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Abstract: Geometric function theory has extensively explored the geometric characteristics of analytic
functions within symmetric domains. This study analyzes the geometric properties of a specific
class of analytic functions employing confluent hypergeometric functions and generalized Bessel
functions of the first kind. Specific constraints are imposed on the parameters to ensure the inclusion
of the confluent hypergeometric function within the analytic function class. The coefficient bound of
the class is used to determine the inclusion properties of integral operators involving generalized
Bessel functions of the first kind. Different results are observed for these operators, depending on
the specific values of the parameters. The results presented here include some previously published
findings as special cases.

Keywords: univalent function; starlike functions; convex functions; confluent hypergeometric
functions; generalized Bessel function of the first kind
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1. Introduction

The incredible use of special functions has provoked great interest among researchers
in the last few decades. Geometric function theory has extensive literature addressing the
geometric and analytic characteristics of various kinds of hypergeometric functions, such
as the Gaussian hypergeometric function [1-4], confluent hypergeometric function [1,5-8],
Bessel function [9-12], Struve function [13-15], Lommel function [13,16,17], g—Bessel-
Wright function [18] and other generalized hypergeometric functions [19,20]. The authors
employed many methods to determine various conditions on the parameters of these
special functions to be in the class of normalized analytic functions.

Let A denote the class of analytic functions of the form

flz)=z+ i a2k (1)
k=0

in the open unit disk D (D = {z : |z] < 1}) and S be the class of univalent functions, that is
S:={f € A: f(z) is univalent in D}.

There are many subclasses of S (see [1,21,22]) from which §* and K are known as the
classes of starlike functions and convex functions, respectively
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S*:={f € A: f(z) is starlike in D}
and
K:={f € A: f(z) is convex in D}.
A function f € Ais said to be close-to-convex if and only if Re{ei’\ ngéz)) } >0,zeD,

where g(z) is a fixed starlike function and A € R. The class of all close-to-convex functions
is denoted by C. In this study, we considered the following definitions:

Definition 1 ([23,24]). For A > 0 then the classes S} and K, are defined as

sz{feA: ZJ{é?—l‘<A,zeID)}
and
ICA:{feA: ZJJZ/;i‘;)'<A,zeD}.

Let a function f(z) € K, if and only if zf'(z) € S}.

Definition 2 ([25]). Let f(z) € A, for 0 < k < 00,0 < ¢ < 1 then the function f(z) to be in
k —UCV (o) if and only if

zf"(2)
I (z)

Re (1 + Z}(,H(S)) >k

When o = 0, then k —UCV(0) = k —UCV, and when k = 1, then 1 —UCV =UCV .

‘—i—a

Definition 3 ([25]). Let f(z) be of the form (1) and z € D, then C'P(6) is defined as

ZJJ:,/;S) +1 —5’ < Re<zﬂé‘§)> +1446,0<6< oo}.

A function f(z) € Ais said to be parabolic starlike if

NEONNELON
R(f(Z))> )

the class of such functions denoted by Sy, (c) (see [26]). A related class k — S (0) is defined
by using the Alexander transform as f(z) € k —UCV(0) if and only if zf' € k — Sy(0).
For ¢ = 0 the classes k — S, (0) reduce to k — S, of functions k—parabolic starlike in D
(see [27,28]). In particular, when k = 1, then 1 — S, = Sy, is the parabolic starlike functions
in D (see [29,30]). The inclusion properties of several subclasses of S are investigated for
various linear operators in the literature (see [3,4]). In this work, we are interested to study
the following subclass [3]:

CP(s) = {f(z) €s:

’+(T,Z€]D),

(1—a+29)L + @ —29)f +9zf" -1
2T(1—,B)+(1—0¢+2’y)£+(o¢—2*y)f’+'yzf”—1

R;/a(ﬁ)—{f(z)eA: <1,z€ID>},

where0 <a <1,0<y<1,7e€C\{0}and B < 1.
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The coefficient bound for the function f(z) € R ,(B) is given by

