were unknown at the time of collection, belonged to
that interval. In reality, there are more unclear facts available than certain information. As
a result, more neutrosophic methods are required.

In life, various research data are available, and the collection of data is very costly, particu-
larly when the data are unclear. As a result, using the outdated traditional methods to calculate
the population’s actual value for ambiguous data will be costly and risky. When the research
and additional information are of the neutrosophic type, there is no technique accessible that
is able to resolve the issue using the calibration approach. We now switch to a new approach,
known as neutrosophic calibrated estimation of CDF, which offers an entirely new viewpoint on
survey techniques. Therefore, this paper proposes a neutrosophic calibrated estimator of CDF.

However, to our knowledge, no work has been undertaken so far on the type of
calibrated estimators of neutrosophic CDF under StRS considered by [21]. Thus, we are
motivated to suggest the neutrosophic calibration estimators of CDF by adapting the idea
of [10]. Because all the authors, under conventional statistics, rely on certain, single-valued
numbers to estimate the empirical CDF when additional variable is accessible. These forms
of estimations offer biased outcomes. Finding the best estimate for the uncertain empirical
CDF value with an optimal (lowest) MSE is our main objective.

The article’s remaining sections are arranged as follows: the adapted neutrosophic CDF
calibration estimators are introduced in Section 2. The suggested estimators are given in Section 3.
A simulation study is conducted in Section 4, and, in Section 5, the article comes to an end.

2. Adapted Neutrosophic Calibration Estimators of CDF Using Supplementary Information

Neutrosophic calibration-based estimate techniques involve neutrosophic calibrated
or adjusted weights that are designed with the use of auxiliary data and are designed to
minimize a specific measure of distance from the original stratum weights. Neutrosophic
statistics are used to analyze datasets, or neutrosophic data, that have some uncertainty
interval in them. By using this method, researchers may deal with inconsistent or in-
complete data and draw more accurate conclusions from the sampled data. Assume
that YN ∈ [YL, YU ] and XN ∈ [XL, XU ] are the research and supplementary neutrosophic
variables related with Ω = {1, 2, . . . , N}, which is a countable population of size N that
is divided into ζ strata, with the ζth stratum incorporating Nζ elements, ζ = 1, 2, . . . , ω,

and
ω

∑
ζ=1

Nζ = N. The weight of each stratum is defined as Wζ =
Nζ

N . The traditional

neutrosophic calibration estimator of CDF, under StRS is as follows:

HAN =
ω

∑
ζ=1

WζF̂ζyN(tyN),
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where F̂ζyN
(
tyN
)
= 1

m ∑m
i=1 I

(
yiN ≤ tyN

)
is the sample neutrosophic CDF estimation for

YN in the ζth stratum. We consider the following terms, where yiN ∈ [yiL, yiU ] and
xiN ∈ [xiL, xiU ] are the ith sample observation of our neutrosophic study variable YN
and supplementary variable XN , respectively. tyN ∈

[
tyL, tyU

]
and txN ∈ [txL, txU ] are the

sample specific value neutrosophic of our study variable YN and additional variable XN ,
respectively. F̂ζyN ∈

[
F̂ζyL, F̂ζyU

]
and FζyN ∈

[
FζyL,FζyU

]
are the ζth stratum sample and

population neutrosophic CDF of the study variable YN , respectively. F̂ζxN ∈
[
F̂ζxL, F̂ζxU

]
and FζxN ∈

[
FζxL,FζxU

]
are the ζth stratum sample and population neutrosophic CDF,

respectively, of the additional variable XN .cζxN ∈
[
cζxL, cζxU

]
and CζxN ∈

[
CζxL, CζxU

]
are the ζth stratum sample and population neutrosophic coefficient of variation (CV),
respectively, of the additional variable XN . ψζN ∈

[
ψζL, ψζU

]
are wisely selected neutro-

sophic weights, determining the estimator’s shape. The traditional neutrosophic calibration
estimator of CDF under StRS is HAN ∈ [HAL, HAU ].

Adapted
(

HAi(N)1

)
Family of Neutrosophic CDF Estimators

Taking inspiration from [25], the adapted
(

HAi(N)1

)
family of estimators is as follows

in Equation (1):

HAi(N)1
=

ω

∑
ζ=1

ΩζA1 NF̂ζyN
(
tyN
)
, (1)

where Ωζ A1 N ∈
[
ΩζA1L, ΩζA1U

]
is the neutrosophic calibrated weight. Using the chi-

square distance function we obtain the following:

ω

∑
ζ=1

(
ΩζA1 N − Wζ

)2

ψζNWζ
, (2)

and satisfy the calibrated constraints, as follows:

ω

∑
ζ=1

Ωζ A1 NF̂ζxN(txN) =
ω

∑
ζ=1

WζFζxN(txN) , (3)

ω

∑
ζ=1

ΩζA1 NcζxN =
ω

∑
ζ=1

WζCζxN , (4)

ω

∑
ζ=1

ΩζA1 N =
ω

∑
ϑ=1

Wζ . (5)

Hence, the function of Lagrange using Equations (2)–(5) with multipliers λA1 N ∈[
λA1L, λA1U

]
, λA2 N ∈

[
λA2L, λA2U

]
and λA3 N ∈

[
λA3L, λA3U

]
, denoted by ∆

(
ΩζA1 N , Wζ

)
,

is given by

(6)

setting Equation (6)
∂∆(ΩζA1 N ,Wζ)

∂ΩζA1 N
= 0, we obtain the following:



Symmetry 2024, 16, 633 5 of 24

Ωζ A1 N = Wζ + Wζ ψζN
(
λA1 NF̂ζxN(txN) + λA2 NcζxN + λA3 N

)
. (7)

Substituting Equation (7) in Equations (3)–(5), we obtain the following:

When we solve the system of equations, the expressions of lambdas are as follows:

λA1 N =
A1N
BN

, λA2 N =
A2N
BN

, λA3 N =
A3N
BN

,
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Substituting these values in Equations (7) and (1), we obtain the neutrosophic cali-
brated estimators of CDF, as given below:

where neutrosophic betas β̂A1 N ∈
[
β̂A1L, β̂A1U

]
and β̂A2 N ∈

[
β̂A2L, β̂A2U

]
are given by

β̂A1 N =
A4N
BN

, β̂A2 N =
A5N
BN

,

where

The family members of HAi(N)1
are provided in Table 1.
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Table 1. Adapted
(

HAi(N)1

)
family of neutrosophic CDF estimators.

i HAi(N)1
ψζN

1 HA1(N)1
1

2 HA2(N)1
1

xζN

3 HA3(N)1
1

sζxN

4 HA4(N)1
1

s2
ζxN

5 HA5(N)1
1

cζxN

The neutrosophic estimators are developed based on different values of ψζN , such as

ψζN = 1, 1
xζN

, 1
sζxN

, 1
s2

ζxN
, 1

cζxN
, where xζN ∈

[
xζL, xζU

]
, sζxN ∈

[
sζxL, sζxU

]
, s2

ζxN ∈
[
s2

ζxL, s2
ζxU

]
and cζxN ∈

[
cζxL, cζxU

]
, are the sample neutrosophic mean, sample neutrosophic standard

deviation, sample neutrosophic variance, sample neutrosophic CV, of the supplementary
information of XN in the ζth stratum, respectively.

