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Abstract: When agricultural experts explore the use of artificial intelligence technology to identify
and detect crop diseases, they mainly focus on the research of a stable environment, but ignore the
problem of noise in the process of image acquisition in real situations. To solve this problem, we
propose an innovative solution called the Critical Information Mining Network (CIMNet). Compared
with traditional models, CIMNet has higher recognition accuracy and wider application scenarios.
The network has a good effect on crop disease recognition under noisy environments, and can
effectively deal with the interference of noise to the recognition effect in actual farmland scenes.
Consider that the shape of the leaves can be symmetrical or asymmetrical.First, we introduce the
Non-Local Attention Module (Non-Local), which uses a unique self-attention mechanism to fully
capture the context information of the image. The module overcomes the limitation of traditional
convolutional neural networks that only rely on local features and ignore global features. Global
features are particularly important when the image is disturbed by noise. Non-Local improves a more
comprehensive visual understanding of crop disease recognition. Secondly, we have innovatively
designed a Multi-scale Critical Information Fusion Module (MSCM). The module uses the Key
Information Extraction Module (KIB) to dig into the shallow key features in the network deeply. The
shallow key features strengthen the feature perception of the model to the noise image through texture
and contour information, and then the shallow key features and deep features are fused to enrich the
original deep feature information of the network. Finally, we conducted experiments on two public
datasets, and the results showed that the accuracy of our model in crop disease identification under a
noisy environment was significantly improved. At the same time, our model also showed excellent
performance under stable conditions. The results of this study provide favorable support for the
improvement of crop production efficiency.

Keywords: CNN; CIMNet; crop disease identification; leaf diagnosis; artificial intelligence (AI)

1. Introduction

Recently, plant diseases have become a major obstacle to the development of agri-
cultural production. Rapid and accurate identification of crop diseases has become an
important means to solve the problem of crop yield at this stage [1]. Traditional crop dis-
ease identification methods require agricultural producers to have professional agronomic
knowledge, and at the same time cost a lot of money and time, often resulting in infected
crops not being timely and effectively identified and treated, resulting in huge economic
losses [2]. Therefore, to improve the efficiency of agricultural production, more efficient
and accurate crop disease identification methods must be adopted.

In recent years, the application of artificial intelligence technology in agriculture has
been increasing, providing a large number of methods to solve the problems of agricultural
production and making great contributions to the sustainable development of agricul-
ture [3]. The development of the Internet of Things (IoT) fully combines agriculture and
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the Internet. Supervised and unsupervised machine learning techniques are the main
components of intelligent data analysis in the Internet of Things [4]. The pathological
manifestations of disease in plants mainly lie in leaves, rhizomes, and fruits [5]. Generally,
the type and degree of plant disease are most significant in leaves, so the pathological
characteristics of leaves will be the main information source for plant disease identifica-
tion [6]. In the study on leaves as pathological features, Devi N et al. [7] used a hybrid
learning model to identify and classify crop diseases. The hybrid model first uses K-means
clustering to detect disease areas in leaves, and then uses convolutional neural networks
(CNNs) for feature extraction to achieve the goal of classifying diseases, achieving good
recognition results on public datasets. Nandhini et al. [8] combined Inception V3 and Vgg16
convolutional neural networks to solve the time-consuming problem of leaf feature extrac-
tion by shallow machine learning architecture and achieved good recognition results on
tomato leaf datasets. At the same time, to solve the problem of subtle inter-class differences
and large intra-class variation in disease symptoms, Zeng T et al. [9] proposed a GMA-Net
network to significantly improve the recognition accuracy of rubber leaf disease by using
a multi-scale feature extraction module. M Aggarwal et al. [10] used deep learning and
machine learning techniques to identify rice leaf diseases. After analyzing the experimental
results, it was found that deep learning technology had better recognition performance.
Peng J et al. [11] proposed the RiceDRA-Net model, which uses a 3 × 3 convolution kernel
and more dense connections to reduce information loss and achieves high accuracy on rice
leaf disease datasets in complex scenarios. M Aggarwal et al. [12] proposed a framework
called Federated Transfer Learning (F-TL) for rice leaf disease classification across multiple
clients and databases. The framework adopts federated learning and can train shared
models on distributed devices or servers without directly transmitting or concentrating
raw data.

However, the existing research has neglected that in actual production, equipment such
as cameras may be affected by various signal interference, equipment aging, and external
factors (such as rain and dust), thus introducing image noise, which will affect the accuracy
of plant disease recognition models. Leaves in noise-polluted images lose a high degree
of symmetry, which can seriously interfere with the identification of diseases and thus
reduce the identification accuracy. This problem is very common in actual production and
daily life. Therefore, the recognition and detection of plant diseases not only need to have
a high recognition accuracy but also need to improve in their tolerance of image noise.
In recent years, whether artificial intelligence technology is model-centric or data-centric
has become a widely discussed topic. Hamid et al. [13,14] compared the characteristics
of model-centered artificial intelligence and data-centered artificial intelligence, analyzed
the limitations of model-centered artificial intelligence, proposed the advantages of data-
centered artificial intelligence, and emphasized that we should combine the two, rather
than just focusing on one. Only by jointly developing the two can we make the current
artificial intelligence more robust and powerful. Ng, A. et al. [15] believed that shifting
from big data to high-quality data was an important direction for the development of
AI. Jarrahi et al. [16] emphasized the crucial role of data quality in the performance of AI
systems and proposed the concept of Data Center AI (DCAI). In this study, we acknowledge
the importance of datasets but still focus on convolutional neural networks. We achieve
a high recognition rate of crop diseases in noisy environments by deeply optimizing the
ResNet network.

