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Abstract: The Levenberg–Marquardt (LM) method is one of the most significant methods for solving
nonlinear equations as well as symmetric and asymmetric linear equations. To improve the method,
this paper proposes a new adaptive LM algorithm by modifying the LM parameter, combining the
trust region technique and the non-monotone technique. It is interesting that the new algorithm is
constantly optimized by adaptively choosing the LM parameter. To evaluate the effectiveness of the
new algorithm, we conduct tests using various examples. To extend the convergence results, we
prove the convergence of the new algorithm under the Hölderian local error bound condition rather
than the commonly used local error bound condition. Theoretical analysis and numerical results
show that the new algorithm is stable and effective.

Keywords: Levenberg–Marquardt method; nonlinear equations; LM parameter; Hölderian local error
bound; convergence

1. Introduction

Nonlinear equations are widely used in key fields such as electricity, optics, mechanics,
economic management, engineering technology, biomedicine, and alternative energy [1–6].
This paper discusses the following nonlinear equations:

f1(x1, x2, · · · , xn) = 0,
f2(x1, x2, · · · , xn) = 0,
...
fn(x1, x2, · · · , xn) = 0,

which can be written in a vector form:

F(x) = 0, (1)

where F(x) : Rn → Rn is continuously differentiable and x = (x1, x2, · · · , xn)
T . We denote

the solution set of Equation (1) by X∗ and assume that X∗ is nonempty.
Several promising numerical methods [7–11] have been proposed for solving nonlinear

equations. One of the classical methods to solve Equation (1) is the Gauss–Newton method,
which at each iteration computes the trial step

dk = −
(

JT
k Jk

)−1
JT
k Fk,

where Fk = F(xk),Jk = F′(xk) is the Jacobian matrix of F(x) at xk.
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However, in the actual calculation, the trial step of the Gauss–Newton method may
not be well defined when J(x) is singular or near-singular. To overcome this difficulty,
the Levenberg–Marquardt(LM) method [10,11] was proposed. At the kth iteration, the LM
method computes the trial step

dk = −
(

JT
k Jk + λk I

)−1
JT
k Fk, (2)

where λk ≥ 0 is the LM parameter and I ∈ Rn×n is the identity matrix. The trial step of
the LM method is actually a modification of the trial step of the Gauss–Newton method,
where the parameter λk is introduced to prevent the steps from being undefined or too
large when J(x) is singular or nearly singular.

The LM method has quadratic convergence when J(x) is Lipschitz continuous and
nonsingular at the solution of Equation (1) [12]. Nevertheless, the theoretical research shows
that the condition of the nonsingularity of J(x) is too strong. To solve this problem, some
scholars [13–19] have analysed the convergence of the LM method under the following
local error bound condition, which is weaker than nonsingularity of J(x):

c · dist(x, X∗) ≤ ∥F(x)∥, ∀x ∈ N(x∗), (3)

where c > 0 is a positive constant, dist(x, X∗) is the distance from x to X∗, and N(x∗) is
some neighbourhood of x∗ ∈ X∗. In this paper, ∥ · ∥ is the 2-norm.

Although the local error bound condition is weaker than the nonsingularity of J(x),
this condition is not always satisfied with some ill-conditioned nonlinear equations in
biochemical systems and certain applications. Recently, some scholars [20–23] have studied
the convergence of LM method under the following Hölderian error bound condition,
which is weaker than the local error bound condition:

c · dist(x, X∗) ≤ ∥F(x)∥γ, ∀x ∈ N(x∗), (4)

where c is a positive constant and γ ∈ (0, 1]. Obviously, the Hölderian error bound
condition (4) is a generalization of the local error bound condition (3), where the exponent
γ of ∥F(x)∥ is extended to an interval (0, 1]. In this paper, we study the convergence of the
new algorithm under the Hölderian error bound condition.