3. Proposed Class of Neutrosophic CDF Estimators

Proposed
(

HPi(N)1

)
Family of Neutrosophic CDF Estimators

Taking motivation from adapted
(

HAi(N)1

)
estimators, we proposed

(
HPi(N)1

)
the

following class of neutrosophic CDF estimators in Equation (8)

HPi(N)1
=

ω

∑
ζ=1

ΩζP1 NF̂ζyN
(
tyN
)

, (8)

where ΩζP1 N ∈
[
ΩζP1L, ΩζP1U

]
is the neutrosophic calibrated weight. Using the chi-square

distance function we obtain the following:

ω

∑
ζ=1

(
ΩζP1 N − Wζ

)2

ψζNWζ
, (9)

and satisfy the calibrated constraint, as follows:

ω

∑
ζ=1

ΩζP1 NF̂ζxN(txN) =
ω

∑
ζ=1

WζFζxN(txN) , (10)

where
(
F̂ζxN(txN), FζxN(txN)

)
are the ζth stratum sample and population neutrosophic

CDF, respectively, of the auxiliary variable XN and, ψζN are wisely selected neutrosophic
weights, determining the estimator’s shape. Different values of ψζN are available in
Table 2. Hence, the function of Lagrange using Equations (9) and (10), with multipliers
λP1 N ∈

[
λP1L, λP1U

]
and denoted by ∆

(
ΩζP1 N , Wζ

)
, is given as follows:

∆
(
ΩζP1 N , Wζ

)
=

ω

∑
ζ=1

(
ΩζP1 N − Wζ

)2

ψζNWζ
− 2λP1 N

(
ω

∑
ζ=1

ΩζP1 NF̂ζxN(txN) −
ω

∑
ζ=1

WζFζxN(txN)

)
. (11)

Setting Equation (11),
∂∆(ΩζP1 N ,Wζ)

∂ΩζP1 N
= 0, we obtain the neutrosophic calibrated weight

as follows:
ΩζP1 N = Wζ + λP1 NF̂ζxN(txN)ψζNWζ . (12)

Substituting Equation (12) in Equation (10), and solving for neutrosophic lambda, we
obtain the following:
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λP1 N =
∑ω

ζ=1 WζFζxN(txN)− ∑ω
ζ=1 WζF̂ζxN(txN)

ω

∑
ζ=1

ψζNWζF̂ 2
ζxN(txN)

. (13)

Substituting Equation (13) in Equation (12), we obtain the neutrosophic calibration
weight, as follows:

ΩζP1 N = Wζ +
∑ω

ζ=1 WζFζxN(txN)− ∑ω
ζ=1 WζF̂ζxN(txN)

∑ω
ζ=1 ψζNWζF̂ 2

ζxN(txN)
ψζNWζF̂ζxN(txN) . (14)

Substituting Equation (14) in Equation (8), we obtain the neutrosophic calibrated
estimator of CDF, as given below:

HPi(N)1
=

ω

∑
ζ=1

WζF̂ζyN
(
tyN
)
+

∑ω
ζ=1 Wζ

(
FζxN(txN)− F̂ζxN(txN)

)
∑ω

ζ=1 ψζNWζF̂ 2
ζxN(txN)

ω

∑
ζ=1

ψζNWζF̂ζxN(txN)F̂ζyN
(
tyN
)

.

The family members of HPi(N)1
are provided in Table 2.

Table 2. Proposed
(

HPi(N)1

)
family of neutrosophic CDF estimators.

i HPi(N)1
ψζN

1 HP1(N)1
1

2 HP2(N)1
1

xζN

3 HP3(N)1
1

sζxN

4 HP4(N)1
1

s2
ζxN

5 HP5(N)1
1

cζxN

4. Simulation Study

To the best of the authors’ knowledge, no research has been undertaken on the neu-
trosophic calibration estimation of CDF thus far. This is because, the idea of evaluating the
effectiveness of the suggested neutrosophic calibration estimation of CDF using supplemen-
tary information is still a novel idea. Thus, we examined the mean square error (MSE) of
the developed family of neutrosophic estimators given in Table 2 with the adapted family of
neutrosophic estimators given in Table 1 in order to evaluate the most effective estimators by
identifying the neutrosophic estimators. We perform the simulation study steps for MSE and
percentage relative efficiency (PRE) estimates by following [25], as stated below:

Step 1: Using simple random sampling without replacement (SRSWOR) from stratum ζ,
choose a random sample of size nζ .
Step 2: Find the CDF estimate value, for instance τQ = HAi(N)1

, HPi(N)1

Step 3: Repeat the previous steps R = 5000 times to achieve τQ1, τQ2, . . . , τQR.
Step 4: Evaluate the MSE, as follows:

MSE
(
τQN

)
=

1
R

R

∑
i=1

(
τQ −FYN

(
tyN
))2 .

Step 5: Compute the PRE, as follows:

PRE
(
τQN

)
=

MSE
(

HAi(N)1

)
MSE

(
HPi(N)1

) × 100 .

The MSEs and PREs are provided in Tables 3–26 based on three quantile points i.e.,
(t = 0.25, 0.50, 0.75).
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Table 3. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 1 when

sample size is 5%.

Estimators 0.25 0.50 0.75

HA1(N)1
[0.12550700, 0.09495555] [0.07372283, 0.03183353] [0.01307641, 0.01275580]

HA2(N)1
[0.10600970, 0.07969699] [0.05155015, 0.02133777] [0.01260893, 0.01200653]

HA3(N)1
[0.11414690, 0.06854242] [0.04894732, 0.02054492] [0.01233337, 0.01194092]

HA4(N)1
[0.11769560, 0.07805772] [0.05129713, 0.02270461] [0.01273243, 0.01196914]

HA5(N)1
[0.13526440, 0.10382170] [0.06075261, 0.02671161] [0.01261490, 0.01244723 ]

HP1(N)1
[0.00043587, 0.00107817] [0.00069142, 0.00182162] [0.00127275, 0.00111091]

HP2(N)1
[0.00043552, 0.00107847] [0.00069379, 0.00182357] [0.00127149, 0.00111071]

HP3(N)1
[0.00043422, 0.00107233] [0.00068692, 0.00179739] [0.00127309, 0.00111534]

HP4(N)1
[0.00043474, 0.00106791] [0.00068392, 0.00177883] [0.00127401, 0.00112097]

HP5(N)1
[0.00043513, 0.00107207] [0.00068482, 0.00179573] [0.00127456, 0.00111567]

Table 4. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 2 when

sample size is 5%.

Estimators 0.25 0.50 0.75

HA1(N)1
[0.09938451, 0.07907769] [0.06012644, 0.04282329] [0.01116777, 0.01742282]

HA2(N)1
[0.08471047, 0.06887898] [0.04339170, 0.03047215] [0.01013658, 0.01639673]

HA3(N)1
[0.07956097, 0.06311932] [0.04244550, 0.03046902] [0.00999788, 0.01630728]

HA4(N)1
[0.08444315, 0.06629178] [0.04221479, 0.03115415] [0.00993667, 0.01708019]

HA5(N)1
[0.09192286, 0.07363932] [0.05034084, 0.03660268] [0.01077619, 0.01742002]

HP1(N)1
[0.00055561, 0.00084529] [0.00073901, 0.00106629] [0.00071978, 0.00329068]

HP2(N)1
[0.00055524, 0.00084509] [0.00073910, 0.00106812] [0.00071974, 0.00328824]

HP3(N)1
[0.00055210, 0.00083945] [0.00073793, 0.00106376] [0.00071935, 0.00329016]

HP4(N)1
[0.00055121, 0.00083560] [0.00073726, 0.00106182] [0.00071909, 0.00328999]

HP5(N)1
[0.00055307, 0.00084024] [0.00073794, 0.00106213] [0.00071937, 0.00329285]

Table 5. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 3 when

sample size is 5%.