Therefore, we propose a solution called Critical Information Mining Network (CIMNet)
to solve this problem. Unlike the way V. Gautam et al. [17] used semantic segmentation to
extract lesion sites and then trained segmented images for classification, this model takes
ResNet [18] as the basic backbone, combining a Non-Local Attention Module (Non-Local)
and a Multi-scale Critical Information Fusion Module (MSCM). Non-Local introduces a
special self-attention mechanism, which makes up for the lack of global feature utilization
in traditional convolutional networks by extracting the long-term dependency between
pixels in the image. MSCM uses the Key Information Extraction Module (KIB) to dig
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deep into the effective parts of shallow features. Then, through the innovative multi-scale
architecture, the shallow information and deep information are integrated to enrich the
deep feature information of the network and improve the image recognition ability of
the model in noisy images. Experiments on two common plant disease datasets show
that our CIMNet offers significant advantages over previous networks. It can not only
effectively solve the problem caused by image noise, but also improve the performance of
plant disease recognition. The main contributions of this study are as follows:

• In this study, we propose a model called CIMNet, which can accurately identify crop
diseases in noisy environments.

• We propose an MSCM, which fuses shallow key features with deep features to
help the model focus on multi-scale key features and reduce noise interference to
image recognition.

• We conducted experiments on two common plant disease datasets in noisy and stable
environments, respectively, and compared them with existing methods. The exper-
imental results show that CIMNet can effectively deal with the problems caused
by noise.

The structure of the subsequent sections is as follows: Section 2 introduces related
work; Section 3 provides an overview of the materials and methods used in this study;
Section 4 presents the experimental results and discussion; and Section 5 provides conclusions.

2. Related Work

In recent years, a large number of excellent deep learning methods have been used
in the field of plant disease recognition, which can be mainly divided into two categories:
convolutional neural network (CNN) and Vision Transformer architecture. Therefore,
agricultural experts use these two types of network architecture as the backbone network
and then optimize based on the backbone network, so that the network can achieve excellent
results in plant disease recognition.

The method based on a convolutional neural network mainly extracts image features
through multi-layer convolution and pooling operations and then classifies them through
fully connected layers. Since the advent of AlexNet [19] in 2012, convolutional neural
networks have been widely used in academia and industry, such as face detection in dan-
gerous situations. In the field of plant disease recognition, Zhe Tang et al. [20] has proposed
a lightweight convolutional neural network model to diagnose grape diseases, including
black rot, black measles, and leaf blight, which has added the SE mechanism to ShuffleNet
and achieved 99.14% accuracy on the Plant Village dataset. De Ocampo et al. [21] proposed
a MobileNet that could be deployed on mobile smart devices. This model combined deep
convolution and point-to-point convolution and achieved 89% classification accuracy on six
randomly selected plant disease datasets. To solve the problem that large-scale architecture
is not suitable for mobile devices, Rahman et al. [22] proposed a two-stage small-scale CNN
architecture and compared it with advanced memory-efficient CNN architectures such as
MobileNet, NasNet mobile, and SqueezeNet. The accuracy of the rice disease dataset was
93.3%. Alfarisy et al. [23] has collected 4511 plant disease images using search engines
and enhanced them to develop a diverse dataset, which has been tested with the CaffeNet
model and achieved an accuracy of 87%. M Aggarwal et al. [24] reviewed the methods
of using machine learning and deep learning techniques for rice leaf disease recognition.
Convolutional neural networks, VGG, and other models were used to significantly im-
prove the accuracy of rice leaf disease recognition, and the advantages and disadvantages
of various technical routes were summarized. AM Mishra et al. [25] proposed a deep
learning-based weed growth estimation method to address the impact of weeds on crops
through automated agriculture. Zhang et al. [26], starting from the fact that the color of
plant disease leaves is the main basis for disease recognition, used color information and
combined three color components to build a three-channel convolutional neural network
TCCNN model. Each channel in this model has one of the three color components of
RGB images as input and carries out feature extraction through convolution operation and
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pooling. Finally, the fully connected layer is integrated to obtain the deep disease feature
vector. The experimental results show that the model can automatically learn representative
features from complex diseased leaf images and effectively identify vegetable diseases,
and the accuracy rate is better than the most advanced methods. M Aggarwal et al. [27]
collected 551 images of rice leaf diseases, divided them into three categories, and then used
various pre-trained deep-learning models for feature extraction. Then, machine learning
and ensemble learning classifiers were used for classification. The experimental results
showed that EfficientNetV2 achieved an accuracy of 94% on the test set, proving that the
combination of feature extraction and classification can effectively identify and classify rice
leaf diseases. Kanna et al. [28] used advanced deep learning techniques, especially transfer
learning techniques, to perform early disease detection on cauliflower plants. Among mul-
tiple models, EfficientNetB1 achieved the highest validation accuracy of 99.9% and the
lowest loss of 0.16. The experimental results indicated that advanced deep learning models
played a crucial role in automated cauliflower disease detection. Dhaka et al. [29] reviewed
the research on using deep convolutional neural networks (DCNNs) for plant leaf disease
recognition. They summarized the application cases of deep learning models in various
plant leaf disease recognition, demonstrating their accuracy and efficiency. Kundu et al. [30]
developed a framework called AIDCC using the Internet of Things (IoT) and interpretable
deep transfer learning techniques for detecting and classifying rust and rice blast diseases in
pearl millet. The experimental results indicated that the Custom-Net model can effectively
extract relevant features.