2[7|(1-p) _
\ﬂn|_1+( 1)(0(—2'y+’yn)'n_2’3’.”' @

The extreme function of the classes RY ,(B) is

flz) = z(l/%uv/o pi— ot / wlﬁ <1+ 11_ e >dw’

where u +v = a —yand uv = 7. Since 1 + (n — 1) (0 — 2y +yn) = (1 —a) + (2 +n?) +
n(a —3v) > n(a — 37), the inequality (2) can be rewritten as (see [3])

2|71 - B)
<R P =023 ...,
|a}’l| = n((’(—3’)’) rn /3/ (3)
The main objective of this work is to find several conditions on the parameters involved
in the confluent hypergeometric function and generalized Bessel function of the first kind

to belong to the class of normalized analytic functions. The confluent hypergeometric
function F(a; b; z) is defined as (see [1]), fora,b € Cwith b # 0, -1, -2,

oo

F(a;b;z) Z

2" = Z apz", (4)

nn'

where

(a)n
(b)yn!”

an = 5)
The series in (4) is convergent for all finite values of z. The function F(a; b; z) satisfies the
following conditions

Fla+1;b+1;z) = ZF’(a;b;z)
and
F(a;a;z) = €. (6)

Confluent hypergeometric functions have a connection with symmetry about an axis.
Several confluent hypergeometric functions map the unit disc to a domain symmetric with
respect to the real axis, for example, F(a;a;z) = e* maps the unit disc to the region as
shown below Figure 1.

Inspired by the findings presented in references [31,32], our objective is to establish
sufficient conditions for the parameter of the normalized Bessel function of the first kind.
To initiate our discussion, let us revisit the definition of the generalized Bessel function of
the first kind.

Let p,q € Rand r € C. The generalized Bessel function of the first kind wy 4, (z)
(see [9,31]) is defined as the particular solution of the second-order linear homogenous
differential equation

20" (2) + 20/ (2) + 122 = p* + (1 - g)plw(z) =0, @

which is a natural generalization of Bessel’s equation. This function has the familiar
representation
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ol nyn m
wp(z) = wWpgr(z) = Z )'F((pi)n+q+1) (2) +p, vz € C. (8)

Equation (7) allows us to look into Bessel, modified Bessel, and spherical Bessel functions.
The solutions to Equation (7) are called the generalized Bessel function of order p. The
particular solution described in Equation (8) is known as the generalized Bessel function of
the first kind of order p. However, the series mentioned earlier converges everywhere in C.
Now, let us consider the function U, (z), defined through the transformation

q__r
Up(z) = [ao(p)] 'z 2wp(Vz).
The series representation of Uy (z) is
rz 2 (=1)"
Up(z) = oF1(tp,——) = ), ————72", )
p(z) =0 1( P 4) ngozp«(tp)n(l)n

wheret, = p+(9+1)/2#0,-1,-2,---. It also satisfies the following conditions [31]

S (=4t Aty —1) B
r;) Ja(Dns1 T (Up2(1) —1], (10)
and
Upii(z) = _4t”u;,(z), Vz € C, (11)

wherer < 0,t, >1landt, #0,-1,-2,---

/// \\\
10r Yy \\
£ N,
/ A\
/ \
i N
o5k / \
|
- ||
| i " . A
I 14 13 2o 15 I|'
g ."Il
R /
\ /
\\ /
\\ y
-1of i
10 N 7
~_ 4
-HH“"‘—\—\_,_ ______/

Figure 1. Mapping of unit disc by F(a;a;z) = €*.
For f(z) € A, using a convolution operator Hz,,,(f)(z) is defined as (see [32])
He,r(f)(2) = 2Up(2) * £(2) (12)

where * denotes the Hadamard product or convolution of two functions, which is defined
for the functions f(z) of form (1) and

g(z) =z+ ) bp2"
n=2
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as
o0
(fxg)(z) =z+ ) anbyz".
n=2
The series representation of Equation (12) is given by
4)n-1 0
He,r(f)(2) =2+ Z —r/ ) anz" =z+ Y ApzZ". (13)

tP n—1(n—1)! n=2

In this article, we discuss the inclusion characteristics of confluent hypergeometric
functions 1 F; (a, b, z) and associated integral operator to the class RY ,(8). We mainly derive
sufficient conditions involving the parameter of 4, b, 7, , T and 5. All the results are
stated and proved in Section 3. Several geometric characteristics of operator Hz,,,f(2)
for f € RY ,(B) are also given in Section 3. Special cases leads to known results. For this
purpose, we recall few basic results from the literature in Section 2, while the concluding
remark is stated in Section 4.