Estimators 0.25 0.50 0.75

HA1(N)1
[0.16533400, 0.12493000] [0.10604800, 0.03462509] [0.01699839, 0.02947149]

HA2(N)1
[0.14090010, 0.10346060] [0.07543888, 0.02562175] [0.01530376, 0.02928658]

HA3(N)1
[0.14371760, 0.10536490] [0.07553381, 0.02339384] [0.01523818, 0.02893875]

HA4(N)1
[0.13801410, 0.10476130] [0.07562968, 0.02466783] [0.01603289, 0.02895724]

HA5(N)1
[0.16912520, 0.11837020] [0.09032016, 0.02998409] [0.01754146, 0.02905653]

HP1(N)1
[0.00025958, 0.00093281] [0.00038758, 0.00166299] [0.00043079, 0.00428377]

HP2(N)1
[0.00025913, 0.00093546] [0.00038773, 0.00166369] [0.00043080, 0.00428058]

HP3(N)1
[0.00025825, 0.00092476] [0.00038684, 0.00166057] [0.00043079, 0.00428438]

HP4(N)1
[0.00025804, 0.00092036] [0.00038640, 0.00165903] [0.00043083, 0.00428603]

HP5(N)1
[0.00025890, 0.00092286] [0.00038676, 0.00166006] [0.00043081, 0.00428734]



Symmetry 2024, 16, 633 10 of 24

Table 6. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 4 when

sample size is 5%.

Estimators 0.25 0.50 0.75

HA1(N)1
[12659.18000000, 52.95105000] [9848.06500000, 34.80282000] [1390.32900000, 43.79722000]

HA2(N)1
[12848.09000000, 52.90249000] [9937.59300000, 34.83687000] [1393.63900000, 43.87352000]

HA3(N)1
[12878.36000000, 52.75121000] [9804.92700000, 35.03531000] [1378.85400000, 43.62861000]

HA4(N)1
[13396.63000000, 52.73636000] [8401.08800000, 35.32916000] [1354.67600000, 43.55621000]

HA5(N)1
[12652.08000000, 52.79689000] [9867.90100000, 35.00586000] [1376.04100000, 43.56635000]

HP1(N)1
[0.00235515, 0.00254313] [0.00225229, 0.00328725] [0.00273807, 0.00295161]

HP2(N)1
[0.00236679, 0.00254399] [0.00225184, 0.00328669] [0.00273411, 0.00295103]

HP3(N)1
[0.00239635, 0.00253732] [0.00231006, 0.00329569] [0.00275508, 0.00295577]

HP4(N)1
[0.00241799, 0.00253049] [0.00232416, 0.00329873] [0.00275984, 0.00295528]

HP5(N)1
[0.00239698, 0.00253698] [0.00231220, 0.00329621] [0.00275649, 0.00295604]

Table 7. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population 1

when sample size is 5%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[28794.92000000, 8807.07900000] [10662.49000000, 1747.53700000] [1027.41400000, 1148.22900000](

HP2(N)1
, HA2(N)1

)
[24340.81000000, 7389.79700000] [7430.19800000, 1170.10700000] [991.65840000, 1080.97800000](

HP3(N)1
, HA3(N)1

)
[26287.65000000, 6391.93400000] [7125.59300000, 1143.04200000] [968.77530000, 1070.61100000](

HP4(N)1
, HA4(N)1

)
[27072.90000000, 7309.39900000] [7500.47400000, 1276.38200000] [999.39660000, 1067.75100000](

HP5(N)1
, HA5(N)1

)
[31086.07000000, 9684.18600000] [8871.29900000, 1487.51100000] [989.74450000, 1115.67000000]

Table 8. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population 2

when sample size is 5%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[17887.42000000, 9354.99300000] [8135.97600000, 4016.08000000] [1551.54900000, 529.45880000](

HP2(N)1
, HA2(N)1

)
[15256.49000000, 8150.48500000] [5870.84100000, 2852.85700000] [1408.35400000, 498.64720000](

HP3(N)1
, HA3(N)1

)
[14410.60000000, 7519.11700000] [5751.94100000, 2864.25400000] [1389.8400000, 495.63750000](

HP4(N)1
, HA4(N)1

)
[15319.61000000, 7933.41400000] [5725.91500000, 2934.01700000] [1381.83600000, 519.15620000](

HP5(N)1
, HA5(N)1

)
[16620.42000000, 8764.01800000] [6821.77200000, 3446.14300000] [1498.00100000, 529.02580000]

Table 9. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population 3

when sample size is 5%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[63693.23000000, 13392.82000000] [27361.67000000, 2082.10100000] [3945.78400000, 687.98060000](

HP2(N)1
, HA2(N)1

)
[54373.39000000, 11059.91000000] [19456.74000000, 1540.04800000] [3552.39400000, 684.17400000](

HP3(N)1
, HA3(N)1

)
[55650.08000000, 11393.73000000] [19525.93000000, 1408.78300000] [3537.18500000, 675.44740000](

HP4(N)1
, HA4(N)1

)
[53484.81000000, 11382.60000000] [19572.67000000, 1486.88000000] [3721.41100000, 675.61890000](

HP5(N)1
, HA5(N)1

)
[65323.39000000, 12826.46000000] [23353.06000000, 1806.20600000] [4071.70300000, 677.72930000]
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Table 10. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population

4 when sample size is 5%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[537510420.10000000, 2082123.10000000] [437247684.10000000, 1058722.10000000] [50777790.10000000, 1483841.10000000](

HP2(N)1
, HA2(N)1

)
[542848807.10000000, 2079502.10000000] [441309532.10000000, 1059936.10000000] [50972385.10000000, 1486719.10000000](

HP3(N)1
, HA3(N)1

)
[537415642.10000000, 2079013.10000000] [424445080.10000000, 1063066.10000000] [50047658.10000000, 1476051.10000000](

HP4(N)1
, HA4(N)1

)
[554039427.10000000, 2084033.10000000] [361467699.10000000, 1070992.10000000] [49085369.10000000, 1473845.10000000](

HP5(N)1
, HA5(N)1

)
[527835504.10000000, 2081090.10000000] [426775100.10000000, 1062002.10000000] [49920017.10000000, 1473811.10000000]

Table 11. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 1 when

sample size is 10%.

Estimators 0.25 0.50 0.75

HA1(N)1
[0.05278514, 0.03103824] [0.02293561, 0.00863221] [0.00452109, 0.00408159]

HA2(N)1
[0.04556192, 0.02622204] [0.01839788, 0.00727704] [0.00445757, 0.00394331]

HA3(N)1
[0.04738312, 0.02172956] [0.01941909, 0.00664607] [0.00445610, 0.00388231]

HA4(N)1
[0.04985967, 0.02567838] [0.01922507, 0.00742291] [0.00446277, 0.00393611]

HA5(N)1
[0.05599423, 0.03178389] [0.02329781, 0.00880282] [0.00461344, 0.00406053]

HP1(N)1
[0.00029686, 0.00085081] [0.00038942, 0.00148873] [0.00072948, 0.00059511]

HP2(N)1
[0.00029691, 0.00085084] [0.00039149, 0.00149078] [0.00072966, 0.00059520]

HP3(N)1
[0.00029594, 0.00085053] [0.00038628, 0.00146474] [0.00072864, 0.00059438]

HP4(N)1
[0.00029552, 0.00085090] [0.00038371, 0.00144341] [0.00072797, 0.00059382]

HP5(N)1
[0.00029603, 0.00085054] [0.00038423, 0.00146279] [0.00072849, 0.00059430]

Table 12. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 2 when

sample size is 10%.