The method based on Vision Transformer [31] mainly extracts image features through
multiple self-attention layers and feedforward neural network layers to distinguish whether
plants are diseased. Therefore, the self-attention mechanism is the core of Transformer
architecture, and network models utilizing the self-attention mechanism are also consid-
ered to be part of Vision Transformer. The disease area of crop leaves is small, and the
contrast between the disease area and the background is small, which is easy to confuse.
Zeng W et al. [32] paid attention to important areas of images by using the self-attention
mechanism and proposed a self-attention convolutional neural network SACNN to extract
effective features of plant disease spots to identify crop diseases. SACNN’s recognition ac-
curacy on MK-D2 was 2.9% higher than in advanced methods. Wang Y. et al. [33] proposed
a deep separable neural network based on Bayesian optimization for disease detection
and classification of rice leaf images, realizing the purpose of rapid disease recognition.
Lee et al. [34] developed a method based on a recurrent neural network through a large
number of experiments to automatically locate the infected area and extract relevant fea-
tures for disease classification, which solved the problem that the CNN model does not
need to pay attention to the visible part of the impact of plant diseases, but can make
use of irrelevant background and healthy plant parts for classification. Wang P. et al. [35]
proposed a deep learning model to coordinate attention efficiency networks to identify
different apple diseases. The model achieved a high recognition rate of 98.9% on the apple
disease dataset by integrating a coordinate attention module into EfficientNet.

3. Materials and Methods
3.1. Datasets

In this study, two datasets of potato leaf disease and tomato leaf disease were used to
test the performance of the model. Table 1 describes the distribution of the datasets.
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Table 1. Dataset image information and statistics.

Class Name Number

Potato disease leaf dataset

00 Early Blight 1628
01 Late Blight 1414
02 Healthy 1020

Tomato subset of Plant Village

00 Bacterial Spot 391
01 Early Blight 392
02 Late Blight 423
03 Leaf Mold 403
04 Septoria Leaf Spot 377
05 Spider Mites 415
06 Target Spot 413
07 Yellow Leaf Curl Virus 393
08 Mosaic Virus 393
09 Healthy 421

3.1.1. Potato Datasets

In this study, we used the potato leaf disease dataset [36], which marked three diseases
(early blight, late blight, and healthy) in detail. The dataset image consists of a detected
leaf and monochromatic background with a resolution of 256 × 256 × 3 pixels per photo.
The public dataset contains 3241 training set images, 416 validation set images, and 405 test
set images.

3.1.2. Tomato Datasets

In this study, we used a subset of tomatoes from Plant Village [37] for model evaluation.
This subset has detailed labeling of ten disease statuses. They are bacterial spot, early blight,
late blight, leaf mold, septoria leaf spot, spider mites, target spot, yellow leaf curl virus,
mosaic virus, and healthy. The dataset image consists of detected leaves and similar
backgrounds. Each image has a resolution of 256 × 256 × 3 pixels. We manually divided
the dataset into 3217 training set pictures, 402 validation set pictures, and 402 test set
pictures at a ratio of 8:1:1.

3.2. Image Preprocessing
3.2.1. Image Resizing

To ensure that the dataset images used in this study can be successfully input into
various network models during subsequent comparison experiments (networks such as
Swin Transformer have specific requirements on the input image size), the bilinear differ-
ence method [38] is used to adjust the image size. The bilinear interpolation is calculated
as follows: We want to bilinearly differ 2 × 2 pixels to 1 pixel point. Suppose that the
coordinates of this one pixel are (a,b), and the four pixels of 2 × 2 are Q11Q12Q21Q22. First,
we calculate the linear difference twice in the X-axis direction, and the equation is described
as follows.

f (a, b1) ≈
a− b

a2 − a1
f (Q11) +

a− a1

a2 − a1
f (Q21) (1)

f (a, b2) ≈
a2 − a
a2 − a1

f (Q12) +
a− a1

a2 − a1
f (Q22) (2)

Then, we make a linear difference in the Y-axis and we obtain f (a, b). The equation is de-
scribed below:

f (a, b) ≈ b2 − b
b2 − b1

f (Q12) +
a− a1

a2 − a1
f (Q22) (3)
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The original image size of the dataset used in this study was 256 × 256 × 3. After the
above bilinear interpolation operation, the image size was changed to 224 × 224 × 3,
and the number of channels was still three channels (red, green, and blue).

3.2.2. Data Augmentation

Agricultural datasets generally have insufficient training samples, so there will be
overfitting and underfitting phenomena when training deep learning models. This study
uses two methods to avoid these problems. Firstly, the number of training samples is
increased by data enhancement techniques. We use two data enhancement methods of
random horizontal and vertical flipping to increase the number of images. We set the
frequency at which the image is flipped to 0.5. Second, we will save the five models with
the lowest validation losses during training, and then select the best model as the test
model. Figure 1 shows some of the data-enhanced images.

Or

Original

Image

Resize

Data

augmentation

Early Blight Healthy Late Blight

256×256×3

224×224×3

(a)

Early Blight Healthy Late Blight Leaf Mold
Septoria

Leaf Spot

Spider Mites

256×256×3

Target Spot Mosaic Virus
Yellow Leaf

Curl Virus Bacterial Spot

224×224×3

(b)

Figure 1. Graphical representation of the datasets and data preprocessing. (a) Potato diseased leaves
dataset. (b) Tomato subset of Plant Village.

3.3. Method

In this section, we will elaborate on the design principles and implementation details
of the Critical Information Mining Network (CIMNet), as shown in Figure 2. CIMNet’s core
innovation is its successful integration of the Non-Local Attention Module (Non-Local) and
the Multi-scale Critical Information Fusion Module (MSCM), which significantly improves
the feature extraction capability of the ResNet network.