2. Preliminary Results

Lemma 1 ([1]). Fora,b € Candb #0,—-1,-2, -3, - - -, the confluent hypergeometric function
1F1(a; b; z) satisfies the following contiguous relations:

i

(a—b+1)1F(a;b;z) =a1Fi(a+1;b;z) — (b—1)1F (4,0 — 1;2). (14)

ii
b(a+z)1Fi(a;b;z) = abFi(a+1;b;z) — (a — b)z1Fi(a; 0+ 1;2). (15)

iii
biFi(a;b;z) =b1Fi(a—1,b;z) + z1F (a; b+ 1, 2). (16)

Lemma 2 ([3]). Let f(z) € A be of the form (1), then a sufficient condition for f(z) € R ,(B) is
1+ (= 1) (e =2 + ey < 111~ ). a7

Lemma 3 ([32]). Let f(z) € A be the form (1), if it satisfies
i)L+n—1|an|</\ A>0 (18)

then f(z) € S3.

Lemma 4 ([32]). Let f(z) € A be the form (1), if it satisfies

[e9)

Y n(A+n—1)|a, <A, A>0 (19)
n=2

then f(z) € KC,.

Lemma 5 ([25]). Let f(z) € Abeink —UCV(0) if

in[n(1+k)—(k+a)]|an\ <1-o. (20)
n=2



Symmetry 2024, 16, 662 6 0of 16
Lemma 6 ([25]). Let f(z) € Abeink — Sy(c) if it satisfies the following condition
2 (14k) — (k+0)]jay| <1-0. (21)
Lemma 7 ([25]). Let f(z) € Aand it is of the form (1), if
Y [n+2(6—1)]njay| <26-1,0<6 < oo (22)
n=2

then f(z) € CP(9).

3. Main Results

The parameters of the confluent hypergeometric function satisfy several conditions,
letting 1 Fy (a;b;z) be in R, (B). The following theorem states the inclusion characteristics
associated with confluent hypergeometric functions.

Theorem 1. Let a,b € Cwithb # 0,—1,—-2,-3,---, if a and b are satisfied by one of the
following conditions, then 1Fy(a;b;z) € R, ,(B). For [b| > max{0, |a| + 1}

(1—ba+7m+h?+n)ﬁuwbq)+(Mb—1)—7w1—n)gumb—1n)
<7+ (-at2y) +ld1-p).
.
(1—bzx+7(b2—a2+a+1))1P1(a,-b;1) b)1Fy(a —1;b;1)

Yya
+(b—1)(«x—’y(l—a+b))1F1(a b—1; 1) <

a(a -
4 (1—a+2y)+[7l(1-p).

Proof. The sufficient condition from Lemma 2 for the class RY ,(B) is
21—1— (n—1)(a — 27 +n)]|an| < |7|(1 - B). (23)

Applying (5) in (23), we obtain

i [(1—a+2y) +n(a—27) +n(n—1)7] (17;:21;);1 <|t|(1-pB)
B o (a)n B - (a)n S (a)n B
=2 L G, O L G T L e, 1A @D

Further from (24), we obtain

(2)2 \Fi(a+2;b+2;1)

(1—a+29)1F(ab;1) + m—hnﬂW+“”1”+Ww (25)

- [+ —at29)] < llA-p).