Estimators 0.25 0.50 0.75

HA1(N)1

[
0.03201772, 0.02207009

] [
0.01571671, 0.00894583

] [
0.00344596, 0.00730504

]
HA2(N)1

[
0.02698789, 0.01722464

] [
0.01417302, 0.00769259

] [
0.00334932, 0.00728080

]
HA3(N)1

[
0.02530204, 0.01732694

] [
0.01295956, 0.00786451

] [
0.00328828, 0.00701269

]
HA4(N)1

[
0.02508618, 0.01825600

] [
0.01440447, 0.00717085

] [
0.00326247, 0.00699018

]
HA5(N)1

[
0.03044012, 0.02105985

] [
0.01630019, 0.00899331

] [
0.00343424, 0.00720987

]
HP1(N)1

[
0.00034510, 0.00065756

] [
0.00046213, 0.00065388

] [
0.00039188, 0.00250048

]
HP2(N)1

[
0.00034504, 0.00065742

] [
0.00046220, 0.00065570

] [
0.00039229, 0.00249942

]
HP3(N)1

[
0.00034320, 0.00065497

] [
0.00046140, 0.00065368

] [
0.00039276, 0.00249928

]
HP4(N)1

[
0.00034189, 0.00065279

] [
0.00046087, 0.00065372

] [
0.00039366, 0.00249803

]
HP5(N)1

[0.00034337, 0.00065530] [0.00046139, 0.00065199] [0.00039234, 0.00250031]

Table 13. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 3 when

sample size is 10%.

Estimators 0.25 0.50 0.75

HA1(N)1

[
0.07023669, 0.05348943

] [
0.03667399, 0.00787167

] [
0.00542214, 0.01255324

]
HA2(N)1

[
0.05989029, 0.04451275

] [
0.03216543, 0.00717289

] [
0.00468516, 0.01254090

]
HA3(N)1

[
0.05978501, 0.04081650

] [
0.02805722, 0.00701938

] [
0.00480273, 0.01252107

]
HA4(N)1

[
0.05903541, 0.04616470

] [
0.03090341, 0.00770717

] [
0.00469045, 0.01256707

]
HA5(N)1

[
0.07292860, 0.05298113

] [
0.03687221, 0.00815749

] [
0.00587575, 0.01261741

]
HP1(N)1

[
0.00015005, 0.00079295

] [
0.00021372, 0.00116272

] [
0.00025309, 0.00353636

]
HP2(N)1

[
0.00014986, 0.00079444

] [
0.00021384, 0.00116275

] [
0.00025297, 0.00353541

]
HP3(N)1

[0.00014969, 0.00079034]
[
0.00021347, 0.00116161

] [
0.00025333, 0.00353626

]
HP4(N)1

[
0.00014952, 0.00078854

] [
0.00021325, 0.00116067

] [
0.00025358, 0.00353625

]
HP5(N)1

[
0.00014988, 0.00078909

] [
0.00021338, 0.00116164

] [
0.00025344, 0.00353711

]
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Table 14. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 4 when

sample size is 10%.

Estimators 0.25 0.50 0.75

HA1(N)1

[
18.26232000, 17.38877000

] [
21.55961000, 33.46750000

] [
0.10202770, 33.07366000

]
HA2(N)1

[
17.55407000, 17.39720000

] [
21.54354000, 33.44364000

] [
0.10302250, 33.18657000

]
HA3(N)1

[
17.55962000, 17.48267000

] [
21.54388000, 33.35970000

] [
0.10314110, 33.06412000

]
HA4(N)1

[
16.89388000, 17.62576000

] [
21.52976000, 33.28332000

] [
0.10612860, 33.12167000

]
HA5(N)1

[
18.26487000, 17.47264000

] [
21.56045000, 33.38678000

] [
0.10213000, 32.95957000

]
HP1(N)1

[
0.00160199, 0.00186467

] [
0.00146192, 0.00209583

] [
0.00175950, 0.00187631

]
HP2(N)1

[
0.00160980, 0.00186595

] [
0.00146069, 0.00209569

] [
0.00175860, 0.00187565

]
HP3(N)1

[
0.00159285, 0.00186075

] [
0.00148106, 0.00209416

] [
0.00176694, 0.00188578

]
HP4(N)1

[
0.00159198, 0.00185844

] [
0.00148989, 0.00209369

] [
0.00176976, 0.00188666

]
HP5(N)1

[
0.00159077, 0.00186014

] [
0.00148256, 0.00209447

] [
0.00176760, 0.00188607

]

Table 15. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population

1 when sample size is 10%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[17780.95000000, 3648.09100000] [5889.61800000, 579.83620000] [619.77080000, 685.85570000](

HP2(N)1
, HA2(N)1

)
[15345.24000000, 3081.90500000] [4699.33200000, 488.13630000] [610.91250000, 662.51650000](

HP3(N)1
, HA3(N)1

)
[16011.10000000, 2554.82500000] [5027.23400000, 453.73750000] [611.56170000, 653.16850000](

HP4(N)1
, HA4(N)1

)
[16872.02000000, 3017.79000000] [5010.33400000, 514.26390000] [613.04340000, 662.84210000](

HP5(N)1
, HA5(N)1

)
[18914.78000000, 3736.89500000] [6063.45400000, 601.78430000] [633.28420000, 683.23970000]

Table 16. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population

2 when sample size is 10%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[9277.77100000, 3356.37900000] [3400.92700000, 1368.12000000] [879.34680000, 292.14510000](

HP2(N)1
, HA2(N)1

)
[7821.72800000, 2620.05100000] [3066.40300000, 1173.18100000] [853.79040000, 291.30000000](

HP3(N)1
, HA3(N)1

)
[7372.31400000, 2645.43700000] [2808.72600000, 1203.11100000] [837.22350000, 280.58850000](

HP4(N)1
, HA4(N)1

)
[7337.58200000, 2796.57100000] [3125.48500000, 1096.93700000] [828.76440000, 279.82740000](

HP5(N)1
, HA5(N)1

)
[8865.21700000, 3213.75900000] [3532.78700000, 1379.35400000] [875.31730000, 288.35920000]

Table 17. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population

3 when sample size is 10%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[46810.30000000, 6745.63900000] [17160.10000000, 677.00780000] [2142.41100000, 354.97660000](

HP2(N)1
, HA2(N)1

)
[39963.99000000, 5603.04500000] [15041.75000000, 616.89100000] [1852.07800000, 354.72230000](

HP3(N)1
, HA3(N)1

)
[39939.96000000, 5164.40000000] [13143.36000000, 604.27990000] [1895.80800000, 354.07640000](

HP4(N)1
, HA4(N)1

)
[39482.56000000, 5854.48500000] [14491.48000000, 664.02660000] [1849.66100000, 355.37810000](

HP5(N)1
, HA5(N)1

)
[48659.02000000, 6714.22000000] [17280.26000000, 702.23720000] [2318.41100000, 356.71520000]
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Table 18. PRE of proposed
(

HPi(N)1

)
estimator’s w.r.t adapted

(
HAi(N)1

)
estimators for population

4 when sample size is 10%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[1139971.10000000, 932538.90000000] [1474744.10000000, 1596858.10000000] [5798.66700000, 1762694.10000000](

HP2(N)1
, HA2(N)1

)
[1090450.10000000, 932351.20000000] [1474892.10000000, 1595827.10000000] [5858.19800000, 1769333.10000000](

HP3(N)1
, HA3(N)1

)
[1102405.10000000, 939549.20000000] [1454625.10000000, 1592991.10000000] [5837.26300000, 1753342.10000000](

HP4(N)1
, HA4(N)1

)
[1061188.10000000, 948418.10000000] [1445049.10000000, 1589694.10000000] [5996.78200000, 1755568.10000000](

HP5(N)1
, HA5(N)1

)
[1148177.10000000, 939318.10000000] [1454269.10000000, 1594042.10000000] [5777.89300000, 1747524.10000000]

Table 19. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 1 when

sample size is 15%.

