Enhancing Integer Time Series Model Estimations through Neural Network-Based Fuzzy Time Series Analysis
Abstract
:1. Introduction
2. Developing the Forecasting Models
2.1. Preparing Data
2.2. Setup of a Neural Network
2.3. Model Selection and Evaluation
3. Fuzzy Time Series Models Utilizing Neural Networks
- Defining and partitioning the universe of discourse: According to the problem domain of NSINAR(1)’ series, the universe of discourse for observations, U = [starting, ending], is defined. After the length of the intervals, l, is determined, U can be partitioned into equal-length intervals and their corresponding midpoints : respectively.
- Defining fuzzy sets for observations: Each linguistic observation, , can be defined by the intervals , where
- Establishing the fuzzy relationship (neural network training): The fuzzy associations in these FLRs were built (or trained) using a backpropagation neural network. Index i served as the input, and index j served as the appropriate output for each FLR, . These FLRs became the input and output patterns for neural network training.
- Forecasting: A description of the hybrid and basic models can be found below. The basic model uses a neural network methodology to forecast each piece of data, while the hybrid model uses the same neural network approach to forecast the known patterns together with a simple strategy to anticipate the unknown patterns.Model 1 (basic mode): Assume . We chose as the forecast input in order to make the calculations easier. Assume that is the neural network’s output. The hazy forecast is , we say. In other words,Model 2 (hybrid mode): Assume . If is a recognized pattern, the basic model is used to obtain the fuzzy forecast. If is an unknown pattern, then we merely take Ai as the fuzzily predicted value for , in accordance with Chen’s model [6]. That is,
- Defuzzifying: No matter whatever model is used, the defuzzified forecast is always equal to the fuzzy forecast’s midpoint. Assume is the fuzzy prediction for F(t). The forecast that has been defuzzed corresponds to ’s middle, i.e.,For additional details on this methodology, see [36]. Therefore, the forecast observations that were obtained from the generated realizations from the NSINAR(1) process—known as the “input values”—are the “output values” of this approach.
4. The New Skew INAR(1) Model
5. Spectral and Bispectral Density Functions
6. Estimations of SDF, BDF, and NBDF
6.1. Discussion of Results
- Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13 illustrate the preference for the hybrid model, followed by the basic model, over the input values in estimating the SDF, BDF, and NBDF, as the hybrid model’s outputs had the lowest mean-squared error (refer to [32] and [33] to find out how to compute the MSE). In general, this indicates that the neural network-based FTS (whether used with the basic model or the hybrid model) significantly improved the smoothing of density functions’ estimates.
6.2. Empirical Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, Q.; Chissom, B.S. Fuzzy time series and its models. Fuzzy Sets Syst. 1993, 54, 269–277. [Google Scholar] [CrossRef]
- Huarng, K. Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Syst. 2001, 123, 387–394. [Google Scholar] [CrossRef]
- Yu, T.H. A refined fuzzy time-series model for forecasting. Phys. A Stat. Mech. Its Appl. 2005, 346, 657–681. [Google Scholar] [CrossRef]
- Huarng, K.; Yu, T.H. Ratio-based lengths of intervals to improve enrollment forecasting. In Proceedings of the Ninth International Conference on Fuzzy Theory and Technology, Cary, NC, USA, 23 September 2003. [Google Scholar]
- Huarng, K.; Yu, T.H. A dynamic approach to adjusting lengths of intervals in fuzzy time series forecasting. Intell. Data Anal. 2004, 8, 3–27. [Google Scholar] [CrossRef]
- Chen, S.M. Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst. 1996, 81, 311–319. [Google Scholar] [CrossRef]
- Chen, S.M. Forecasting enrollments based on high-order fuzzy time series. Cybern. Syst. 2002, 33, 1–16. [Google Scholar] [CrossRef]
- Hwang, J.R.; Chen, S.M.; Lee, C.H. Handling forecasting problems using fuzzy time series. Fuzzy Sets Syst. 1998, 100, 217–228. [Google Scholar] [CrossRef]