We will use (25) to prove both the cases of the Theorem 1.
i From (14)-(16), we obtain

1Fi(a+10+1;1) = b(la_ b) [1Fi(a;b;1) — 1Fi(a;b — 1;1)] (26)
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and

Fi(a+2b421) = Wlamm) _ %15(@5— L1).  Q27)

Using (26) and (27) in (25), we obtain

(1 - a+2iRb) + @200 O R 1) < Rwb - 1)
(@2 [la+ (6= 1710) | (1= b)(b)s
+’)’@ (Ll)z (ﬂ b; 1) TlFl(a b—1,; 1)
E +(1—a+2y)+|t|(1-pB). (28)

Simplifying (24), we obtain

[(1—a+27) + («=27) (1 —b) +y(a+ (b—1)*)|1 Fy(a;b;1)

—[(@=27)(1=b) + (b — 1)1 Fy (a0 — ;1) < % + (1 —a+2y)+|[t](1-p). )
From (29), we will obtain the required result.
i  From (14)~(16), we obtain
1Fa4+2b+2;1)=[(b—1)*+a(1—a)) %15(11; b;1) o)
(a—b J“(;))z(b — s p(ab—1;1) + %ﬂﬁ(ﬂ ~1p1).

Applying (26) and (30) in (25), it follows

(1 -at2A@b) + @ -20) 2D R @b - R - 1)

+y E”;i [(b—17 t;)(; —Ol®)2, F (4;0;1) + % 2(a- bt:))z(b “8 B (@b - 11) (31)

+7%%1F1(%1;b;1) < T (1—a+2y)+tl(1-p).

Finally from (31), we will obtain the required result.
O

The above result will have a different expression for some particular values of the
parameters a,b. We consider a few special cases and presented below as example.

Example 1. In our first example, we consider b = a. Then, 1Fy(a;b;z) = 1F;(a;a;z) = €*. Now,
for |a| > 0, if the inequality

(I+7)et+a—2y—-2<|7|(1-p)

holds, then e € R7 ,(B).
The verification of the above claim can be performed as follows: From Lemma 2, it is sufficient
to establish the inequality
Y [(1—a+27) +n(a—29) +n(n—1)y]las| < |7](1-p). (32)
n=2

Applying the coefficient of 1Fy (a; a; z) in (32), we obtain
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i{(l—am)+n<w—zv>+n<n—1m(11) <tl(1-p)
n=2 n
— (1—1x+2'y)n;2(1>n (a — n:g - 'yn;z D5 < 7|(1 - B). (33)

Using (6) in (33), we obtain
(34)

(1—a+27)(e=2)+ (a =27)(e = 1) +ye < [7[(1 - B).

From (34), we will obtain the conclusion.
Example 2. Ifa = 1and b = 2 then 1F1(1;2;z) = (¢* — 1) /z. If

(1-utame (3 -su+sy) <lela-p),

holds, then (e* —1)/z € RS ,(B).

The verification of the above claim can be performed as follows: Again from Lemma 2, it is
sufficient to validate the inequality
[(1— & +29) +n(a— 29) + n(n —1)yllas| < [tI(1 - B). (35)

ngk:

2

n

Applying the coefficient of 1F1(1;2;z) in (35), we obtain

<7|(1-§)

ni[(l —20+67)+ (n+1)(a—4y)+n(n+1)y] e

= (1-20+67) ) ﬁ#—(zx—éﬂ) (n—l—l)(nil)! + Zn(n%—l)ﬁ <7|(1-B)
n=2 n=2 n=2
(36)

(1—2a+6'y)<e—§) +(a—4y)(e—2)+v(e—1) < 7|(1-pB).

[7e

From (36), we will obtain the required results.

Example 3. Ifa = 1and b = 3, then 1F;(1;3;z) = 2!(e* — 1 — z/zz.If

2
2(1 —2a+11y)e — 5(8 —19a 4+ 1047y) < |T|(1—B),

holds, then 2!(e* — 1 — z) /2> € RY ,(B).
The verification of the above claim can be performed as follows: Again apply the coefficient of

1F1(1;3;2) in (35), we obtain

i[(l—lX—FZ’)’)—FT’l(lX—Z”}’)—F?’l(ﬂ—l)’}’] @)l =
n=2 neer
[ee) o0 2 [ee]
— (1-3a+167) ) n+2 a—67)n§(n+1),+77;—§Irl(l—ﬁ)

n:2

= (1-3a+167) 2(

— 2(1—2a +1179)e — g(s —19a + 1047) < |7|(1
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Example 4. When a = —n and b = 1, the confluent hypergeometric function 1F,(—n;1;z)
becomes the Laguerre polynomial Ly, (z). Thus, if for a = —n, b = 1, and the inequality