Specifically, to effectively capture global features, we embed Non-Local behind the
second and third layers of the ResNet network. This design enables CIMNet to more fully
understand the contextual information in the image, thereby increasing the richness and
accuracy of the feature representation. Next, we introduced MSCM after the third layer
of the model. This module, through a well-designed algorithm, deeply digs the effective
features in the shallow features, and integrates with the deep features, effectively reducing
the information loss in the process of feature extraction. Unlikw the existing multi-scale
feature fusion method, which fuses all shallow features, our multi-scale feature fusion
architecture only fuses shallow features of layers 0 and 2. This fusion method can well solve
the problem of declining recognition accuracy caused by increasing complexity in small
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sample datasets. In addition, to alleviate the degradation problem caused by the excessive
depth of the model, we used ResNet’s residual connection design. This design can not only
maintain the depth of the network but also improve the training stability and performance
of the model. Table 2 shows the configuration of CIMNet network parameters.

In this chapter, Section 3.3.1 mainly introduces the Non-Local Attention Module (Non-
Local), Section 3.3.2 introduces the Multi-scale Critical Information Fusion Module (MSCM),
and Section 3.3.3 mainly introduces the loss function used in model training.

(b) Non-Local Attention Module(Non-Local)
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Figure 2. The framework of our proposed method: (a) The Critical Information Mining Network
consists of the base ResNet, the Non-Local Attention Module (Non-Local), and the Multi-scale Critical
Information Fusion Module (MSCM). (b) Description of the designed Non-Local. (c) The basic
components of Key Information Extraction Network (KIB) in MSCM.

Table 2. Parameter setting of CIMNet.

Network Layer Kernel Size Number of Steps Output Dimension

Input - - (b, 3, 224, 224)
Conv2d 7 × 7 1 (b, 64, 112, 112)
Max pool 3 × 3 1 (b, 64, 56, 56)
Conv2d 3 × 3 2 (b, 64, 56, 56)
Conv2d 3 × 3 2 (b, 128, 28, 28)
Non-Local - 1 (b, 128, 28, 28)
Conv2d 3 × 3 2 (b, 256, 14, 14)
Non-Local - 1 (b, 256, 14, 14)
KIB - 1 (b, 256, 14, 14)
KIB - 1 (b, 256, 14, 14)
Conv2d 3 × 3 2 (b, 512, 7, 7)
Average Pool 7 × 7 1 (b, 512, 1, 1)
FC - - -
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3.3.1. Non-Local Attention Module (Non-Local)

Considering the limitations of the original ResNet network in extracting global fea-
tures, to compensate for this shortcoming, and inspired by the Non-Local mean method [39]
and non-local neural network [40], we cleverly integrate Non-Local into the overall network
architecture. This improvement enables the network to more fully understand the context
information in the image, which significantly improves the capability of feature representa-
tion, as shown in Figure 2b. The mathematical expression of the non-local attention feature
yi is as follows:

yi =
1
C(x) ∑ f (xi, xj)g(xj) (4)

where x represents the preprocessed feature map, and y is the output map with the same
scale as x. i represents the index of the output location where the response needs to be com-
puted, and j traverses all possible location indexes. The C(x) function is a normalized term,
which is realized by dividing the attention weight by element in this study. The calculated
yi can capture picture context information, that is, global features. Here is the formula for
calculating f

(
xi, xj

)
:

f (xi, xj) = θ(xi)
Tφ(xj) (5)

The function f
(
xi, xj

)
is used to calculate the similarity between position i and position

j in the feature graph x. θ(xi)
T means the 1 × 1 convolution of xi and transpose, φ(xj)

means the 1 × 1 convolution of xj and matrix multiplication of the two gives f
(
xi, xj

)
.

Function g(xj) computes the representation of the feature graph at position j. In this
study, we obtain it by applying 1 × 1 convolution to xj, and the specific expression is:

g(xj) = Wgxj (6)

where Wg denotes the weight of the 1 × 1 convolution.
A complete Non-Local module is described as follows:

zi = Wzyi + xi (7)

We carry out a 1 × 1 convolution operation on the Non-Local attention yi features
calculated by Equation (4) to achieve the dimensional alignment of yi and xi and then
introduce the residual join “+xi” operation. Residual joins allow us to insert Non-Local
into any model without destroying the original information. Wz represents the weight of
the 1 × 1 convolution.

By introducing Non-Local and defining the corresponding functions f and g, our model
can capture the non-local dependencies in the image more effectively, thus improving the
robustness and discriminability of the feature representation.

3.3.2. Multi-Scale Critical Information Fusion Module (MSCM)

Multi-scale feature fusion enriches the network’s deep feature information by com-
bining shallow features and deep features and improves the classification ability and
recognition accuracy of the model. However, we inevitably face the problem that in the
fusion process, shallow features may contain both invalid features and effective features,
and the effective features are what we need. To solve this problem, we designed the
innovative MSCM. MSCM has the following functions:

• Through the Key Information Extraction Module (KIB), the effective parts of shal-
low features are mined to improve the image recognition ability of the model in
complex scenes.

• The shallow information and deep information are integrated to enrich the deep
network feature information.