Estimators 0.25 0.50 0.75

HA1(N)1
[0.02423724, 0.02521752] [0.01013707, 0.00436531] [0.00423744, 0.00318711]

HA2(N)1
[0.02032192, 0.02182145] [0.01035944, 0.00410658] [0.00405645, 0.00317238]

HA3(N)1
[0.02256156, 0.02226276] [0.00977304, 0.00435874] [0.00420122, 0.00311620]

HA4(N)1
[0.02388722, 0.02348978] [0.00978326, 0.00443506] [0.00428133, 0.00309671]

HA5(N)1
[0.02541181, 0.02641287] [0.01217725, 0.00453425] [0.00430458, 0.00325799]

HP1(N)1
[0.00024404, 0.00084491] [0.00028227, 0.00138944] [0.00061685, 0.00050901]

HP2(N)1
[0.00024416, 0.00084417] [0.00028367, 0.00139088] [0.00061677, 0.00050904]

HP3(N)1
[0.00024361, 0.00085899] [0.00028035, 0.00137184] [0.00061657, 0.00050933]

HP4(N)1
[0.00024327, 0.00087593] [0.00027869, 0.00135528] [0.00061634, 0.00050985 ]

HP5(N)1
[0.00024349, 0.00086004] [0.00027892, 0.00137041] [0.00061668, 0.00050933]

Table 20. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 2 when

sample size is 15%.

Estimators 0.25 0.50 0.75

HA1(N)1
[0.01217292, 0.00915546] [0.00574358, 0.00473178] [0.00190995, 0.01581105]

HA2(N)1
[0.01133602, 0.00925104] [0.00587575, 0.00454565] [0.00183164, 0.01569076]

HA3(N)1
[0.01050344, 0.00782591] [0.00539212, 0.00472929] [0.00186089, 0.01565197]

HA4(N)1
[0.01188887, 0.00812091] [0.00578986, 0.00430275] [0.00176988, 0.01585948]

HA5(N)1
[0.01490505, 0.00945394] [0.00692203, 0.00508339] [0.00171219, 0.01582575]

HP1(N)1
[0.00029955, 0.00058966] [0.00039184, 0.00052005] [0.00029563, 0.00233310]

HP2(N)1
[0.00029933, 0.00058969] [0.00039191, 0.00052105] [0.00029581, 0.00233216]

HP3(N)1
[0.00029846, 0.00058849] [0.00039124, 0.00051958] [0.00029598, 0.00233165]

HP4(N)1
[0.00029754, 0.00058745] [0.00039072, 0.00051922] [0.00029634, 0.00233019]

HP5(N)1
[0.00029871, 0.00058853] [0.00039119, 0.00051865] [0.00029579, 0.00233258]

Table 21. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 3 when

sample size is 15%.

Estimators 0.25 0.50 0.75

HA1(N)1
[0.03657191, 0.02439917] [0.01808088, 0.00722918] [0.00316343, 0.02164782]

HA2(N)1
[0.03463097, 0.02389522] [0.01817396, 0.00702091] [0.00248699, 0.02219127]

HA3(N)1
[0.03279962, 0.02120182] [0.01759832, 0.00715856] [0.00295482, 0.02050702]

HA4(N)1
[0.03333753, 0.02501256] [0.01829039, 0.00744975] [0.00288229, 0.01942301]

HA5(N)1
[0.04454848, 0.02675314] [0.02226382, 0.00736752] [0.00354308, 0.02002272]

HP1(N)1
[0.00013042, 0.00076973] [0.00017573, 0.00109067] [0.00020431, 0.00271852]

HP2(N)1
[0.00013036, 0.00077070] [0.00017576, 0.00109061] [0.00020429, 0.00271754]

HP3(N)1
[0.00013023, 0.00076896] [0.00017562, 0.00109000] [0.00020435, 0.00271849]

HP4(N)1
[0.00013009, 0.00076839] [0.00017553, 0.00108942] [0.00020439, 0.00271853]

HP5(N)1
[0.00013029, 0.00076808] [0.00017559, 0.00109009] [0.00020436, 0.00271937]
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Table 22. MSE of proposed
(

HPi(N)1

)
and adapted

(
HAi(N)1

)
estimators for population 4 when

sample size is 15%.

Estimators 0.25 0.50 0.75

HA1(N)1
[1.07473400, 30.53655000] [0.02329777, 13.03802000] [11.04803000, 191.03530000]

HA2(N)1
[1.08310400, 30.64574000] [0.02184079, 13.03078000] [10.55876000, 191.62410000]

HA3(N)1
[1.08276600, 30.45685000] [0.02201946, 13.02999000] [12.62746000, 191.98260000]

HA4(N)1
[1.09153000, 30.40495000] [0.02110268, 13.04988000] [14.70891000, 193.06520000]

HA5(N)1
[1.07416700, 30.35368000] [0.02333948, 13.03710000] [13.33633000, 191.40170000]

HP1(N)1
[0.00153637, 0.00148698] [0.00112341, 0.00169163] [0.00144035, 0.00183146]

HP2(N)1
[0.00154792, 0.00148857] [0.00112126, 0.00169154] [0.00143918, 0.00183071]

HP3(N)1
[0.00151023, 0.00147533] [0.00113311, 0.00168989] [0.00144614, 0.00184546]

HP4(N)1
[0.00149851, 0.00147402] [0.00113987, 0.00168964] [0.00144949, 0.00184714]

HP5(N)1
[0.00150502, 0.00147458] [0.00113491, 0.00169020] [0.00144707, 0.00184578]

Table 23. PRE of proposed
(

HPi(N)1

)
estimators w.r.t adapted

(
HAi(N)1

)
estimators for population 1

when sample size is 15%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[9931.80600000, 2984.63400000] [3591.28400000, 314.17690000] [686.94460000, 626.13370000](

HP2(N)1
, HA2(N)1

)
[8323.19100000, 2584.96200000] [3651.99500000, 295.25020000] [657.68740000, 623.21460000](

HP3(N)1
, HA3(N)1

)
[9261.49500000, 2591.70800000] [3486.00200000, 317.72880000] [681.38970000, 611.82030000](

HP4(N)1
, HA4(N)1

)
[9819.03300000, 2681.69900000] [3510.33800000, 327.24400000] [694.63330000, 607.37980000](

HP5(N)1
, HA5(N)1

)
[10436.12000000, 3071.13900000] [4365.88600000, 330.86760000] [698.02840000, 639.65900000]

Table 24. PRE of proposed
(

HPi(N)1

)
estimators w.r.t adapted

(
HAi(N)1

)
estimators for population 2

when sample size is 15%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[4063.80300000, 1552.66600000] [1465.80900000, 909.87520000] [646.06990000, 677.68400000](

HP2(N)1
, HA2(N)1

)
[3787.15100000, 1568.79300000] [1499.25900000, 872.40520000] [619.19780000, 672.80020000](

HP3(N)1
, HA3(N)1

)
[3519.26900000, 1329.81700000] [1378.22800000, 910.21660000] [628.72390000, 671.28430000](

HP4(N)1
, HA4(N)1

)
[3995.67100000, 1382.40400000] [1481.84800000, 828.69940000] [597.24690000, 680.60890000](

HP5(N)1
, HA5(N)1

)
[4989.83700000, 1606.35900000] [1769.48300000, 980.11500000] [578.86400000, 678.46490000]

Table 25. PRE of proposed
(

HPi(N)1

)
estimators w.r.t adapted

(
HAi(N)1

)
estimators for population 3

when sample size is 15%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[28041.68000000, 3169.83400000] [10289.24000000, 662.82300000] [1548.33800000, 796.30850000](

HP2(N)1
, HA2(N)1

)
[26566.22000000, 3100.44000000] [10339.93000000, 643.75970000] [1217.35200000, 816.59290000](

HP3(N)1
, HA3(N)1

)
[25185.16000000, 2757.19500000] [10020.47000000, 656.74930000] [1445.97100000, 754.35340000](

HP4(N)1
, HA4(N)1

)
[25627.92000000, 3255.18800000] [10420.04000000, 683.82710000] [1410.20400000, 714.46790000](

HP5(N)1
, HA5(N)1

)
[34192.70000000, 3483.14700000] [12679.06000000, 675.86270000] [1733.71500000, 736.29930000]
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Table 26. PRE of proposed
(

HPi(N)1

)
estimators w.r.t adapted

(
HAi(N)1

)
estimators for population 4

when sample size is 15%.