(I4+7)e !t —a+2y <|t](1-p)

holds, then Ly (z) € R ,(B).
To verify this claim, now we apply the coefficient of 1 Fy(—n;1;z) in (35). Then, we have

i [(1—a+2y)+n(a—2y)+n(n—1)9] o
n=2 ’
—-at N Y w2y Yy BV g
n=2 n! n=2 (n B 1)! n=2 (7’1 - 2)!
— (1—a+2y)e 4+ @—27)(e 1) +ye ! < |7|(1 - B) (37)

From (37), we will obtain the required results

Next, we consider the operator
Z
T(a;b;z) = / F(a;b; A)dA.
0

Term by term integration for the series of F(a;b; 1), leads to

T(a;b;z) : i "1 z-z—l—ZAnz
=5 (D)n—1(1)n =2

where
(’Z)n—l
A= 7. 38
)1 (D) )

The next result provides conditions for which T(a;b;z) is in R, . (B)

Theorem 2. Suppose that a € C\ {1} and |b| > |a| + 1. Further, if

(47 —3)1F(2;b;1) +7%1F1(a+1;b+1 1)
+@-anh-10-10) <9+ 0D g,

then T(a; b;z) € RY ,(B).
Proof. For class RY, ,(B), the sufficient conditions form Lemma 2 is
Y [+ =3)n+yn(n—1)+ 3 —a)]|As| < |7](1-p) (39)
n=2

Applying (38) in (39), then
(40)

Y (-t 7 =3 an(n —1) + (8- a)] gy s

n=2

Simplifying (40), we obtain
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(e +7v—3)1F(a;b;1) — (o +9—3) +7%1F1(a+1;b+1;1)

+@B-a)yFa-1b-11)—(3—a) - % < J7|(1-B). (41)

From (41) and the hypothesis of the theorem will obtain the result. []

Taking a = b in the above result then the following result is direct.

Corollary 1. Iffora € Cand |a| > 1, the inequality

ze—1s$<s—a+|r|<1—ﬁ>>,

holds, then T(a;a;z) € RY ,(B).

Let the linear operator Hz,,,(f)(z) belong to the class of univalent functions or to
its subclasses of S¥, Ky, k —UCV (), k — Sp(0) and CP(9), by satisfying several relevant
criteria on the parameters involved in these special functions. From (13), the coefficient of
the operator Hx,,»(f)(z) is

(—1’/4)”’1 .
(tp)n—l (” - 1)! "

Then the geometric characteristics related to f(z) in R} ,(B) are given in the follow-
ing results.

A, = (42)

Theorem 3. Let f(z) € A be of the form (1) and f(z) € R} ,(B) with0 <a <1,0 <y <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds for A > 0:

, rA a— 3y
A= Atp2 (1) =ty (D) = (A= 1) < ;5 <1 (- ﬁ))'

Then, forr < 0,tp > 1, H,r(f)(2) € S}

Proof. In Lemma 3, the sufficient conditions for the class S} is given as
Y. (A+n—1)|A, <A (43)
n=2

If A, as given in (42), then (43) can be rewritten as

fum—l)( /A" <A (44)
n=2

tp)nfl (n - 1)!

Using (3) on the left side of the inequality (44), we obtain
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(—r/4)"1

(b= 1)l
(/e 2 -B)
B R O P TR VT Ty

n=2
2B (g A2 (Cra
- ) (“ ”,;_mp)n_m! L (tp»,_m!)

[7e

2

n

3

(0 — 3y
_2[tj(1-p) S r/4 & r/4)
 (a—37) ( ; tp (n+1)! ; (tp)n A) ' (45)

Using (10) in (45) and applying it in the inequality (44), then

2|7|(1—B) —4(tp — 1)
M((A—nf(up_l(n—l) +u,,(1)—A> <A (46)
Using (11) in (46), then
(A— 1)%%41) 1)+ M ' (1) =A< Am. (47)

From (47) and the hypothesis of the theorem will obtain the result. []

Remark 1. For v = 0, Theorem 3 leads to the Theorem 2 of [32].