We combined two KIB modules to form a complete MSCM by designing an innovative
multi-scale architecture [41]. As shown in Figure 2c, each KIB module has two input
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features and one output feature. The input feature consists of deep feature Fi and shallow
feature Gi, and the output feature is the key feature information that integrates shallow
effective feature and deep feature. We set the output feature of the third layer of the
backbone network to be F0. To make better use of this feature information, we carry out
convolution and regularization operations on F and G and map them to the same feature
space. We define ψ as follows:

ψQ
i = FconvN(Gi) (8)

ψK
i = FconvN(Gi) (9)

ψV
i = α · FconvN(Gi)⊕ (1− α) · FconvN(Fi) (10)

FconvN indicates the dimension reduction operation, and α is set to 0.1. ψQ
i , ψK

i , and
ψV

i computations obtain the queries, keys, and inputs needed by the attention mechanism.
KIB explores the effective parts of shallow features and combines them with deep

features. The specific expression is as follows:

Fi+1 = Fconv
(
A
(
ψQ

i , ψK
i , ψV

i
)
+Fi

)
(11)

A denotes the attention mechanism, which consists of a combination of a multi-head
attention mechanism [42] and a single-layer MLP. Specifically, we use ψQ

i , ψK
i , and ψV

i as
the query, key, and input of the attention mechanism, and then determine the shallow
effective features after passing through the attention mechanism. “+Fi” stands for residual
connectivity. Finally, we use a convolutional layer Fconv for the above key features that
fuses the shallow valid features and deep features to increase the dimension of the fea-
tures after the attention mechanism, which makes the subsequent KIB modules use these
features smoothly.

3.3.3. Loss Function

In this study, the cross-entropy loss function CrossEntropyLoss is used as a loss
function to improve the network accuracy when solving the plant disease classification
problem. The cross-entropy loss function is commonly used to assess the gap between
the probability distribution predicted by the model and the true probability distribution.
Suppose there are two probability distributions p and q. The cross entropy of p through
q is:

H(p, q) = −∑
m

p(m)logq(m) (12)

Assuming that m denotes an event, then p(m) denotes the true probability of event m
occurring and q(m) denotes the predicted probability of event m occurring.

In the plant disease classification problem, the output of the model is usually a proba-
bility distribution, and we want this probability distribution to be as close as possible to
the true labeling distribution. By minimizing the cross-entropy loss function, we can adjust
the parameters of the model so that the predicted probability distribution of the model
gradually approaches the true label distribution.

4. Experimental Results and Discussion

This section focuses on discussing and analyzing the results of the experiments.
Section 4.1 describes our experimental environment, Section 4.2 describes the experimental
setup, Section 4.3 describes the comparative experiments on the two datasets, Section 4.4
describes the ablation experiments that we conducted, and in Section 4.5 we discuss and
analyze the predicted probability of the output of CIMNet and the other two excellent
models in the early blight pictures of potatoes.
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4.1. Experimental Environment

In this study, we performed single-card training using an NVIDIA A40. The NVIDIA
SMI version is 460.106.00, the driver version is 460.10.6.00, the CUDA version of the graphics
card is 11.2, the Torch version is 2.0.1, and the Torchvision version is 0.15.2. We implemented
all models in the PyTorch deep learning framework where all models were implemented.

4.2. Experimental Settings

The whole experiment is divided into three parts: the first part is image preprocessing,
the second part is model training, and the third part is model performance evaluation.
Section 3.2 focuses on the preprocessing part. Section 3.3.3 introduces the loss function in
model training. Therefore, in this section, we focus on the model training hyperparameters
and performance evaluation part. Our hyperparameters during model training are shown
in Table 3.

Table 3. Model training hyperparameters.

Parameter Value Description

Epoch 100 Number of complete training with all data from the
training set

Batch Size 32 Number of images in a batch
Optimizer SGD Minimizing the loss function
Scheduler MultiStepLR Adjusting the learning rate of the optimizer

Learning rate 0.0001 The parameters of the MultiStepLR

Loss function CrossEntropyLoss Measuring the difference between the value of predicted
and true

Model Performance Evaluation

In this study, we utilized three performance metrics, Top1 Accuracy, precision, and F1
score, to assess the effectiveness of the model. True positives (TPs) represent the number of
leaves correctly classified as infected. True negatives (TNs) represent the number of leaves
correctly classified as healthy. False positives (FPs) represent the number of healthy leaves
misclassified as infected. False negatives (FNs) represent the number of infected leaves
misclassified as healthy.

Top1 Accuracy indicates the accuracy with which the category with the highest probabil-
ity of prediction among all predictions matches the actual result. It measures the proportion
of predictions that the model is most likely to predict correctly given a sample. In this study,
we calculate the Top1 Accuracy of the proposed model on two datasets and it is calculated
as follows:

Top1 Accuracy =
TP + TN

TP + FN + FP + TN
(13)

Precision, also known as checking the accuracy, indicates the proportion of samples with
positive predictions that are positive. The formula for calculating precision is as follows:

Precision =
TP

TP + FP
(14)

The F1 score is a reconciled average of precision and Recall. It reflects the overall
performance of the model, especially when dealing with unbalanced data, and provides a
more comprehensive and fair evaluation metric. In this study, we calculated the F1 score of
the proposed model on two datasets, and the formula for the F1 score is as follows:

F1 score =
2× Precision× Recall

Precision + Recall
(15)
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The formula for the recall rate to be used in the above equation is as follows:

Recall =
TP

TP + FN
(16)

4.3. Comparative Experiments

We compare CIMNet with previous models including AlexNet, SqueezeNet [43], CF-
ViT [44], MobileNetV2 [45], and MobileNetV3 [46], which are based on convolutional neural net-
works. Pooling-based vision Transformer (PiT) [47], Transformer-iN-Transformer (TNT) [48],
LeViT [49], CoAtNet [50], Vision Transformer (ViT), and Swin Transformer [51] are also used.
We also compared CvT [52] and Mobile-Former [53] models based on CNN+Transformer
architecture.

In this section, the experimental results are analyzed in three parts. The first part
analyzes the disease recognition accuracy of the CIMNet model in a noisy environment,
the second part analyzes the model performance in a stable environment, and the third
part conducts a case study. To simulate the signal interference and noise problems that may
be encountered during image acquisition, we injected 10%, 20%, and 30% salt noise into
the test images, as shown in Figure 3. In this study, the model performance is measured
mainly by Top1 Accuracy in the noise test and by Top1 Accuracy and F1 score in the
stable environment.