Estimators 0.25 0.50 0.75(
HP1(N)1

, HA1(N)1

)
[69953.01000000, 2053589.10000000] [2073.83700000, 770736.30000000] [767040.50000000, 10430743.10000000](

HP2(N)1
, HA2(N)1

)
[69971.57000000, 2058739.10000000] [1947.87600000, 770349.50000000] [733666.60000000, 10467204.10000000](

HP3(N)1
, HA3(N)1

)
[71695.46000000, 2064414.10000000] [1943.28000000, 771053.10000000] [873186.30000000, 10402960.10000000](

HP4(N)1
, HA4(N)1

)
[72841.01000000, 2062729.10000000] [1851.32000000, 772345.70000000] [1014767.10000000, 10452121.10000000](

HP5(N)1
, HA5(N)1

)
[71372.46000000, 2058464.10000000] [2056.50600000, 771333.50000000] [921611.10000000, 10369700.10000000]

4.1. Weather Data Sets

We performed a numerical study utilizing interval/ambiguous values with indeter-
minate values from the weather datasets in Pakistani cities like Karachi, Lahore, Multan,
and Peshawar. The data are composed of uncertain neutrosophic values that fall into
a specific range. One reason to consider weather datasets contain neutrosophic data is
that their values diverge in an interval form, with the recorded weather data for the
day potentially being the highest, lowest, or any value in between. For the purposes of
this article, we have considered four populations—temperature, dew point, humidity,
and pressure datasets. The symmetric and asymmetric data are taken from a website
(https://www.wunderground.com, accessed on 20 June 2023) that was open to the public.

4.1.1. Temperature Data (Population 1)

We have considered the temperature data of four cities in Pakistan—stratum I: Karachi
temperature data with 365 days; stratum II: Lahore temperature data with 365 days; stra-
tum III: Peshawar temperature data with 365 days; and stratum-IV: Multan temperature
data with 365 days—from 1 January 2021, to 31 December 2022. Each stratum’s size is
represented by the number of days. We select various neutrosophic samples of sizes 5%,
10% and 15%, as given below:

N1 = 365, N2 = 365, N3 = 365, N4 = 365

➢ For 5% sample size:
n1 = 18, n2 = 18, n3 = 18, n4 = 18

➢ For 10% sample size:

n1 = 37, n2 = 37, n3 = 37, n4 = 37

➢ For 15% sample size:

n1 = 55, n2 = 55, n3 = 55, n4 = 55

For population 1, we take the following factors into consideration:

xN = Neutrosophic temperature 1 January 2021 to 31 December 2021
yN = Neutrosophic temperature 1 January 2022 to 31 December 2022

4.1.2. Dew Point Temperature Data (Population 2)

We have considered the dew point temperature data of four (cities) in Pakistan
—stratum I: Karachi dew point temperature data with 365 days; stratum II: Lahore dew
point temperature data with 365 days; stratum III: Peshawar dew point temperature data
with 365 days; and stratum IV: Multan dew point temperature data with 365 days—from
1 January 2021, to 31 December 2022. Each stratum’s size is represented by the number of
days. We select various neutrosophic samples of sizes 5%, 10% and 15%, as given below:

➢ For 5% sample size:
n1 = 18, n2 = 18, n3 = 18, n4 = 18

https://www.wunderground.com
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➢ For 10% sample size:

n1 = 37, n2 = 37, n3 = 37, n4 = 37

➢ For 15% sample size:

n1 = 55, n2 = 55, n3 = 55, n4 = 55

For population 2, we take the following factors into consideration:

xN = Neutrosophic dew-point 1 January 2021 to 31 December 2021
yN = Neutrosophic dew-point 1 January 2022 to 31 December 2022

4.1.3. Humidity Data (Population 3)

We have considered the humidity data of four (cities) in Pakistan—stratum I: Karachi
humidity data with 365 days; stratum-II: Lahore humidity data with 365 days; stratum-
III: Peshawar humidity data with 365 days; and stratum-IV: Multan humidity data with
365 days—from 1 January 2021, to 31 December 2022. Each stratum’s size is represented by the
number of days. We select various neutrosophic samples of sizes 5%, 10% and 15%, as given below:

N1 = 365, N2 = 365, N3 = 365, N4 = 365

➢ For 5% sample size:
n1 = 18, n2 = 18, n3 = 18, n4 = 18

➢ For 10% sample size:

n1 = 37, n2 = 37, n3 = 37, n4 = 37

➢ For 15% sample size:

n1 = 55, n2 = 55, n3 = 55, n4 = 55

For population 3, we take the following factors into consideration:

xN = Neutrosophic humidity 1 January 2021 to 31 December 2021
yN = Neutrosophic humidity 1 January 2022 to 31 December 2022

4.1.4. Pressure Data (Population 4)

We have considered the pressure temperature data of four (cities) in Pakistan—stratum
I: Karachi pressure data with 365 days; stratum II: Lahore pressure data with 365 days;
stratum III: Peshawar pressure data with 365 days; and stratum IV: Multan pressure
data with 365 days—from 1 January 2021, to 31 December 2022. Each stratum’s size is
represented by the number of days. We select various neutrosophic samples of sizes 5%,
10% and 15% as given below:

N1 = 365, N2 = 365, N3 = 365, N4 = 365

➢ For 5% sample size:
n1 = 18, n2 = 18, n3 = 18, n4 = 18

➢ For 10% sample size:

n1 = 37, n2 = 37, n3 = 37, n4 = 37

➢ For 15% sample size:

n1 = 55, n2 = 55, n3 = 55, n4 = 55

For population 4, we take the following factors into consideration:

xN = Neutrosophic pressure 1 January 2021 to 31 December 2021
yN = Neutrosophic pressure 1 January 2022 to 31 December 2022
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4.2. Interpretations and Figures
4.2.1. When Sample Size Is 5%

The results for 5% sample size are mentioned in Tables 3–6 and indicate the following:

➢ For population 1, the lower and upper values of adapted neutrosophic estimator
HAi(L)1

for i = 3 has a minimum value of MSE for HA3(L)1
= 0.01233337 at quantile

(t = 0.75), while HAi(U)1
for i = 3 has a minimum value of MSE for HA3(U)1

=
0.01194092 at quantile (t = 0.75). The lower and upper values of the proposed
neutrosophic estimator HPi(L)1

for i = 3 has a minimum value of MSE for HP3(L)1
=

0.00043422 at quantile (t = 0.25), while HPi(U)1
for i = 4 has a minimum value of MSE

for HP4(U)1
= 0.00106791 at quantile (t = 0.25).