- Song, Q.; Chissom, B.S. Forecasting enrollments with fuzzy time series-Part II. Fuzzy Sets Syst. 1994, 62, 1–8. [Google Scholar] [CrossRef]
- Huarng, K. Heuristic models of fuzzy time series for forecasting. Fuzzy Sets Syst. 2001, 123, 369–386. [Google Scholar] [CrossRef]
- Kitchens, F.L.; Johnson, J.D.; Gupta, J.N. Predicting automobile insurance losses using artificial neural networks. In Neural Networks in Business: Techniques and Applications; IGI Global: Hershey, PA, USA, 2002; pp. 167–187. [Google Scholar]
- Widrow, B.; Rumelhart, D.E.; Lehr, M.A. Neural networks: Applications in industry, business and science. Commun. ACM 1994, 37, 93–106. [Google Scholar] [CrossRef]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- McKenzie, E. Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Adv. Appl. Probab. 1986, 18, 679–705. [Google Scholar] [CrossRef]
- Al-Osh, M.A.; Aly, E.A.A. First order autoregressive time series with negative binomial and geometric marginals. Commun. Stat.-Theory Methods 1992, 21, 2483–2492. [Google Scholar] [CrossRef]
- Alzaid, A.; Al-Osh, M. First-order integer-valued autoregressive (INAR(1)) process: Distributional and regression properties. Stat. Neerl. 1988, 42, 53–61. [Google Scholar] [CrossRef]
- Bakouch, H.S.; Ristić, M.M. Zero truncated Poisson integer-valued AR(1) model. Metrika 2010, 72, 265–280. [Google Scholar] [CrossRef]
- Alzaid, A.A.; Al-Osh, M.A. Some autoregressive moving average processes with generalized Poisson marginal distributions. Ann. Inst. Stat. Math. 1993, 45, 223–232. [Google Scholar] [CrossRef]
- Jin-Guan, D.; Yuan, L. The integer-valued autoregressive (INAR(p)) model. J. Time Ser. Anal. 1991, 12, 129–142. [Google Scholar] [CrossRef]
- Aly, E.A.A.; Bouzar, N. Explicit stationary distributions for some Galton-Watson processes with immigration. Stoch. Model. 1994, 10, 499–517. [Google Scholar] [CrossRef]
- Ristić, M.M.; Nastić, A.S.; Miletić, A.V. A geometric time series model with dependent Bernoulli counting series. J. Time Ser. Anal. 2013, 34, 466–476. [Google Scholar] [CrossRef]
- Latour, A. Existence and stochastic structure of a non-negative integer-valued autoregressive process. J. Time Ser. Anal. 1998, 19, 439–455. [Google Scholar] [CrossRef]
- Ristić, M.M.; Bakouch, H.S.; Nastić, A.S. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plan. Inference 2009, 139, 2218–2226. [Google Scholar] [CrossRef]
- Ristić, M.M.; Nastić, A.S.; Bakouch, H.S. Estimation in an integer-valued autoregressive process with negative binomial marginals (NBINAR(1)). Commun. Stat.-Theory Methods 2012, 41, 606–618. [Google Scholar] [CrossRef]
- Ristić, M.M.; Nastić, A.S.; Jayakumar, K.; Bakouch, H.S. A bivariate INAR(1) time series model with geometric marginals. Appl. Math. Lett. 2012, 25, 481–485. [Google Scholar] [CrossRef]
- Nastić, A.S.; Ristić, M.M. Some geometric mixed integer-valued autoregressive (INAR) models. Stat. Probab. Lett. 2012, 82, 805–811. [Google Scholar] [CrossRef]
- Nastić, A.S.; Ristić, M.M.; Bakouch, H.S. A combined geometric INAR(p) model based on negative binomial thinning. Math. Comput. Model. 2012, 55, 1665–1672. [Google Scholar] [CrossRef]
- Gabr, M.M.; El-Desouky, B.S.; Shiha, F.A.; El-Hadidy, S.M. Higher Order Moments, Spectral and Bispectral Density Functions for INAR(1). Int. J. Comput. Appl. 2018, 182, 0975–8887. [Google Scholar]
- Miletić, A.V.; Ristić, M.M.; Nastić, A.S.; Bakouch, H.S. An INAR(1) model based on a mixed dependent and independent counting series. J. Stat. Comput. Simul. 2018, 88, 290–304. [Google Scholar] [CrossRef]
- Teamah, A.A.M.; Faied, H.M.; El-Menshawy, M.H. Using the Fuzzy Time Series Technique to Improve the Estimation of the Spectral Density Function. J. Stat. Adv. Theory Appl. 2018, 19, 151–170. [Google Scholar] [CrossRef]
- Teamah, A.A.M.; Faied, H.M.; El-Menshawy, M.H. Effect of Fuzzy Time Series Technique on Estimators of Spectral Analysis. Recent Adv. Math. Res. Comput. Sci. 2022, 6, 29–38. [Google Scholar]
- El-menshawy, M.H.; Teamah, A.A.M.; Abu-Youssef, S.E.; Faied, H.M. Higher Order Moments, Cumulants, Spectral and Bispectral Density Functions of the ZTPINAR(1) Process. Appl. Math 2022, 16, 213–225. [Google Scholar]