The LM parameter λk is vital to the efficiency of LM algorithms. Several scholars
have done interesting research [13–19,21–23] on λk. Yamashita and Fukushima [13] took
λk = ∥Fk∥2, although the disadvantage of choosing parameters in this way is that the
value of λk = ∥Fk∥2 may be too small to be effective when the sequence {xk} is close to
the solution set of Equation (1), which affects the local convergence rate. In order to solve
this disadvantage and reduce the impact, Fan and Yuan [14] chose λk = ∥Fk∥δ, which is
a generalization of λk = ∥Fk∥2, and extended the exponent δ of λk = ∥Fk∥δ to an interval
[1, 2]. The numerical results when solving some equations showed better performance
when δ = 1; however, the disadvantage of choosing parameters in this way is that it may
make λk = ∥Fk∥ too large and step dk too small when {xk} is far away from the solution set,
causing the sequence to move slowly to the solution set and affecting the global convergence
rate. To compensate for this flaw, Fan [17] used λk = µk∥Fk∥, where µk is updated every
iteration by the trust region technique. Numerical results showed that this change improved
the performance of the algorithm. Chen and Ma [23] took λk = θ∥Fk∥δ + (1 − θ)∥JT

k Fk∥δ

for θ ∈ [0, 1] and δ ∈ [1, 2], finding that this improved the numerical results of the LM
algorithm. Recently, Li et al. [24] proposed a new adaptive accelerated LM algorithm by
choosing the LM parameter as λk+1 =

µk+1∥Fk+1∥
1+∥Fk+1∥

, with numerical results showing that the
algorithm is efficient for solving symmetric and asymmetric linear equations.
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Inspired by the above literature, we take a new adaptive LM parameter to enhance the
computing performance of the LM algorithm, as follows:

λk =


µk(θ

∥Fk∥δ

1+∥Fk∥δ + (1 − θ)∥Fk∥δ), if ∥Fk∥ ≤ 1,

µk(θ
∥Fk∥δ

1+∥Fk∥δ + (1 − θ)∥Fk∥−δ), otherwise,
(0 ≤ θ ≤ 1, 1 ≤ δ ≤ 2),

where µk is updated every iteration via trust region technology. When {xk} is close to
a solution set, ∥Fk∥ is close to 0; thus, λk is close to µk∥Fk∥δ if δ = 1, as used in [17].
Conversely, when {xk} is far from the solution set, the leading ∥Fk∥ may be very large; thus,
λk will be close to µkθ. This effectively regulates the range of λk to prevent the LM step
from becoming excessively small, thereby enhancing computational efficiency. Therefore, it
seems that this choice of λk is more effective for the LM algorithm.

The following sections outline the remaining contents of this paper. In Section 2,
we propose a new algorithm with a new LM parameter in more detail and prove its
global convergence. In Section 3, we analyse the convergence rate of the new algorithm.
In Section 4, we present numerical results verifying that the new algorithm is effective.
Finally, some key conclusions are put forward in Section 5.

2. The New Adaptive LM Algorithm and Its Global Convergence

In this section, we introduce our new adaptive algorithm and establish its global
convergence.

If we define the merit function for Equation (1) as

ϕ(x) = ∥F(x)∥2,

then, at the kth iteration, the actual reduction of ϕ(x) is provided by

Aredk = ∥Fk∥2 − ∥F(xk + dk)∥2 (5)

and the predicted reduction of ϕ(x) by

Predk = ∥Fk∥2 − ∥Fk + Jkdk∥2, (6)

where dk is computed by Equation (2). The ratio of Aredk to Predk is

rk =
Aredk
Predk

, (7)

which determines whether to accept dk and update µk. Several studies have suggested
that algorithms employing non-monotone strategies outperform those with monotone
strategies [18,25–28]. To carry out the non-monotone strategy, Amini et al. [18] used the
following actual reduction to replace Equation (5):

Āredk = F2
l(k) − ∥F(xk + dk)∥2 (8)

where
Fl(k) = max

0≤j≤n(k)

{∥∥∥Fk−j

∥∥∥}, k = 0, 1, 2, . . . , (9)

n(k) = min{N0, k}, and N0 is a positive integer constant. With this change, ∥F(xk+1)∥ is
compared with max

0≤j≤n(k)

{∥∥∥Fk−j

∥∥∥} at each iteration. To combine the non-monotone strategy

with the new adaptive LM parameter, we use the following ratio:

r̂k =
Āredk
Predk
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to replace the original role of the ratio rk in the algorithm.
Next, we present a new adaptive LM algorithm, named the ALLM algorithm

(Algorithm 1).