Theorem 4. Let f(z) € A be of the form (1) and f(z) € R} ,(B) with0 <a <1,0 <y <1
T € C\ {0} and B < 1. Suppose that the following inequality holds for A > 0:

AUy (1) + Uy (1) < A(l + m>

Then, forr < 0,tp > 1, He, . (f)(2) € Ky

Proof. From Lemma 4, it follows that the sufficient condition for the class K, is

Z (A+n—1)]A, <A (48)
Considering A, as given in (42), the inequality (48) reduces to
& (—r/4)+1
nA4+n—1)————lay| <A 49
L S “)

Using (3) on the left side of (49), we obtain
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© (—r/4)r1

ngZ (/\+”—1)m|ﬂn|

= ( 7/4)"*1 2|t|(1-B)
S Lt Dy e —3)

00 —r n—1 0 —r n—1
2|T| (Z /4) + 2(71_1) (t(p)n_/f()l)n_l>

0(—3'7 tpn 1(111 1 ;=

n=2
2|T| (1-8 A e ( (=r/a)" & (/)" Y
(a — Sfy = ( )n(l)n 4ty = (tp +1)n(1)n
2 T
|zx|—3fy ( Z/{p+1(1) /'\). (50)
Using (11) in (50) and applying it in the inequality (49), then
—37)
AUy (1) + U (1 f/\gxx(“i. 51

From (51) and the hypothesis of the theorem will obtain the result. O
Remark 2. Note that when v = 0 in Theorem 4, it is equivalent to Theorem 3 of [32].

Theorem 5. Let f(z) € A be of the form (1) and f(z) € R} ,(B) with0 <a <1,0 <y <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds for k > 0and 0 < o < 1:

(1 +k)U;,(1) +(1=)Up(1) < (1-0) (1 + m>

Then, forr < 0,tp > 1, H,r(f)(2z) € k —=UCV(0).

Proof. Note that the Lemma 5 gives the sufficient condition for the class k — UCV(0) as
Y n(n(1+k)— (k+0))|A <1—0. (52)
n=2

Choosing A, as in (42), the inequality (52) reduces to

00 —r n—1
3 (1K) - (k+a))m|an|g1—a. (53)

Using (3) on the left side of (53), we obtain

0 B ( )n 1
n;z"("(“rk) (k+¢7))—( Yo 1 (D) |
- _ (=r/4)"" 2J7|(1-B)
< Ll D00+ (o) gt AT
_2a=p) [ /ATy A
- (a—37) <1+k ,122 (tp)n—1(1)n—2 (1-0 ,g (tp)n— 1(1)n1>
:2|(Z|(_13—7‘)3) ((1 —|—4li)p( r)upﬂ(l) +(1— U, (1) - (1 _U)). (54)
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Using (11) in (54) and apply in (53), we obtain
(I+k)(=r) 4tp (a — 37)
4t, (—r)up(1)+(1_‘7)up(1)_(1_0) < (1—‘7)m~ (55)

From (55) and the hypothesis of the theorem will obtain the result. [J
Remark 3. For v = 0, Theorem 5 is equivalent to Theorem 1 in [32].

Theorem 6. Let f(z) € A be of the form (1) and f(z) € R} ,(B) with0 <a < 1,0 <y <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds fork > 0and 0 < o < 1:

/ r(1—o) (a —37)
(k+o)Up1(1) = 1+ K)U,_1(1) = (k+0) < i, —1) <1+ 2|T|(1—ﬁ)>'

Then, forr < 0,tp > 1, Hy, r(f)(2) € k = Sp(0).