- El-Morshedy, M.; El-Menshawy, M.H.; Almazah, M.M.A.; El-Sagheer, R.M.; Eliwa, M.S. Effect of fuzzy time series on smoothing estimation of the INAR(1) process. Axioms 2022, 11, 423. [Google Scholar] [CrossRef]
- Alqahtani, K.M.; El-Menshawy, M.H.; Eliwa, M.S.; El-Morshedy, M.; EL-Sagheer, R.M. Fuzzy Time Series Inference for Stationary Linear Processes: Features and Algorithms With Simulation. Appl. Math 2023, 17, 405–416. [Google Scholar]
- El-Menshawy, M.H.; Teamah, A.E.M.A.; Eliwa, M.S.; Al-Essa, L.A.; El-Morshedy, M.; EL-Sagheer, R.M. A New Statistical Technique to Enhance MCGINAR (1) Process Estimates under Symmetric and Asymmetric Data: Fuzzy Time Series Markov Chain and Its Characteristics. Symmetry 2023, 15, 1577. [Google Scholar] [CrossRef]
- Huarng, K.; Yu, T.H. The application of neural networks to forecast fuzzy time series. Phys. A Stat. Mech. Its Appl. 2006, 363, 481–491. [Google Scholar] [CrossRef]
- Egrioglu, E.; Aladag, C.H.; Yolcu, U.; Uslu, V.R.; Basaran, M.A. A new approach based on artificial neural networks for high order multivariate fuzzy time series. Expert Syst. Appl. 2009, 36, 10589–10594. [Google Scholar] [CrossRef]
- Yu, T.H.K.; Huarng, K.H. A neural network-based fuzzy time series model to improve forecasting. Expert Syst. Appl. 2010, 37, 3366–3372. [Google Scholar] [CrossRef]
- Egrioglu, E.; Aladag, C.H.; Yolcu, U. Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks. Expert Syst. Appl. 2013, 40, 854–857. [Google Scholar] [CrossRef]
- Rahman, N.H.A.; Lee, M.H.; Suhartono; Latif, M.T. Artificial neural networks and fuzzy time series forecasting: An application to air quality. Qual. Quant. 2015, 49, 2633–2647. [Google Scholar] [CrossRef]
- Bas, E.; Grosan, C.; Egrioglu, E.; Yolcu, U. High order fuzzy time series method based on pi-sigma neural network. Eng. Appl. Artif. Intell. 2018, 72, 350–356. [Google Scholar] [CrossRef]
- Sadaei, H.J.; Silva, P.C.; Guimaraes, F.G.; Lee, M.H. Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series. Energy 2019, 175, 365–377. [Google Scholar] [CrossRef]
- Koo, J.W.; Wong, S.W.; Selvachandran, G.; Long, H.V.; Son, L.H. Prediction of Air Pollution Index in Kuala Lumpur using fuzzy time series and statistical models. Air Qual. Atmos. Health 2020, 13, 77–88. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, F.; Pedrycz, W.; Yang, X.; Wang, J.; Liu, S. Building trend fuzzy granulation-based LSTM recurrent neural network for long-term time-series forecasting. IEEE Trans. Fuzzy Syst. 2021, 30, 1599–1613. [Google Scholar] [CrossRef]
- Nasiri, H.; Ebadzadeh, M.M. MFRFNN: Multi-functional recurrent fuzzy neural network for chaotic time series prediction. Neurocomputing 2022, 507, 292–310. [Google Scholar] [CrossRef]
- Rathipriya, R.; Abdul Rahman, A.A.; Dhamodharavadhani, S.; Meero, A.; Yoganandan, G. Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model. Neural Comput. Appl. 2023, 35, 1945–1957. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.P. Business forecasting with artificial neural networks: An overview. In Neural Networks in Business Forecasting;2004; pp. 1–22. IGI Global: Hershey, PA, USA, 2004; pp. 1–22. [Google Scholar]
- Indro, D.C.; Jiang, C.X.; Patuwo, B.; Zhang, G. Predicting mutual fund performance using artificial neural networks. Omega 1999, 27, 373–380. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; McClelland, J.L.; Parallel Distributed Processing Research Group, C. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Hornik, K. Some new results on neural network approximation. Neural Netw. 1993, 6, 1069–1072. [Google Scholar] [CrossRef]
- Armstrong, J.S. Principles of Forecasting: A Handbook for Researchers and Practitioners; Springer: Berlin/Heidelberg, Germany, 2001; Volume 30. [Google Scholar]
- Zhang, G.P. Neural Networks in Business Forecasting; IGI Global: Hershey, PA, USA, 2004. [Google Scholar]
- Song, Q.; Chissom, B.S. Forecasting enrollments with fuzzy time series—Part I. Fuzzy Sets Syst. 1993, 54, 1–9. [Google Scholar] [CrossRef]
- Bourguignon, M.; Vasconcellos, K.L. A new skew integer valued time series process. Stat. Methodol. 2016, 31, 8–19. [Google Scholar] [CrossRef]