Original Image
10% of salt

noise

20% of salt

noise

30% of salt

noise

Figure 3. Adding three proportions of salt noise to a picture of potato early blight separately.

4.3.1. Noise Environment Experiment

To verify the higher accuracy of our model compared to other models for recognition
in noisy environments, we tested CIMNet and other models in 10%, 20%, and 30% noise
environments, and the experimental results are shown in Table 4.

Our CIMNet demonstrates superior performance on the potato dataset compared to
traditional convolutional neural network (CNN) models. Specifically, CIMNet’s Top1 Accu-
racy improves by 0.061, 0.088, and 0.091 at 10%, 20%, and 30% noise levels, respectively. On
the tomato dataset, CIMNet also performs well, with accuracies improving by 0.059, 0.109,
and 0.056, respectively. Of particular interest is that, in the environment containing only
10% noise, CIMNet achieves recognition accuracies of 0.965 and 0.754 on the two datasets,
respectively, and these scores even exceed the test accuracies of some models in stable
environments. In addition, when the noise percentage increases to 30%, CIMNet achieves
an accuracy improvement of 0.091 compared to the best-performing AlexNet model. This
significant improvement demonstrates the importance of global feature extraction and
utilization for improving recognition accuracy in noisy environments.

Comparison experiments are conducted with the model of Transformer architecture.
On the potato dataset, CIMNet improves its Top1 Accuracy by 0.071, 0.066, and 0.054 in
10%, 20%, and 30% noise environments, respectively. On the tomato dataset, the accuracy
also improves by 0.009, 0.084, and 0.042, respectively. It is worth noting that, although the
Transformer model can, through the self-attention mechanism, extract global features,
CIMNet still improves by 0.042 over the best-performing CoAtNet in a 30% noisy environ-
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ment. This result further demonstrates the robustness and effectiveness of our model in
noisy environments.

Comparing CIMNet and two models based on CNN+Transformer architecture, we
can see that the recognition accuracy of CvT is significantly different from CIMNet in three
different proportions of noisy environments, and even reaches a precision difference of
0.347 in the potato dataset with a 30% noise environment. We believe this may be due to
the CvT model dividing images into nonoverlapping image blocks and then performing
feature extraction, which is suitable for high-precision images. The two datasets used in
this study have lower resolutions. The recognition rate of the Mobile-Former model on
two datasets decreased less compared to CIMNet, with a maximum of only 0.092. This fully
demonstrates the importance of the self-attention mechanism. The reason why CIMNet
has higher accuracy than Mobile-Former may be due to our proposed MSCM architecture,
which can fully utilize shallow key features to enrich deep features, thereby achieving the
goal of optimizing feature extraction. From the comparison of these two models, it can be
found that the MSCM architecture in CIMNet has unique feature extraction capabilities.

As shown in Figure 4, we can see that under different proportions of noisy environ-
ments, our model has a significant improvement compared to AlexNet, which has the
highest accuracy among CNN methods, and CoAtNet, which has the highest recognition
accuracy among Transformer architectures.

We can see from the ROC curve in Figure 5 that in a 20% noise environment, CIMNet
performs well in the overall classification of the two types of diseases in the potato dataset.
The classification of leaf mold and mosaic virus diseases in the tomato dataset is good,
while the classification of the other categories is poor. Overall, the classification effect
is good.

From the confusion matrix (Figures 6 and 7), it can be seen that the recognition ac-
curacy of CIMNet varies for different diseases on the two datasets. In the potato dataset,
the recognition rates of early blight and late blight in a stable environment can reach 0.979
and 0.987. However, as noise increases, the recognition rates of both diseases in a 30%
environment drop to 0.889 and 0.765, with a significant decrease in the recognition rate of
late blight. This indicates that our model has poor recognition performance for late blight
in high-noise environments. In the tomato dataset, our model has poor recognition perfor-
mance for spider mites and leaf mold diseases in a 10% noise environment, while other
diseases have good recognition performance. However, as noise increases, the recognition
performance of other diseases decreases. We believe this may be due to the similarity of
image features of tomato diseases. Overall, CIMNet has high recognition accuracy for
different diseases.
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Figure 4. Experimental comparison: CIMNet is our proposed model, AlexNet is the best-performing
model in CNN, and CoAtNet is the best-performing model in the Transformer architecture. (a) Exper-
imental results on the potato dataset. (b) Experimental results on the tomato dataset.
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(a) ROC: Potato (b) ROC: Tomato

Figure 5. ROC curves of potato dataset and tomato dataset under 20% noise environment. (a) ROC
curve of the potato dataset. (b) ROC curve of tomato dataset.

(a) Potato (0%) (b) Potato (10%)

(c) Potato (20%) (d) Potato (30%)

Figure 6. The confusion matrix of the potato dataset. (a) Stable environment. (b) 10% noise environ-
ment. (c) 20% noise environment. (d) 30% noise environment.
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Table 4. Experimental results for the potato diseased leaf dataset and the tomato diseased leaf dataset
in a noisy environment. Results for the potato diseased leaf dataset are from [54] (except for CF-ViT,
CvT, and Mobile-Former models). Marked in blue are sub-optimal. The optimal experimental results
are marked in bold.