Algorithm 1 (ALLM Algorithm)
Step 1. Given x0 ∈ Rn, N0 > 0, µ0 > m > 0, ε > 0, 0 < p0 ≤ p1 ≤ p2 < 1. Set k := 0.
Step 2. If

∥∥JT
k Fk
∥∥ ≤ ε, stop. Otherwise let

λk =


µk(θ

∥Fk∥δ

1+∥Fk∥δ + (1 − θ)∥Fk∥δ), if∥Fk∥ ≤ 1,

µk(θ
∥Fk∥δ

1+∥Fk∥δ + (1 − θ)∥Fk∥−δ), otherwise,
(0 ≤ θ ≤ 1, 1 ≤ δ ≤ 2). (10)

Step 3. Compute dk (
JT
k Jk + λk I

)
d = −JT

k Fk, (11)

Step 4. Compute Fl(k), Predk and Āredk by Equations (9), (6) and (8). Set

r̂k =
Āredk
Predk

. (12)

Step 5. Set

xk+1 =

{
xk + dk, if r̂k ≥ p0

xk, otherwise
(13)

Step 6. Choose µk+1 as

µk+1 =


4µk, if r̂k < p1
µk, if r̂k ∈ [p1, p2]

max
{ µk

4 , m
}

, otherwise.
(14)

Step 7. Set k = k + 1 and return to Step 2.

To prevent excessively large steps, we impose the following condition:

µk ≥ m, ∀k ∈ N (15)

where m is a positive constant.

Lemma 1. Predk ≥
∥∥JT

k Fk
∥∥min{∥dk∥, ∥JT

k Fk∥
∥JT

k Jk∥ } for all k ∈ N.

Proof. This proof comes from famous result in [29].

Lemma 2 ([18]). Assume that sequence {xk} is generated by the ALLM algorithm; then, the
sequence

{
Fl(k)

}
converges.

Assumption 1. (a) J(x) is Hölderian continuous, i.e., there exists a constant κhj > 0 such that

∥J(x)− J(y)∥ ≤ κhj∥x − y∥v, ∀x, y ∈ Rn (16)

where the exponent v ∈ (0, 1].
(b) J(x) is bounded, i.e., there exists a constant κbj > 0 such that

∥J(x)∥ ≤ κbj, ∀x ∈ Rn. (17)
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It follows from Equation (16) that

∥F(y)− F(x)− J(x)(y − x)∥ ≤
κhj

1 + v
∥y − x∥1+v. (18)

Thus, there exists a constant κb f > 0 that makes

∥F(y)− F(x)∥ ≤ κb f ∥y − x∥. (19)

Theorem 1. Under Assumption 1, the ALLM algorithm satisfies

lim
k→∞

inf ∥JT
k Fk∥ = 0. (20)

Proof. Assuming that Theorem 1 is not true, we obtain

∥JT
k Fk∥ ≥ ϵ0, ∀k ≥ k0 (21)

where ϵ0 is a positive constant and k0 ∈ N.
If dk is accepted by the ALLM algorithm, then

F2
l(k) − ∥F(xk + dk)∥2 ≥ p0Predk.

Per Lemma 1, Equations (17) and (21) indicate that, for all k ≥ k0,

F2
l(k) − ∥Fk+1∥2 ≥ p0∥JT

k Fk∥min{∥dk∥,
∥JT

k Fk∥
∥JT

k Jk∥
}

≥ p0ϵ0 min{∥dk∥,
ϵ0

κ2
bj
}.

Then, substituting k for l(k)− 1,

F2
l(l(k)−1) − ∥Fl(k)∥2 ≥ p0ϵ0 min

{
∥dl(k)−1∥,

ϵ0

κ2
bj

}

holds for all sufficiently large k.
Per Lemma 1, we obtain

lim
k→∞

(
F2

l(l(k)−1) − ∥Fl(k)∥2
)
= 0;

thus,

lim
k→∞

min

{
∥dl(k)−1∥,

ϵ0

κ2
bj

}
= 0,

as ϵ0
κ2

bj
is a positive constant, meaning that

lim
k→∞

∥dl(k)−1∥ = 0.

Per Equation (19), the last equality implies that

lim
k→∞

∥F(xl(k))∥ = lim
k→∞

∥F(xl(k)−1)∥.