- Eduarda Da Silva, M.; Oliveira, V.L. Difference equations for the higher-order moments and cumulants of the INAR (1) model. J. Time Ser. Anal. 2010, 25, 317–333. [Google Scholar] [CrossRef]
- Rao, T.S.; Gabr, M.M. An Introduction to Bispectral Analysis and Bilinear Time Series Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1984; Volume 24. [Google Scholar]
- Daniell, P.J. Discussion on symposium on autocorrelation in time series. J. R. Stat. Soc. 1946, 8, 88–90. [Google Scholar]
0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 18.956 | 18.759 | 18.196 | 17.344 | 16.301 | 15.167 | 14.024 | 12.932 | 11.925 | 11.022 | 10.228 | 9.541 | 8.954 | 8.459 | 8.049 | 7.715 | 7.451 | 7.252 | 7.112 | 7.030 | 7.002 | |
0.05 | 18.759 | 18.379 | 17.672 | 16.726 | 15.642 | 14.508 | 13.397 | 12.354 | 11.405 | 10.562 | 9.827 | 9.194 | 8.657 | 8.208 | 7.839 | 7.542 | 7.312 | 7.144 | 7.034 | 6.979 | 6.979 | |
0.10 | 18.196 | 17.672 | 16.874 | 15.890 | 14.814 | 13.721 | 12.671 | 11.697 | 10.821 | 10.047 | 9.376 | 8.802 | 8.317 | 7.915 | 7.587 | 7.328 | 7.132 | 6.995 | 6.914 | 6.887 | 6.914 | |
0.15 | 17.344 | 16.726 | 15.890 | 14.918 | 13.888 | 12.864 | 11.893 | 11.001 | 10.203 | 9.502 | 8.897 | 8.382 | 7.950 | 7.594 | 7.308 | 7.085 | 6.923 | 6.816 | 6.763 | 6.763 | 6.816 | |
0.20 | 16.301 | 15.642 | 14.814 | 13.888 | 12.929 | 11.990 | 11.106 | 10.300 | 9.582 | 8.954 | 8.414 | 7.956 | 7.574 | 7.263 | 7.016 | 6.829 | 6.698 | 6.621 | 6.595 | 6.621 | 6.698 | |
0.25 | 15.167 | 14.508 | 13.721 | 12.864 | 11.990 | 11.141 | 10.347 | 9.625 | 8.984 | 8.425 | 7.946 | 7.542 | 7.207 | 6.938 | 6.728 | 6.574 | 6.473 | 6.423 | 6.423 | 6.473 | 6.574 | |
0.30 | 14.024 | 13.397 | 12.671 | 11.893 | 11.106 | 10.347 | 9.638 | 8.996 | 8.427 | 7.932 | 7.509 | 7.154 | 6.863 | 6.632 | 6.457 | 6.334 | 6.261 | 6.237 | 6.261 | 6.334 | 6.457 | |
0.35 | 12.932 | 12.354 | 11.697 | 11.001 | 10.300 | 9.625 | 8.996 | 8.426 | 7.922 | 7.485 | 7.113 | 6.803 | 6.552 | 6.356 | 6.212 | 6.118 | 6.071 | 6.071 | 6.118 | 6.212 | 6.356 | |
0.40 | 11.925 | 11.405 | 10.821 | 10.203 | 9.582 | 8.984 | 8.427 | 7.922 | 7.476 | 7.091 | 6.764 | 6.495 | 6.280 | 6.116 | 6.001 | 5.932 | 5.909 | 5.932 | 6.001 | 6.116 | 6.280 | |
0.45 | 11.022 | 10.562 | 10.047 | 9.502 | 8.954 | 8.425 | 7.932 | 7.485 | 7.091 | 6.751 | 6.465 | 6.232 | 6.049 | 5.914 | 5.825 | 5.781 | 5.781 | 5.825 | 5.914 | 6.049 | 6.232 | |
0.50 | 10.228 | 9.827 | 9.376 | 8.897 | 8.414 | 7.946 | 7.509 | 7.113 | 6.764 | 6.465 | 6.216 | 6.015 | 5.861 | 5.753 | 5.688 | 5.667 | 5.688 | 5.753 | 5.861 | 6.015 | 6.216 | |
0.55 | 9.541 | 9.194 | 8.802 | 8.382 | 7.956 | 7.542 | 7.154 | 6.803 | 6.495 | 6.232 | 6.015 | 5.843 | 5.716 | 5.632 | 5.590 | 5.590 | 5.632 | 5.716 | 5.843 | 6.015 | 6.232 | |
0.60 | 8.954 | 8.657 | 8.317 | 7.950 | 7.574 | 7.207 | 6.863 | 6.552 | 6.280 | 6.049 | 5.861 | 5.716 | 5.613 | 5.551 | 5.531 | 5.551 | 5.613 | 5.716 | 5.861 | 6.049 | 6.280 | |
0.65 | 8.459 | 8.208 | 7.915 | 7.594 | 7.263 | 6.938 | 6.632 | 6.356 | 6.116 | 5.914 | 5.753 | 5.632 | 5.551 | 5.511 | 5.511 | 5.551 | 5.632 | 5.753 | 5.914 | 6.116 | 6.356 | |
0.70 | 8.049 | 7.839 | 7.587 | 7.308 | 7.016 | 6.728 | 6.457 | 6.212 | 6.001 | 5.825 | 5.688 | 5.590 | 5.531 | 5.511 | 5.531 | 5.590 | 5.688 | 5.825 | 6.001 | 6.212 | 6.457 | |
0.75 | 7.715 | 7.542 | 7.328 | 7.085 | 6.829 | 6.574 | 6.334 | 6.118 | 5.932 | 5.781 | 5.667 | 5.590 | 5.551 | 5.551 | 5.590 | 5.667 | 5.781 | 5.932 | 6.118 | 6.334 | 6.574 | |
0.80 | 7.451 | 7.312 | 7.132 | 6.923 | 6.698 | 6.473 | 6.261 | 6.071 | 5.909 | 5.781 | 5.688 | 5.632 | 5.613 | 5.632 | 5.688 | 5.781 | 5.909 | 6.071 | 6.261 | 6.473 | 6.698 | |
0.85 | 7.252 | 7.144 | 6.995 | 6.816 | 6.621 | 6.423 | 6.237 | 6.071 | 5.932 | 5.825 | 5.753 | 5.716 | 5.716 | 5.753 | 5.825 | 5.932 | 6.071 | 6.237 | 6.423 | 6.621 | 6.816 | |
0.90 | 7.112 | 7.034 | 6.914 | 6.763 | 6.595 | 6.423 | 6.261 | 6.118 | 6.001 | 5.914 | 5.861 | 5.843 | 5.861 | 5.914 | 6.001 | 6.118 | 6.261 | 6.423 | 6.595 | 6.763 | 6.914 | |
0.95 | 7.030 | 6.979 | 6.887 | 6.763 | 6.621 | 6.473 | 6.334 | 6.212 | 6.116 | 6.049 | 6.015 | 6.015 | 6.049 | 6.116 | 6.212 | 6.334 | 6.473 | 6.621 | 6.763 | 6.887 | 6.979 | |