Potato Top1-Acc Tomato Top1-Acc
Models

10% 20% 30% 10% 20% 30%

CNNS

AlexNet 0.904 0.835 0.775 0.695 0.534 0.380
SqueezeNet1_0 0.667 0.491 0.430 0.411 0.231 0.138
SqueezeNet1_1 0.506 0.494 0.491 0.298 0.211 0.167
MobileNetV2 0.383 0.257 0.252 0.254 0.157 0.118

MobileNetV3_small 0.412 0.400 0.395 0.331 0.229 0.175

Transformer based models

PiT-s 0.889 0.844 0.793 0.743 0.545 0.372
PiT-b 0.886 0.857 0.812 0.610 0.398 0.312

LeViT-128 0.640 0.447 0.435 0.223 0.160 0.145
LeViT-256 0.432 0.407 0.400 0.374 0.244 0.131

ViT 0.768 0.647 0.509 0.635 0.441 0.325
CF-ViT (η = 1.0) 0.874 0.811 0.761 0.687 0.496 0.330

TNT 0.894 0.830 0.778 0.677 0.511 0.365
CoAtNet 0.862 0.721 0.578 0.745 0.559 0.394

Swin Transformer-small 0.810 0.588 0.477 0.534 0.417 0.355
Swin Transformer-base 0.869 0.768 0.654 0.622 0.405 0.253

CNN+Transformer

CvT 0.796 0.631 0.519 0.633 0.431 0.249
Mobile-Former 0.895 0.831 0.798 0.712 0.511 0.381

Our model

CIMNet 0.965 0.923 0.866 0.754 0.643 0.436

(a) Tomato (0%) (b) Tomato (10%)

Figure 7. Cont.
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(c) Tomato (20%) (d) Tomato (30%)

Figure 7. The confusion matrix of the tomato dataset. (a) Stable environment. (b) 10% noise
environment. (c) 20% noise environment. (d) 30% noise environment.

4.3.2. Stable Environment Experiment

To verify that our model has excellent recognition accuracy even in stable environ-
ments, we compared CIMNet with previous methods, as shown in Table 5.

Table 5. Experimental results for the potato diseased leaf dataset and the tomato diseased leaf dataset
in a stabilized environment. Results for the potato-diseased leaf dataset were obtained from [37].
Marked in blue are sub-optimal. The optimal experimental results are marked in bold.

Models Complexity
(Gmac)

Parameters
(M)

Top1-Acc
Potato

F1 Score
Potato

Top1-Acc
Tomato

F1 Score
Tomato

CNNS

AlexNet 0.71 57.16 0.958 0.957 0.939 0.938
SqueezeNet1_0 1.47 1.25 0.965 0.966 0.930 0.930
SqueezeNet1_1 0.27 1.24 0.973 0.972 0.939 0.939
MobileNetV2 0.32 3.4 0.978 0.977 0.971 0.971
MobileNetV3_small 0.16 1.77 0.973 0.972 0.977 0.977

Transformer based models

PiT-s 2.42 23.46 0.916 0.915 0.891 0.891
PiT-b 10.54 73.76 0.894 0.894 0.754 0.753
LeViT-128 0.37 8.46 0.911 0.910 0.978 0.978
LeViT-256 1.05 17.89 0.926 0.925 0.970 0.970
ViT 1.36 1.36 0.852 0.851 0.766 0.766
CF-ViT (η = 1.0) 4.00 29.8 0.971 0.971 0.914 0.914
TNT 13.4 65.24 0.926 0.925 0.758 0.758
CoAtNet 11.51 10.5 0.970 0.969 0.916 0.916
Swin Transformer-small 8.51 48.75 0.924 0.921 0.795 0.795
Swin Transformer-base 15.13 86.62 0.867 0.869 0.850 0.850

CNN+Transformer

CvT 4.53 19.98 0.932 0.931 0.855 0.855
Mobile-Former 0.34 11.42 0.974 0.974 0.969 0.969

Our model

CIMNet 2.18 12.64 0.986 0.986 0.980 0.980
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Comparing our model to mainstream methods, on the potato dataset, our model
improves by 0.008 on Top1 Accuracy and F1 score. On the tomato dataset, our model also
achieves some performance improvement of 0.002. It is worth noting that compared to
the huge improvement in recognition accuracy in noisy environments, the performance
of our model improves less in stable environments, and we believe that this is mainly
because the CIMNet model’s advantage over other models mainly lies in feature extraction
in noisy environments, i.e., the Non-Local Attention Module and the Multi-scale Critical
Information Fusion Module focus more on the contextual dependency of the images. It is
undeniable that CIMNet still achieves the best model performance in stable environments.

Our model has increased in complexity compared to the CNN architecture. Compared
to MobileNetV2, which has the best recognition performance, it is 1.86 higher, but the
recognition accuracy is 0.8% higher, which is a huge improvement in a stable environment.
Comparing the models of CIMNet and Transformer architectures results in lower complex-
ity. Even though models like LeViT have slightly lower complexity than CIMNet, their
recognition accuracy does decrease. Compared with the CNN+Transformer architecture
model, CIMNet has lower complexity and higher recognition accuracy. From the above
analysis, it can be concluded that CIMNet is the optimal model in balancing complexity
and recognition accuracy.

4.4. Ablation Experiment

To verify the impact of our Non-Local and MSCM on the performance, we performed
ablation experiments on the potato and tomato datasets using the same random number of
seeds and the same loss function CrossEntropyloss, and the results are shown in Table 6.
We used the Top1 Accuracy as the test criterion and the noise environment using a 20%
scale. Here, “w/o Non-Local” means remove Non-Local module; at this time this is our
model for adding a multi-scale key information fusion module to the original ResNet for
feature extraction. “w/o MSCM” means removing the MSCM; at this time it becomes
adding a Non-Local module to ResNet for feature extraction. “w/o Non-Local + MSCM”
means to remove the Non-Local and MSCM, which means using the original ResNet for
feature extraction.

Table 6. Model performance when different components are turned off.