Next, by considering the proof process of Theorem 2.4 in [18], we can prove that

lim
k→∞

∥dk∥ = 0. (22)
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Along with Equations (10), (11), (17) and (21), this implies that

µk → ∞, as k → ∞. (23)

Next, per Equation (18), we obtain

|∥F(xk + dk)∥ − ∥Fk + Jkdk∥| ≤
κhj

1 + v
∥dk∥1+v,

which yields

|∥F(xk + dk)∥2 − ∥Fk + Jkdk∥2| ≤
2κhj

1 + v
∥Fk + Jkdk∥∥dk∥1+v +

κ2
hj

(1 + v)2 ∥dk∥2+2v.

From Lemma 1 and Equations (17), (21), (22) and ∥Fk + Jkdk∥ ≤ ∥Fk∥ ≤ ∥F1∥, we obtain

|rk − 1| =
∣∣∣∣Aredk − Predk

Predk

∣∣∣∣
≤

2κhj
1+v∥Fk + Jkdk∥∥dk∥1+v +

κ2
hj

(1+v)2 ∥dk∥2+2v

∥∥JT
k Fk
∥∥min

{
∥dk∥, ∥JT

k Fk∥
∥JT

k Jk∥

}
→ 0;

thus,
lim

k→+∞
rk = 1.

Combined with Equations (6), (8), (9) and (12), we obtain

r̂k =
Āredk
Predk

=
F2

l(k) − ∥F(xk + dk)∥2

Predk
≥ ∥Fk∥2 − ∥Fk+1∥2

Predk
= rk → 1.

In view of the ALLM algorithm, for all large k there exists a positive constant µ̄ > m that
makes µk < µ̄, which contradicts Equation (23). Thus, Theorem 1 holds.

3. Convergence Rate

This section discusses the convergence rate of the ALLM algorithm. Here, we let {xk}
generated by ALLM algorithm lie within a neighborhood of x∗ ∈ X∗ and converge to the
solution set X∗ of Equation (1).

Assumption 2. (a) F(x) provides a Hölderian local error bound, i.e., there exist constants c > 0
and 0 < b < 1 that make

c · dist(x, X∗) ≤ ∥F(x)∥γ, ∀x ∈ N(x∗, b), (24)

where the exponent γ ∈ (0, 1], N(x∗, b) = {x ∈ Rn | ∥x − x∗∥ ≤ b}.
(b) J(x) is Hölderian continuous, i.e., there exists a constant κhj > 0 such that

∥J(x)− J(y)∥ ≤ κhj∥x − y∥v, ∀x, y ∈ N(x∗, b) (25)

where the exponent v ∈ (0, 1].

From Equation (25), we have

∥F(y)− F(x)− J(x)(y − x)∥ ≤
κhj

1 + v
∥y − x∥1+v, ∀x, y ∈ N(x∗, b). (26)
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Thus,
∥F(y)− F(x)∥ ≤ κb f ∥y − x∥, ∀x, y ∈ N(x∗, b), (27)

where κb f is a positive constant.
Defining by x̄k ∈ X∗ satisfies

∥x̄k − xk∥ = dist(xk, X∗),

which implies that x̄k is closest to xk.
Next, we discuss the important property of ∥dk∥ and µk; finally, we study the conver-

gence rate of the ALLM algorithm using the singular value decomposition (SVD) technique.
Without loss of generality, we assume that xk ∈ N(x∗, b

4 ).

Lemma 3. Under Assumption 2, we have
(1) If ∥Fk∥ ≤ 1; then, the following relationship holds:

∥dk∥ ≤ c̄ dist(xk, X∗)min{1,1+v− δ
2γ } (28)

where c̄ is a positive constant.
(2) If ∥Fk∥ > 1, then the following relationship holds:

∥dk∥ ≤ c̃ dist(xk, X∗) (29)

where c̃ is a positive constant.

Proof. (1) As xk ∈ N(x∗, b
4 ), we have

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥+ ∥xk − x∗∥ ≤ b
2

;

thus, x̄k ∈ N(x∗, b
2 ).

We define
φk(d) = ∥Fk + Jkd∥2 + λk∥d∥2.

It can be concluded from (11) that dk is the minimizer of φk(d). From (26) and F(x̄k) = 0,
we have

∥dk∥2 ≤ φk(dk)

λk

≤ φk(x̄k − xk)

λk

=
∥Fk + Jk(x̄k − xk)∥2 + λk∥x̄k − xk∥2

λk

=
∥F(x̄k)− Fk − Jk(x̄k − xk)∥2 + λk∥x̄k − xk∥2

λk

≤ 1
λk

(
κhj

1 + v

)2
∥x̄k − xk∥2+2v + ∥x̄k − xk∥2.