7.002 | 6.979 | 6.914 | 6.816 | 6.698 | 6.574 | 6.457 | 6.356 | 6.280 | 6.232 | 6.216 | 6.232 | 6.280 | 6.356 | 6.457 | 6.574 | 6.698 | 6.816 | 6.914 | 6.979 | 7.002 |
0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.7319 | 0.7322 | 0.7332 | 0.7346 | 0.7363 | 0.7381 | 0.7399 | 0.7417 | 0.7433 | 0.7447 | 0.7460 | 0.7471 | 0.7480 | 0.7488 | 0.7494 | 0.7499 | 0.7503 | 0.7507 | 0.7509 | 0.7510 | 0.7510 | |
0.05 | 0.7322 | 0.7329 | 0.7340 | 0.7356 | 0.7373 | 0.7392 | 0.7410 | 0.7426 | 0.7442 | 0.7455 | 0.7467 | 0.7477 | 0.7485 | 0.7492 | 0.7498 | 0.7503 | 0.7507 | 0.7509 | 0.7511 | 0.7512 | 0.7512 | |
0.10 | 0.7332 | 0.7340 | 0.7353 | 0.7369 | 0.7387 | 0.7405 | 0.7422 | 0.7438 | 0.7453 | 0.7465 | 0.7476 | 0.7485 | 0.7493 | 0.7500 | 0.7505 | 0.7509 | 0.7512 | 0.7515 | 0.7516 | 0.7516 | 0.7516 | |
0.15 | 0.7346 | 0.7356 | 0.7369 | 0.7386 | 0.7403 | 0.7420 | 0.7437 | 0.7452 | 0.7465 | 0.7477 | 0.7487 | 0.7496 | 0.7503 | 0.7509 | 0.7514 | 0.7517 | 0.7520 | 0.7522 | 0.7523 | 0.7523 | 0.7522 | |
0.20 | 0.7363 | 0.7373 | 0.7387 | 0.7403 | 0.7419 | 0.7436 | 0.7451 | 0.7466 | 0.7478 | 0.7489 | 0.7499 | 0.7507 | 0.7514 | 0.7519 | 0.7523 | 0.7527 | 0.7529 | 0.7530 | 0.7531 | 0.7530 | 0.7529 | |
0.25 | 0.7381 | 0.7392 | 0.7405 | 0.7420 | 0.7436 | 0.7451 | 0.7466 | 0.7479 | 0.7491 | 0.7502 | 0.7511 | 0.7518 | 0.7524 | 0.7529 | 0.7533 | 0.7536 | 0.7538 | 0.7539 | 0.7539 | 0.7538 | 0.7536 | |
0.30 | 0.7399 | 0.7410 | 0.7422 | 0.7437 | 0.7451 | 0.7466 | 0.7480 | 0.7493 | 0.7504 | 0.7514 | 0.7522 | 0.7529 | 0.7535 | 0.7539 | 0.7543 | 0.7545 | 0.7546 | 0.7547 | 0.7546 | 0.7545 | 0.7543 | |
0.35 | 0.7417 | 0.7426 | 0.7438 | 0.7452 | 0.7466 | 0.7479 | 0.7493 | 0.7505 | 0.7515 | 0.7525 | 0.7532 | 0.7539 | 0.7544 | 0.7548 | 0.7551 | 0.7553 | 0.7554 | 0.7554 | 0.7553 | 0.7551 | 0.7548 | |
0.40 | 0.7433 | 0.7442 | 0.7453 | 0.7465 | 0.7478 | 0.7491 | 0.7504 | 0.7515 | 0.7525 | 0.7534 | 0.7542 | 0.7548 | 0.7552 | 0.7556 | 0.7559 | 0.7560 | 0.7561 | 0.7560 | 0.7559 | 0.7556 | 0.7552 | |
0.45 | 0.7447 | 0.7455 | 0.7465 | 0.7477 | 0.7489 | 0.7502 | 0.7514 | 0.7525 | 0.7534 | 0.7542 | 0.7549 | 0.7555 | 0.7559 | 0.7563 | 0.7565 | 0.7566 | 0.7566 | 0.7565 | 0.7563 | 0.7559 | 0.7555 | |
0.50 | 0.7460 | 0.7467 | 0.7476 | 0.7487 | 0.7499 | 0.7511 | 0.7522 | 0.7532 | 0.7542 | 0.7549 | 0.7556 | 0.7561 | 0.7565 | 0.7568 | 0.7570 | 0.7570 | 0.7570 | 0.7568 | 0.7565 | 0.7561 | 0.7556 | |
0.55 | 0.7471 | 0.7477 | 0.7485 | 0.7496 | 0.7507 | 0.7518 | 0.7529 | 0.7539 | 0.7548 | 0.7555 | 0.7561 | 0.7566 | 0.7569 | 0.7572 | 0.7573 | 0.7573 | 0.7572 | 0.7569 | 0.7566 | 0.7561 | 0.7555 | |
0.60 | 0.7480 | 0.7485 | 0.7493 | 0.7503 | 0.7514 | 0.7524 | 0.7535 | 0.7544 | 0.7552 | 0.7559 | 0.7565 | 0.7569 | 0.7573 | 0.7574 | 0.7575 | 0.7574 | 0.7573 | 0.7569 | 0.7565 | 0.7559 | 0.7552 | |
0.65 | 0.7488 | 0.7492 | 0.7500 | 0.7509 | 0.7519 | 0.7529 | 0.7539 | 0.7548 | 0.7556 | 0.7563 | 0.7568 | 0.7572 | 0.7574 | 0.7576 | 0.7576 | 0.7574 | 0.7572 | 0.7568 | 0.7563 | 0.7556 | 0.7548 | |
0.70 | 0.7494 | 0.7498 | 0.7505 | 0.7514 | 0.7523 | 0.7533 | 0.7543 | 0.7551 | 0.7559 | 0.7565 | 0.7570 | 0.7573 | 0.7575 | 0.7576 | 0.7575 | 0.7573 | 0.7570 | 0.7565 | 0.7559 | 0.7551 | 0.7543 | |
0.75 | 0.7499 | 0.7503 | 0.7509 | 0.7517 | 0.7527 | 0.7536 | 0.7545 | 0.7553 | 0.7560 | 0.7566 | 0.7570 | 0.7573 | 0.7574 | 0.7574 | 0.7573 | 0.7570 | 0.7566 | 0.7560 | 0.7553 | 0.7545 | 0.7536 | |
0.80 | 0.7503 | 0.7507 | 0.7512 | 0.7520 | 0.7529 | 0.7538 | 0.7546 | 0.7554 | 0.7561 | 0.7566 | 0.7570 | 0.7572 | 0.7573 | 0.7572 | 0.7570 | 0.7566 | 0.7561 | 0.7554 | 0.7546 | 0.7538 | 0.7529 | |
0.85 | 0.7507 | 0.7509 | 0.7515 | 0.7522 | 0.7530 | 0.7539 | 0.7547 | 0.7554 | 0.7560 | 0.7565 | 0.7568 | 0.7569 | 0.7569 | 0.7568 | 0.7565 | 0.7560 | 0.7554 | 0.7547 | 0.7539 | 0.7530 | 0.7522 | |
0.90 | 0.7509 | 0.7511 | 0.7516 | 0.7523 | 0.7531 | 0.7539 | 0.7546 | 0.7553 | 0.7559 | 0.7563 | 0.7565 | 0.7566 | 0.7565 | 0.7563 | 0.7559 | 0.7553 | 0.7546 | 0.7539 | 0.7531 | 0.7523 | 0.7516 | |
0.95 | 0.7510 | 0.7512 | 0.7516 | 0.7523 | 0.7530 | 0.7538 | 0.7545 | 0.7551 | 0.7556 | 0.7559 | 0.7561 | 0.7561 | 0.7559 | 0.7556 | 0.7551 | 0.7545 | 0.7538 | 0.7530 | 0.7523 | 0.7516 | 0.7512 | |