Model
Noisy Environment Stabilized Environment

Potato Tomato Potato Tomato

CIMNet 0.923 0.643 0.986 0.980
w/o Non-Local 0.893 0.481 0.977 0.973
w/o MSCM 0.835 0.358 0.981 0.977
w/o Non-Local + MSCM 0.793 0.275 0.975 0.972

From Table 6, we can observe that in noisy environments, when the Non-Local module
is removed, there is a significant decrease of 0.03 and 0.162 in the Top1 Accuracy. Under sta-
ble environmental conditions, there are also decreases of 0.009 and 0.007 in Top1 Accuracy.
This data change indicates that the Non-Local module, through its unique self-attention
mechanism, can effectively extract global attention, which in turn helps the network to
better utilize context dependence for object recognition in noisy environments. Even in
stable environments, the global feature extraction of the Non-Local module gives a large
performance improvement in image recognition.

Through the experimental results in Table 6, we can find that in the noisy environment,
the decrease of Top1 Accuracy after removing the MSCM is on the large side, specifically
0.088 and 0.285, which indicates that the innovative method of fusing the shallow effective
features and the deeper features is of great significance for image recognition in noisy
environments. Meanwhile, there is also a reduction of 0.005 and 0.003 in Top1 Accuracy
in a stable environment. This indicates that the innovative Multi-scale Critical Informa-



Symmetry 2024, 16, 652 17 of 21

tion Fusion Module contributes prominently to image recognition in noisy environments,
and the module is also effective in stable environments.

After removing Non-Local + MSCM, the CIMNet model becomes raw ResNet at this
point, and there is a significant decrease in accuracy in both noisy and stable environments.
In the noisy environment especially, it shows steep decreases of 0.13 and 0.368. This
indicates that our Non-Local and MSCM are useful for crop disease recognition in both
noisy and stable environments, especially in noisy environments.

4.5. Model Performance Analysis

We selected an early blight picture from the potato disease dataset (shown in Figure 3).
The image was fed into three networks, namely CIMNet, AlexNet, and CoAtNet, and then
the early blight prediction probability values output by Softmax were analyzed to verify
the performance of our model. Among them, AlexNet is the model with the highest
recognition accuracy in the CNN method and CoAtNet is the model with the highest
recognition accuracy in Transformer architecture.

We can see from Figure 8 that in the stable environment, the predicted probability
value of CIMNet output is 0.96, and the predicted probability values of AlexNet and
CoAtNet are 0.92 and 0.87. All three classify the image as early blight, and we can see
that the classification is correct, and the predicted probability values of the output are
very high. This shows that all three models have high recognition performance in a stable
environment. In a 10% noise environment, the predicted probability value of CIMNet
output is 0.88, which classifies the image as early blight. The predicted probability values
of AlexNet and CoAtNet models are 0.66 and 0.63, and both of them classify the image
as early blight. At this point, all three models have the same classification results and are
correct, but the predicted probability value of early blight for CIMNet is much higher than
that of the other two models, by 0.22 and 0.25, respectively. In a 20% noise environment,
CIMNet outputs a predicted probability value of 0.91, which classifies the image as early
blight. The AlexNet and CoAtNet models output a predicted probability value of 0.35
and 0.74. AlexNet considers the leaf healthy and outputs a probability value of 0.51, thus
classifying it incorrectly. CoAtNet classifies it correctly. This shows that AlexNet does
not recognize noise-contaminated images well without making full use of global features,
and incorrectly classified early blight leaves as healthy in this test due to the interference of
salt noise. CIMNet and CoAtNet utilize global features to give excellent recognition results
in the case of moderate noise contamination. In the test results in a 30% noise environment
we can see that CIMNet classifies the leaf correctly with an output predictive probability
value of 0.69. CoAtNet and AlexNet classify the leaf incorrectly. CoAtNet and AlexNet
incorrectly recognize the leaf as a healthy leaf with an output predictive probability value
of 0.55 and 0.63. The results show that our Multi-scale Critical Information Fusion Module
performs well in a heavily noise-polluted environment.

Through the above analysis, we know that CIMNet has obvious advantages over
the CNN and Transformer architecture models in noisy environments, and improves the
recognition of crop diseases in complex environments significantly.
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Figure 8. Predicted probability values of early blight for CIMNet, AlexNet, and CoAtNet.

5. Conclusions

In this paper, we address the problem that agricultural experts focus on crop disease
recognition in stable environments and neglect research in noisy environments. A Critical
Information Mining Model (CIMNet) is proposed. CIMNet introduces a Non-Local Atten-
tion Module (Non-Local) to better capture the image context information, which makes
up for the shortcoming of under-utilizing the global features of traditional convolutional
neural networks. An innovative Multi-scale Critical Information Fusion Module (MSCM)
is used to fuse shallow critical features with deeper features, allowing the model to capture
both the detail and texture information contained in the low-level features as well as the
semantic and contextual information in the high-level features, which helps the network
to better recognize and detect in noisy environments. The experimental results show that
the CIMNet network can achieve a maximum recognition accuracy of 0.965 in a 10% noise
environment, which is significantly better than other comparative models. In a stable
environment, the recognition rate reached 0.986. CIMNet can provide technical support
for crop disease identification. There are still many areas worth further research in the
identification of crop diseases such as combining multi-source data (such as hyperspectral
images, infrared images, etc.) to provide more comprehensive disease information. On
can also utilize multimodal learning techniques to combine image data with other types of
data (such as meteorological data, soil data, etc.) for model training. Finally, we can reduce
model complexity while maintaining robustness, making it easier to integrate into daily
life. These issues are still unresolved in crop disease identification work and will be the
focus of further research.
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