➢ For population 2, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 4 has a minimum value of MSE for HA4(L)1
= 0.00993667 at quantile

(t = 0.75) and HAi(U)1
for i = 3 has a minimum value of MSE for HA3(U)1

= 0.01630728
at quantile (t = 0.75). The lower and upper values of proposed neutrosophic estimator
HPi(L)1

for i = 4 has a minimum value of MSE for HP4(L)1
= 0.00055121 at quantile

(t = 0.25) and HPi(U)1
for i = 4 has a minimum value of MSE for HP4(U)1

= 0.00083560
at quantile (t = 0.25).

➢ For population 3, the lower and upper values of adapted neutrosophic estimator
HAi(L)1

for i = 3 have a minimum value of MSE for HA3(L)1
= 0.01523818 at quantile

(t = 0.75) and HAi(U)1
for i = 3 has a minimum value of MSE for HA3(U)1

= 0.02339384
at quantile (t = 0.50). The lower and upper values of proposed neutrosophic estimator
HPi(L)1

for i = 4 have a minimum value of MSE for HP4(L)1
= 0.00025804 at quantile

(t = 0.25) and HPi(U)1
for i = 4 has minimum value of MSE for HP4(U)1

= 0.00092036
at quantile (t = 0.25).

➢ For population 4, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 4 have a minimum value of MSE for HA4(L)1
= 1354.67600000 at

quantile (t = 0.75) and HAi(U)1
for i = 1 has a minimum value of MSE for HA1(U)1

=
34.80282000 at quantile (t = 0.50). The lower and upper values of the proposed
neutrosophic estimator HPi(L)1

for i = 2 have a minimum value of MSE for HP2(L)1
=

0.00225184 at quantile (t = 0.50) and HPi(U)1
for i = 4 has a minimum value of MSE

for HP4(U)1
= 0.00253049 at quantile (t = 0.25).

➢ The same pattern of the proposed neutrosophic estimators PRE’s for a 5% sample size
can be seen in Tables 7–10 for all i = 1, 2, 3, 4, 5.

➢ The visual representation of MSE’s results based on a 5% sample size is provided in
Figures 1–4.
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Figure 1. MSE for population 1 when sample size is 5%.
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Figure 2. MSE for population 2 when sample size is 5%.
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Figure 3. MSE for population 3 when sample size is 5%.

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 23 
 

 

 

 

 

 

 

 

 

 

Figure 4. MSE for population 4 when sample size is 5%. 

4.2.2. When Sample Size Is 10% 
The results for 10% sample size are mentioned in Tables 11–14 and indicate that: 

 For population 1, the lower and upper values of the adapted neutrosophic estimator 𝐻()భ for 𝑖 = 3 have a minimum value of MSE for 𝐻య()భ = 0.00445610 at quan-
tile (𝑡 = 0.75 ) and 𝐻()భ  for 𝑖 = 3  has a minimum value of MSE for 𝐻య()భ =0.00388231 at quantile (𝑡 = 0.75). The lower and upper values of the proposed neu-
trosophic estimator 𝐻()భ  for 𝑖 = 4  has a minimum value of MSE for 𝐻ర()భ =0.00029552  at quantile (𝑡 = 0.25 ) and 𝐻()భ  for 𝑖 = 4  has a minimum value of 
MSE for 𝐻ర()భ = 0.00059382 at quantile (𝑡 = 0.75). 

 For population 2, the lower and upper values of the adapted neutrosophic estimator 𝐻()భ for 𝑖 = 4 have a minimum value of MSE for 𝐻ర()భ = 0.00326247 at quan-
tile (𝑡 = 0.75 ) and 𝐻()భ  for 𝑖 = 4  has a minimum value of MSE for 𝐻ర()భ =0.00699018 at quantile (𝑡 = 0.75). The lower and upper values of the proposed neu-
trosophic estimator 𝐻()భ  for 𝑖 = 4  has a minimum value of MSE for 𝐻ర()భ =0.00034189  at quantile (𝑡 = 0.25 ) and 𝐻()భ  for 𝑖 = 5  has a minimum value of 
MSE for 𝐻ఱ()భ = 0.00065199 at quantile (𝑡 = 0.50). 

 For population 3, the lower and upper values of the adapted neutrosophic estimator 𝐻()భ for 𝑖 = 2 have a minimum value of MSE for 𝐻మ()భ = 0.00468516 at quan-
tile (𝑡 = 0.75 ) and 𝐻()భ  for 𝑖 = 3  has a minimum value of MSE for 𝐻య()భ =0.00701938 at quantile (𝑡 = 0.50). The lower and upper values of the proposed neu-
trosophic estimator 𝐻()భ  for 𝑖 = 4  have a minimum value of MSE for 𝐻ర()భ =0.00014952  at quantile (𝑡 = 0.25 ) and 𝐻()భ  for 𝑖 = 4  has a minimum value of 
MSE for 𝐻ర()భ = 0.00078854 at quantile (𝑡 = 0.25). 

 For population 4, the lower and upper values of the adapted neutrosophic estimator 𝐻()భ for 𝑖 = 1 have a minimum value of MSE for 𝐻భ()భ = 0.10202770 at quan-
tile (𝑡 = 0.75 ) and 𝐻()భ  for 𝑖 = 1  has a minimum value of MSE for 𝐻భ()భ =17.38877000 at quantile (𝑡 = 0.25). The lower and upper values of the proposed neu-
trosophic estimator 𝐻()భ  for 𝑖 = 2  have a minimum value of MSE for 𝐻మ()భ =0.00146069  at quantile (𝑡 = 0.50 ) and 𝐻()భ  for 𝑖 = 4  has a minimum value of 
MSE for 𝐻ర()భ = 0.00185844 at quantile (𝑡 = 0.25). 

 The same pattern of the proposed neutrosophic estimators PRE’s for a 10% sample 
size can be seen in Tables 15–18 for all 𝑖 = 1,2,3,4,5. 

 A visual representation of MSE’s results based on a 10% sample size is provided in 
Figures 5–8. 

0.1
2000.1
4000.1
6000.1
8000.1

10000.1
12000.1
14000.1

HA1,HP1 HA2,HP2 HA3,HP3 HA4,HP4 HA5,HP5

M
SE

Estimators

HAL (0.25) HAU (0.25) HPL (0.25) HPU (0.25) HAL (0.50) HAU (0.50)

HPL (0.50) HPU (0.50) HAL (0.75) HAU (0.75) HPL (0.75) HPU (0.75)

Figure 4. MSE for population 4 when sample size is 5%.



Symmetry 2024, 16, 633 19 of 24

4.2.2. When Sample Size Is 10%

The results for 10% sample size are mentioned in Tables 11–14 and indicate that:

➢ For population 1, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 3 have a minimum value of MSE for HA3(L)1
= 0.00445610 at quantile

(t = 0.75) and HAi(U)1
for i = 3 has a minimum value of MSE for HA3(U)1

= 0.00388231
at quantile (t = 0.75). The lower and upper values of the proposed neutrosophic
estimator HPi(L)1

for i = 4 has a minimum value of MSE for HP4(L)1
= 0.00029552 at

quantile (t = 0.25) and HPi(U)1
for i = 4 has a minimum value of MSE for HP4(U)1

=
0.00059382 at quantile (t = 0.75).

➢ For population 2, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 4 have a minimum value of MSE for HA4(L)1
= 0.00326247 at quantile

(t = 0.75) and HAi(U)1
for i = 4 has a minimum value of MSE for HA4(U)1

= 0.00699018
at quantile (t = 0.75). The lower and upper values of the proposed neutrosophic
estimator HPi(L)1

for i = 4 has a minimum value of MSE for HP4(L)1
= 0.00034189 at

quantile (t = 0.25) and HPi(U)1
for i = 5 has a minimum value of MSE for HP5(U)1

=
0.00065199 at quantile (t = 0.50).