0.7510 | 0.7512 | 0.7516 | 0.7522 | 0.7529 | 0.7536 | 0.7543 | 0.7548 | 0.7552 | 0.7555 | 0.7556 | 0.7555 | 0.7552 | 0.7548 | 0.7543 | 0.7536 | 0.7529 | 0.7522 | 0.7516 | 0.7512 | 0.7510 |
0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 19.583 | 19.380 | 18.624 | 17.139 | 15.161 | 13.305 | 12.036 | 11.269 | 10.580 | 9.750 | 8.976 | 8.532 | 8.359 | 8.102 | 7.505 | 6.668 | 5.878 | 5.307 | 4.935 | 4.700 | 4.613 | |
0.05 | 19.380 | 18.903 | 17.784 | 16.010 | 13.980 | 12.286 | 11.214 | 10.534 | 9.863 | 9.142 | 8.610 | 8.375 | 8.205 | 7.779 | 7.041 | 6.217 | 5.544 | 5.074 | 4.751 | 4.568 | 4.568 | |
0.10 | 18.624 | 17.784 | 16.357 | 14.430 | 12.406 | 10.813 | 9.867 | 9.322 | 8.859 | 8.459 | 8.238 | 8.106 | 7.807 | 7.213 | 6.457 | 5.758 | 5.207 | 4.770 | 4.445 | 4.317 | 4.445 | |
0.15 | 17.139 | 16.010 | 14.430 | 12.495 | 10.627 | 9.291 | 8.593 | 8.258 | 8.025 | 7.872 | 7.772 | 7.552 | 7.083 | 6.444 | 5.816 | 5.277 | 4.777 | 4.301 | 3.980 | 3.980 | 4.301 | |
0.20 | 15.161 | 13.980 | 12.406 | 10.627 | 9.132 | 8.228 | 7.808 | 7.575 | 7.379 | 7.221 | 7.012 | 6.629 | 6.103 | 5.587 | 5.149 | 4.704 | 4.175 | 3.675 | 3.462 | 3.675 | 4.175 | |
0.25 | 13.305 | 12.286 | 10.813 | 9.291 | 8.228 | 7.688 | 7.376 | 7.040 | 6.670 | 6.314 | 5.922 | 5.473 | 5.060 | 4.745 | 4.439 | 4.001 | 3.464 | 3.076 | 3.076 | 3.464 | 4.001 | |
0.30 | 12.036 | 11.214 | 9.867 | 8.593 | 7.808 | 7.376 | 6.947 | 6.374 | 5.752 | 5.187 | 4.709 | 4.352 | 4.135 | 3.970 | 3.699 | 3.270 | 2.852 | 2.681 | 2.852 | 3.270 | 3.699 | |
0.35 | 11.269 | 10.534 | 9.322 | 8.258 | 7.575 | 7.040 | 6.374 | 5.551 | 4.733 | 4.081 | 3.671 | 3.487 | 3.420 | 3.303 | 3.035 | 2.690 | 2.457 | 2.457 | 2.690 | 3.035 | 3.303 | |
0.40 | 10.580 | 9.863 | 8.859 | 8.025 | 7.379 | 6.670 | 5.752 | 4.733 | 3.842 | 3.253 | 2.995 | 2.948 | 2.930 | 2.805 | 2.561 | 2.319 | 2.220 | 2.319 | 2.561 | 2.805 | 2.930 | |
0.45 | 9.750 | 9.142 | 8.459 | 7.872 | 7.221 | 6.314 | 5.187 | 4.081 | 3.253 | 2.811 | 2.679 | 2.676 | 2.638 | 2.491 | 2.269 | 2.099 | 2.099 | 2.269 | 2.491 | 2.638 | 2.676 | |
0.50 | 8.976 | 8.610 | 8.238 | 7.772 | 7.012 | 5.922 | 4.709 | 3.671 | 2.995 | 2.679 | 2.587 | 2.555 | 2.467 | 2.288 | 2.092 | 2.008 | 2.092 | 2.288 | 2.467 | 2.555 | 2.587 | |
0.55 | 8.532 | 8.375 | 8.106 | 7.552 | 6.629 | 5.473 | 4.352 | 3.487 | 2.948 | 2.676 | 2.555 | 2.463 | 2.314 | 2.138 | 2.032 | 2.032 | 2.138 | 2.314 | 2.463 | 2.555 | 2.676 | |
0.60 | 8.359 | 8.205 | 7.807 | 7.083 | 6.103 | 5.060 | 4.135 | 3.420 | 2.930 | 2.638 | 2.467 | 2.314 | 2.162 | 2.089 | 2.084 | 2.089 | 2.162 | 2.314 | 2.467 | 2.638 | 2.930 | |
0.65 | 8.102 | 7.779 | 7.213 | 6.444 | 5.587 | 4.745 | 3.970 | 3.303 | 2.805 | 2.491 | 2.288 | 2.138 | 2.089 | 2.130 | 2.130 | 2.089 | 2.138 | 2.288 | 2.491 | 2.805 | 3.303 | |
0.70 | 7.505 | 7.041 | 6.457 | 5.816 | 5.149 | 4.439 | 3.699 | 3.035 | 2.561 | 2.269 | 2.092 | 2.032 | 2.084 | 2.130 | 2.084 | 2.032 | 2.092 | 2.269 | 2.561 | 3.035 | 3.699 | |
0.75 | 6.668 | 6.217 | 5.758 | 5.277 | 4.704 | 4.001 | 3.270 | 2.690 | 2.319 | 2.099 | 2.008 | 2.032 | 2.089 | 2.089 | 2.032 | 2.008 | 2.099 | 2.319 | 2.690 | 3.270 | 4.001 | |
0.80 | 5.878 | 5.544 | 5.207 | 4.777 | 4.175 | 3.464 | 2.852 | 2.457 | 2.220 | 2.099 | 2.092 | 2.138 | 2.162 | 2.138 | 2.092 | 2.099 | 2.220 | 2.457 | 2.852 | 3.464 | 4.175 | |
0.85 | 5.307 | 5.074 | 4.770 | 4.301 | 3.675 | 3.076 | 2.681 | 2.457 | 2.319 | 2.269 | 2.288 | 2.314 | 2.314 | 2.288 | 2.269 | 2.319 | 2.457 | 2.681 | 3.076 | 3.675 | 4.301 | |
0.90 | 4.935 | 4.751 | 4.445 | 3.980 | 3.462 | 3.076 | 2.852 | 2.690 | 2.561 | 2.491 | 2.467 | 2.463 | 2.467 | 2.491 | 2.561 | 2.690 | 2.852 | 3.076 | 3.462 | 3.980 | 4.445 | |
0.95 | 4.700 | 4.568 | 4.317 | 3.980 | 3.675 | 3.464 | 3.270 | 3.035 | 2.805 | 2.638 | 2.555 | 2.555 | 2.638 | 2.805 | 3.035 | 3.270 | 3.464 | 3.675 | 3.980 | 4.317 | 4.568 | |
4.613 | 4.568 | 4.445 | 4.301 | 4.175 | 4.001 | 3.699 | 3.303 | 2.930 | 2.676 | 2.587 | 2.676 | 2.930 | 3.303 | 3.699 | 4.001 | 4.175 | 4.301 | 4.445 | 4.568 | 4.613 |
0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 19.523 | 19.160 | 18.115 | 16.535 | 14.695 | 12.941 | 11.551 | 10.610 | 10.005 | 9.545 | 9.109 | 8.679 | 8.274 | 7.859 | 7.350 | 6.701 | 5.983 | 5.344 | 4.906 | 4.685 | 4.624 | |