Proof. From Lemma 6, we have the sufficient condition for the class k — S,(c) as
Y (n(1+k)— (k+0))|As <1—0. (56)
n=2

Now, the coefficient A, as given in (42) leads the inequality (56) to

0 , B (—r/4)r1
L4k = koD ey~

Using (3) on the left side of (57), we obtain

lan] <1—0. (57)

; B (—r/4)+1 .
R = ), @,

gi(n(1+k)—(k+0)) (crrd) 20 —p)
2|t

[7e

n

n (tp)n—l(l)n—l n(a—37v)
0B (s A >*l
(«—37) (“* I D Mt i
_ 2/tj(1—B) P = (—r/4)" (k = r/4 _
“@-3) (“* )<,§0 CANEI. ) o (ZO Dot 1)) )
Using (10) in second sum of (58) and applying it in the inequality (57), we obtain

(1+k)(Z/{p(1)—l)—(k+a)(_4(t:_1)[up1(1)—1]—1> < (1-0), =20 (s9)

27|(1-B)
Applying (11) in the inequality (59), then
(1+k) <_4(t:_1)u}g_1(1) - 1)
—4(tp— 1) (a —37) (60)
—(k+0) <r(2/{p1(1) -1)— 1) <(1- U)m.

From (60) and the hypothesis of the theorem will obtain the result. O

If k = 1 then the following results are direct.
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Corollary 2. Let f(z) € Abe of the form (1) and f(z) € R} ,(B) with0 <a < 1,0 <y <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds for 0 < o < 1:

24,1) + (1 -y (1) < (1-0) (14 5505 ).

Then, forr <0, tp > 1, He,r(f)(z) € UCV(0).

Corollary 3. Let f(z) € Abe of the form (1) and f(z) € R ,(B) with0 <a < 1,0 <9 <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds for 0 < o < 1:

, r(l—o) (a —37)
L+ 0Ny (1) =2y 4 (1) = (1+0) < 05 <1 B ﬁ))'

Then, forr <0, tp > 1, Hy,r(f)(2) € Sp(0).
If k =1and ¢ = 0, then the following results are direct.

Corollary 4. Let f(z) € Abe of the form (1) and f(z) € R} ,(B) with0 <a < 1,0 <y <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds:

(x —37)

251+ (1) ST+ 522

Then, forr < 0, tp > 1, He, (f)(2z) € UCV.

Corollary 5. Let f(z) € Abe of the form (1) and f(z) € RY ,(B) with0 <a < 1,0 <y <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds:

02 )

Then, forr <0, tp > 1LHs,r(f)(2) € Sp.

Theorem 7. Let f(z) € A be of the form (1) and f(z) € R} ,(B) with0 <a < 1,0 <y <1,
T € C\ {0} and B < 1. Suppose that the following inequality holds for 0 < § < oco:

U(1) + (26 — 1)Uy(1) < (26 - 1)(1 + m>
Then, forr <0, tp > 1, He,,(f)(z) € CP(6).

Proof. From Lemma 7, the sufficient condition for the class CP(d) is

in(n+2(6—l))|An| <25—1. (61)
n=2

Applying (42) in (61), then

00 B (—r/4)”’1 B
=2n(n +2(6 1))—()6117)%1(1)”_1 lan]| <26—1. (62)

n
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Using (3) on the left side of (62), we obtain

00 B (—7/4)"_1
D R Ca
> B B (—r/4)"~1 2|7|(1-B)
S L2 =) S e —3)
-8 (& (/4! e (et
= @-3) <§ (e (D 2 1),§2<tp>n1<1>n1>
_ W (;t:}upﬂ(n (26— 1)U, (1) — (26 1)). 63)

Using (11) in (63) and applying it in (62), we obtain

;;:)(_it”u;,(l)) + (26— DU,(1) < (25—1)<1+m>. (64)

From (64) and the hypothesis of the theorem will obtain the required result. [

4. Conclusions

In this work, confluent hypergeometric functions and generalized Bessel functions
of the first kind are used to study the geometric properties of a particular class. For the
confluent hypergeometric function to be in the class, a few limitations were imposed on
the parameters. The coefficient bound of the class was used to determine the geometric
characteristics of integral operators using confluent hypergeometric functions and the
generalized Bessel function of the first kind. For specific parameter values, these operators
produce a variety of results. The presented findings included several previously published
special cases.
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