➢ For population 3, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 2 have a minimum value of MSE for HA2(L)1
= 0.00468516 at quantile

(t = 0.75) and HAi(U)1
for i = 3 has a minimum value of MSE for HA3(U)1

= 0.00701938
at quantile (t = 0.50). The lower and upper values of the proposed neutrosophic
estimator HPi(L)1

for i = 4 have a minimum value of MSE for HP4(L)1
= 0.00014952 at

quantile (t = 0.25) and HPi(U)1
for i = 4 has a minimum value of MSE for HP4(U)1

=
0.00078854 at quantile (t = 0.25).

➢ For population 4, the lower and upper values of the adapted neutrosophic esti-
mator HAi(L)1

for i = 1 have a minimum value of MSE for HA1(L)1
= 0.10202770

at quantile (t = 0.75) and HAi(U)1
for i = 1 has a minimum value of MSE for

HA1(U)1
= 17.38877000 at quantile (t = 0.25). The lower and upper values of the

proposed neutrosophic estimator HPi(L)1
for i = 2 have a minimum value of MSE for

HP2(L)1
= 0.00146069 at quantile (t = 0.50) and HPi(U)1

for i = 4 has a minimum value
of MSE for HP4(U)1

= 0.00185844 at quantile (t = 0.25).
➢ The same pattern of the proposed neutrosophic estimators PRE’s for a 10% sample

size can be seen in Tables 15–18 for all i = 1, 2, 3, 4, 5.
➢ A visual representation of MSE’s results based on a 10% sample size is provided in

Figures 5–8.
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4.2.3. When Sample Size Is 15%

The results for 15% sample size are mentioned in Tables 19–22 and indicate that:

➢ For population 1, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 2 have a minimum value of MSE for HA2(L)1
= 0.00405645 at quantile

(t = 0.75) and HAi(U)1
for i = 4 has a minimum value of MSE for HA4(U)1

= 0.00309671
at quantile (t = 0.75). The lower and upper values of the proposed neutrosophic
estimator HPi(L)1

for i = 4 have a minimum value of MSE for HP4(L)1
= 0.00024327 at

quantile (t = 0.25) and HPi(U)1
for i = 1 has a minimum value of MSE for HP1(U)1

=
0.00050901 at quantile (t = 0.25).

➢ For population 2, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 5 have a minimum value of MSE for HA5(L)1
= 0.00171219 at quantile

(t = 0.75) and HAi(U)1
for i = 4 has a minimum value of MSE for HA4(U)1

= 0.00430275
at quantile (t = 0.50). The lower and upper values of the proposed neutrosophic
estimator HPi(L)1

for i = 1 have a minimum value of MSE for HP1(L)1
= 0.00029563 at

quantile (t = 0.75) and HPi(U)1
for i = 5 has a minimum value of MSE for HP5(U)1

=
0.00051865 at quantile (t = 0.50).

➢ For population 3, the lower and upper values of the adapted neutrosophic estimator
HAi(L)1

for i = 2 have a minimum value of MSE for HA2(L)1
= 0.00248699 at quantile

(t = 0.75) and HAi(U)1
for i = 2 has a minimum value of MSE for HA2(U)1

= 0.00702091
at quantile (t = 0.50). The lower and upper values of the proposed neutrosophic
estimator HPi(L)1

for i = 4 have a minimum value of MSE for HP4(L)1
= 0.00013009 at

quantile (t = 0.25) and HPi(U)1
for i = 5 has a minimum value of MSE for HP5(U)1

=
0.00076808 at quantile (t = 0.25).

➢ For population 4, the lower and upper values of the adapted neutrosophic esti-
mator HAi(L)1

for i = 4 have a minimum value of MSE for HA4(L)1
= 0.02110268

at quantile (t = 0.50) and HAi(U)1
for i = 3 has a minimum value of MSE for

HA3(U)1
= 13.02999000 at quantile (t = 0.50). The lower and upper values of the

proposed neutrosophic estimator HPi(L)1
for i = 2 have a minimum value of MSE for

HP2(L)1
= 0.00112126 at quantile (t = 0.50) and HPi(U)1

for i = 4 has a minimum value
of MSE for HP4(U)1

= 0.00147402 at quantile (t = 0.25).
➢ The same pattern of the proposed neutrosophic estimators PRE’s for a 15% sample

size can be seen in Tables 23–26 for all i = 1, 2, 3, 4, 5.
➢ A visual representation of MSE’s results based on a 15% sample size is provided in

Figures 9–12.

Symmetry 2024, 16, x FOR PEER REVIEW 21 of 23 
 

 

 

 

 

 

 

 

 

 

Figure 9. MSE for population 1 when sample size is 15%. 

 
Figure 10. MSE for population 2 when sample size is 15%. 

 
Figure 11. MSE for population 3 when sample size is 15%. 

0

0.01

0.02

HA1,HP1 HA2,HP2 HA3,HP3 HA4,HP4 HA5,HP5

M
SE

Estimators

HAL (0.25) HAU (0.25) HPL (0.25) HPU (0.25) HAL (0.50) HAU (0.50)

HPL (0.50) HPU (0.50) HAL (0.75) HAU (0.75) HPL (0.75) HPU (0.75)

0

0.01

0.02

0.03

0.04

0.05

HA1,HP1 HA2,HP2 HA3,HP3 HA4,HP4 HA5,HP5

M
SE

Estimators

HAL (0.25) HAU (0.25) HPL (0.25) HPU (0.25) HAL (0.50) HAU (0.50)

HPL (0.50) HPU (0.50) HAL (0.75) HAU (0.75) HPL (0.75) HPU (0.75)

0

0.01

0.02

0.03

HA1,HP1 HA2,HP2 HA3,HP3 HA4,HP4 HA5,HP5

M
SE

Estimators

HAL (0.25) HAU (0.25) HPL (0.25) HPU (0.25) HAL (0.50) HAU (0.50)

HPL (0.50) HPU (0.50) HAL (0.75) HAU (0.75) HPL (0.75) HPU (0.75)

Figure 9. MSE for population 1 when sample size is 15%.
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Figure 10. MSE for population 2 when sample size is 15%.
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After analyzing the performance of all the neutrosophic estimators, it can be concluded that
the proposed neutrosophic class outperforms the adapted neutrosophic estimators in all four
symmetric and asymmetric populations, with the lowest MSEs and the highest PREs values.

5. Conclusions

This work aims to adapt the neutrosophic calibration estimation of CDF derived by
StRS when supplementary information and neutrosophic studies are present. The distinc-
tive feature of neutrosophic outcomes is the presence of values that are ambiguous, unclear,
or uncertain. The traditional CDF approach gives single-valued outcomes, which are often
not accurate, mostly in neutrosophic value. In this paper, a novel calibration estimation of
CDF using a neutrosophic approach is suggested under StRS. We performed simulation
research utilizing real-world symmetric and asymmetric datasets to evaluate the effective-
ness of the proposed neutrosophic calibrated estimators with the adapted neutrosophic
calibrated estimators. For the neutrosophic calibration estimators, we calculate the PREs
and MSEs. The outcomes show that the recommended estimators outperform the adapted
estimators in terms of effectiveness. In future research, the study can be built to incorporate
other sampling methodologies, and novel ideas can be contrasted to past techniques. In
future studies, the work can be extended under ranked set sampling, as suggested by [30].
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