0.05 | 19.160 | 18.460 | 17.165 | 15.475 | 13.672 | 12.054 | 10.835 | 10.043 | 9.534 | 9.133 | 8.746 | 8.367 | 7.987 | 7.547 | 6.980 | 6.295 | 5.604 | 5.054 | 4.721 | 4.581 | 4.581 | |
0.10 | 18.115 | 17.165 | 15.785 | 14.150 | 12.455 | 10.948 | 9.839 | 9.162 | 8.774 | 8.489 | 8.206 | 7.895 | 7.528 | 7.060 | 6.465 | 5.795 | 5.171 | 4.713 | 4.459 | 4.382 | 4.459 | |
0.15 | 16.535 | 15.475 | 14.150 | 12.630 | 11.061 | 9.701 | 8.761 | 8.251 | 7.995 | 7.800 | 7.565 | 7.263 | 6.879 | 6.396 | 5.820 | 5.208 | 4.664 | 4.280 | 4.089 | 4.089 | 4.280 | |
0.20 | 14.695 | 13.672 | 12.455 | 11.061 | 9.678 | 8.573 | 7.884 | 7.531 | 7.315 | 7.082 | 6.786 | 6.437 | 6.042 | 5.590 | 5.077 | 4.544 | 4.079 | 3.765 | 3.655 | 3.765 | 4.079 | |
0.25 | 12.941 | 12.054 | 10.948 | 9.701 | 8.573 | 7.773 | 7.296 | 6.975 | 6.640 | 6.245 | 5.835 | 5.456 | 5.103 | 4.730 | 4.303 | 3.854 | 3.476 | 3.261 | 3.261 | 3.476 | 3.854 | |
0.30 | 11.551 | 10.835 | 9.839 | 8.761 | 7.884 | 7.296 | 6.865 | 6.400 | 5.838 | 5.265 | 4.797 | 4.465 | 4.207 | 3.929 | 3.586 | 3.230 | 2.967 | 2.873 | 2.967 | 3.230 | 3.586 | |
0.35 | 10.610 | 10.043 | 9.162 | 8.251 | 7.531 | 6.975 | 6.400 | 5.692 | 4.926 | 4.279 | 3.861 | 3.637 | 3.483 | 3.280 | 3.008 | 2.751 | 2.605 | 2.605 | 2.751 | 3.008 | 3.280 | |
0.40 | 10.005 | 9.534 | 8.774 | 7.995 | 7.315 | 6.640 | 5.838 | 4.926 | 4.084 | 3.494 | 3.194 | 3.075 | 2.982 | 2.813 | 2.592 | 2.412 | 2.346 | 2.412 | 2.592 | 2.813 | 2.982 | |
0.45 | 9.545 | 9.133 | 8.489 | 7.800 | 7.082 | 6.245 | 5.265 | 4.279 | 3.494 | 3.026 | 2.831 | 2.760 | 2.666 | 2.494 | 2.294 | 2.164 | 2.164 | 2.294 | 2.494 | 2.666 | 2.760 | |
0.50 | 9.109 | 8.746 | 8.206 | 7.565 | 6.786 | 5.835 | 4.797 | 3.861 | 3.194 | 2.831 | 2.678 | 2.586 | 2.450 | 2.263 | 2.096 | 2.028 | 2.096 | 2.263 | 2.450 | 2.586 | 2.678 | |
0.55 | 8.679 | 8.367 | 7.895 | 7.263 | 6.437 | 5.456 | 4.465 | 3.637 | 3.075 | 2.760 | 2.586 | 2.440 | 2.274 | 2.120 | 2.029 | 2.029 | 2.120 | 2.274 | 2.440 | 2.586 | 2.760 | |
0.60 | 8.274 | 7.987 | 7.528 | 6.879 | 6.042 | 5.103 | 4.207 | 3.483 | 2.982 | 2.666 | 2.450 | 2.274 | 2.145 | 2.084 | 2.070 | 2.084 | 2.145 | 2.274 | 2.450 | 2.666 | 2.982 | |
0.65 | 7.859 | 7.547 | 7.060 | 6.396 | 5.590 | 4.730 | 3.929 | 3.280 | 2.813 | 2.494 | 2.263 | 2.120 | 2.084 | 2.105 | 2.105 | 2.084 | 2.120 | 2.263 | 2.494 | 2.813 | 3.280 | |
0.70 | 7.350 | 6.980 | 6.465 | 5.820 | 5.077 | 4.303 | 3.586 | 3.008 | 2.592 | 2.294 | 2.096 | 2.029 | 2.070 | 2.105 | 2.070 | 2.029 | 2.096 | 2.294 | 2.592 | 3.008 | 3.586 | |
0.75 | 6.701 | 6.295 | 5.795 | 5.208 | 4.544 | 3.854 | 3.230 | 2.751 | 2.412 | 2.164 | 2.028 | 2.029 | 2.084 | 2.084 | 2.029 | 2.028 | 2.164 | 2.412 | 2.751 | 3.230 | 3.854 | |
0.80 | 5.983 | 5.604 | 5.171 | 4.664 | 4.079 | 3.476 | 2.967 | 2.605 | 2.346 | 2.164 | 2.096 | 2.120 | 2.145 | 2.120 | 2.096 | 2.164 | 2.346 | 2.605 | 2.967 | 3.476 | 4.079 | |
0.85 | 5.344 | 5.054 | 4.713 | 4.280 | 3.765 | 3.261 | 2.873 | 2.605 | 2.412 | 2.294 | 2.263 | 2.274 | 2.274 | 2.263 | 2.294 | 2.412 | 2.605 | 2.873 | 3.261 | 3.765 | 4.280 | |
0.90 | 4.906 | 4.721 | 4.459 | 4.089 | 3.655 | 3.261 | 2.967 | 2.751 | 2.592 | 2.494 | 2.450 | 2.440 | 2.450 | 2.494 | 2.592 | 2.751 | 2.967 | 3.261 | 3.655 | 4.089 | 4.459 | |
0.95 | 4.685 | 4.581 | 4.382 | 4.089 | 3.765 | 3.476 | 3.230 | 3.008 | 2.813 | 2.666 | 2.586 | 2.586 | 2.666 | 2.813 | 3.008 | 3.230 | 3.476 | 3.765 | 4.089 | 4.382 | 4.581 | |
4.624 | 4.581 | 4.459 | 4.280 | 4.079 | 3.854 | 3.586 | 3.280 | 2.982 | 2.760 | 2.678 | 2.760 | 2.982 | 3.280 | 3.586 | 3.854 | 4.079 | 4.280 | 4.459 | 4.581 | 4.624 |
0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 18.710 | 18.588 | 18.004 | 16.674 | 14.807 | 13.023 | 11.736 | 10.844 | 10.064 | 9.349 | 8.834 | 8.526 | 8.245 | 7.834 | 7.284 | 6.648 | 5.975 | 5.355 | 4.914 | 4.701 | 4.649 | |
0.05 | 18.588 | 18.230 | 17.235 | 15.555 | 13.638 | 12.054 | 10.975 | 10.179 | 9.473 | 8.909 | 8.563 | 8.322 | 7.991 | 7.502 | 6.907 | 6.259 | 5.609 | 5.064 | 4.728 | 4.595 | 4.595 | |
0.10 | 18.004 | 17.235 | 15.819 | 13.965 | 12.165 | 10.802 | 9.884 | 9.213 | 8.695 | 8.369 | 8.182 | 7.944 | 7.532 | 6.986 | 6.389 | 5.775 | 5.187 | 4.722 | 4.453 | 4.371 | 4.453 | |
0.15 | 16.674 | 15.555 | 13.965 | 12.212 | 10.688 | 9.585 | 8.839 | 8.313 | 7.976 | 7.804 | 7.643 | 7.323 | 6.836 | 6.294 | 5.759 | 5.220 | 4.698 | 4.283 | 4.058 | 4.058 | 4.283 | |
0.20 | 14.807 | 13.638 | 12.165 | 10.688 | 9.495 | 8.648 | 8.043 | 7.600 | 7.321 | 7.131 | 6.864 | 6.444 | 5.957 | 5.504 | 5.071 | 4.602 | 4.125 | 3.757 | 3.618 | 3.757 | 4.125 | |
0.25 | 13.023 | 12.054 | 10.802 | 9.585 | 8.648 | 7.969 | 7.422 | 6.970 | 6.613 | 6.277 | 5.870 | 5.424 | 5.032 | 4.706 | 4.359 | 3.935 | 3.513 | 3.249 | 3.249 | 3.513 | 3.935 | |
0.30 | 11.736 | 10.975 | 9.884 | 8.839 | 8.043 | 7.422 | 6.856 | 6.316 | 5.800 | 5.295 | 4.821 | 4.447 | 4.190 | 3.963 | 3.660 | 3.287 | 2.972 | 2.851 | 2.972 | 3.287 | 3.660 | |
0.35 | 10.844 | 10.179 | 9.213 | 8.313 | 7.600 | 6.970 | 6.316 | 5.624 | 4.940 | 4.342 | 3.908 | 3.655 | 3.501 | 3.319 | 3.048 | 2.757 | 2.573 | 2.573 | 2.757 | 3.048 | 3.319 | |
0.40 | 10.064 | 9.473 | 8.695 | 7.976 | 7.321 | 6.613 | 5.800 | 4.940 | 4.161 | 3.585 | 3.255 | 3.101 | 2.991 | 2.824 | 2.598 | 2.398 | 2.320 | 2.398 | 2.598 | 2.824 | 2.991 | |
0.45 | 9.349 | 8.909 | 8.369 | 7.804 | 7.131 | 6.277 | 5.295 | 4.342 | 3.585 | 3.108 | 2.873 | 2.764 | 2.661 | 2.503 | 2.316 | 2.185 | 2.185 | 2.316 | 2.503 | 2.661 | 2.764 | |
0.50 | 8.834 | 8.563 | 8.182 | 7.643 | 6.864 | 5.870 | 4.821 | 3.908 | 3.255 | 2.873 | 2.686 | 2.583 | 2.468 | 2.305 | 2.143 | 2.073 | 2.143 | 2.305 | 2.468 | 2.583 | 2.686 | |
0.55 | 8.526 | 8.322 | 7.944 | 7.323 | 6.444 | 5.424 | 4.447 | 3.655 | 3.101 | 2.764 | 2.583 | 2.463 | 2.324 | 2.160 | 2.048 | 2.048 | 2.160 | 2.324 | 2.463 | 2.583 | 2.764 | |
0.60 | 8.245 | 7.991 | 7.532 | 6.836 | 5.957 | 5.032 | 4.190 | 3.501 | 2.991 | 2.661 | 2.468 | 2.324 | 2.178 | 2.072 | 2.040 | 2.072 | 2.178 | 2.324 | 2.468 | 2.661 | 2.991 | |
0.65 | 7.834 | 7.502 | 6.986 | 6.294 | 5.504 | 4.706 | 3.963 | 3.319 | 2.824 | 2.503 | 2.305 | 2.160 | 2.072 | 2.060 | 2.060 | 2.072 | 2.160 | 2.305 | 2.503 | 2.824 | 3.319 | |
0.70 | 7.284 | 6.907 | 6.389 | 5.759 | 5.071 | 4.359 | 3.660 | 3.048 | 2.598 | 2.316 | 2.143 | 2.048 | 2.040 | 2.060 | 2.040 | 2.048 | 2.143 | 2.316 | 2.598 | 3.048 | 3.660 | |
0.75 | 6.648 | 6.259 | 5.775 | 5.220 | 4.602 | 3.935 | 3.287 | 2.757 | 2.398 | 2.185 | 2.073 | 2.048 | 2.072 | 2.072 | 2.048 | 2.073 | 2.185 | 2.398 | 2.757 | 3.287 | 3.935 | |
0.80 | 5.975 | 5.609 | 5.187 | 4.698 | 4.125 | 3.513 | 2.972 | 2.573 | 2.320 | 2.185 | 2.143 | 2.160 | 2.178 | 2.160 | 2.143 | 2.185 | 2.320 | 2.573 | 2.972 | 3.513 | 4.125 | |
0.85 | 5.355 | 5.064 | 4.722 | 4.283 | 3.757 | 3.249 | 2.851 | 2.573 | 2.398 | 2.316 | 2.305 | 2.324 | 2.324 | 2.305 | 2.316 | 2.398 | 2.573 | 2.851 | 3.249 | 3.757 | 4.283 | |
0.90 | 4.914 | 4.728 | 4.453 | 4.058 | 3.618 | 3.249 | 2.972 | 2.757 | 2.598 | 2.503 | 2.468 | 2.463 | 2.468 | 2.503 | 2.598 | 2.757 | 2.972 | 3.249 | 3.618 | 4.058 | 4.453 | |
0.95 | 4.701 | 4.595 | 4.371 | 4.058 | 3.757 | 3.513 | 3.287 | 3.048 | 2.824 | 2.661 | 2.583 | 2.583 | 2.661 | 2.824 | 3.048 | 3.287 | 3.513 | 3.757 | 4.058 | 4.371 | 4.595 | |
4.649 | 4.595 | 4.453 | 4.283 | 4.125 | 3.935 | 3.660 | 3.319 | 2.991 | 2.764 | 2.686 | 2.764 | 2.991 | 3.319 | 3.660 | 3.935 | 4.125 | 4.283 | 4.453 | 4.595 | 4.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Menshawy, M.H.; Eliwa, M.S.; Al-Essa, L.A.; El-Morshedy, M.; EL-Sagheer, R.M. Enhancing Integer Time Series Model Estimations through Neural Network-Based Fuzzy Time Series Analysis. Symmetry 2024, 16, 660. https://doi.org/10.3390/sym16060660
El-Menshawy MH, Eliwa MS, Al-Essa LA, El-Morshedy M, EL-Sagheer RM. Enhancing Integer Time Series Model Estimations through Neural Network-Based Fuzzy Time Series Analysis. Symmetry. 2024; 16(6):660. https://doi.org/10.3390/sym16060660
Chicago/Turabian StyleEl-Menshawy, Mohammed H., Mohamed S. Eliwa, Laila A. Al-Essa, Mahmoud El-Morshedy, and Rashad M. EL-Sagheer. 2024. "Enhancing Integer Time Series Model Estimations through Neural Network-Based Fuzzy Time Series Analysis" Symmetry 16, no. 6: 660. https://doi.org/10.3390/sym16060660
APA StyleEl-Menshawy, M. H., Eliwa, M. S., Al-Essa, L. A., El-Morshedy, M., & EL-Sagheer, R. M. (2024). Enhancing Integer Time Series Model Estimations through Neural Network-Based Fuzzy Time Series Analysis. Symmetry, 16(6), 660. https://doi.org/10.3390/sym16060660