If ∥Fk∥ ≤ 1, then ∥Fk∥δ ≤ 1 and 1 + ∥Fk∥δ ≤ 2. In conjunction with (15) and (24), this yields

λk = µk

(
θ

∥Fk∥δ

1 + ∥Fk∥δ
+ (1 − θ)∥Fk∥δ

)

≥ m

(
θ

c
δ
γ ∥xk − x̄k∥

δ
γ

2
+ (1 − θ)c

δ
γ ∥xk − x̄k∥

δ
γ

)

≥ 1
2
(3m − mθ)c

δ
γ ∥xk − x̄k∥

δ
γ .
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Thus,

∥dk∥2 ≤ 1
λk

(
κhj

1 + v

)2

∥x̄k − xk∥2+2v + ∥x̄k − xk∥2

≤
2κ2

hjc
− δ

γ

(3m − mθ)(1 + v)2 ∥x̄k − xk∥
2+2v− δ

γ + ∥x̄k − xk∥2

≤

 2κ2
hjc

− δ
γ

(3m − mθ)(1 + v)2 + 1

∥x̄k − xk∥
2 min{1,1+v− δ

2γ }.

Setting c̄ =
√

2κ2
hjc

− δ
γ /(3m − mθ)(1 + v)2, we obtain Equation (28).

(2) If ∥Fk∥ > 1, then ∥Fk∥δ > 1 and 1 + ∥Fk∥δ ≤ 2∥Fk∥δ. Along with (19), this allows us to
conclude that

λk = µk

(
θ

∥Fk∥δ

1 + ∥Fk∥δ
+ (1 − θ)∥Fk∥−δ

)

≥ m

(
θ
∥Fk∥δ

2∥Fk∥δ
+ (1 − θ)k−δ

b f ∥xk − x̄k∥−δ

)

≥ mθ

2
+ m(1 − θ)k−δ

b f ∥xk − x̄k∥−δ.

Thus, there exists a constant c̃ > 0 such that

∥dk∥2 ≤ c̃2 dist(xk, X∗)2.

Therefore, ∥dk∥ ≤ c̃ dist(xk, X∗).

Lemma 4. Under Assumption 2, we have the following:
(1) If ∥Fk∥ ≤ 1, v > max{ 1

γ − 1, 1
γ(1+v)− δ

2
− 1, 1−γ

γ(1+v)− δ
2
}, then µk is bounded above, i.e., there

exists a positive constant M1 such that µk ≤ M1 holds for all large k.
(2) If ∥Fk∥ > 1, v > 1

γ − 1, then µk is bounded above, i.e., there exists a positive constant M2 such
that µk ≤ M2 holds for all large k.

Proof. (1) Considering Lemma 3.3 in [21], we can see that

|rk − 1| =
∣∣∣∣Aredk − Predk

Predk

∣∣∣∣
=

∣∣∣∣∣∥Fk + Jkdk∥2 − ∥F(xk + dk)∥2

Predk

∣∣∣∣∣
≤

(
κhj

1+v

)2
∥dk∥2+2v +

2κhj
1+v∥Fk + Jkdk∥∥dk∥1+v

c4∥Fk∥∥dk∥
max{ 1

γ , 1
γ(1+v)− δ

2
, 1−γ

γ(1+v)− δ
2
+1}

→ 0;

thus,
lim

k→+∞
rk = 1.

This, along with Equations (6), (8), (9), and (12), yields

r̂k =
Āredk
Predk

=
F2

l(k) − ∥F(xk + dk)∥2

Predk
≥ ∥Fk∥2 − ∥Fk+1∥2

Predk
= rk → 1.
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Considering the updating rule from (14), we can ascertain the existence of a positive
constant M1 > m, ensuring that µk ≤ M1 holds for sufficiently large k.
(2) Consider the following two cases.
Case 1: ∥x̄k − xk∥ ≤ ∥dk∥. Per Lemma 3 (2), Equations (24), (26) and v > 1

γ − 1, we have

∥Fk∥ − ∥Fk + Jkdk∥ ≥ ∥Fk∥ − ∥Fk + Jk(x̄k − xk)∥

≥ c
1
γ ∥x̄k − xk∥

1
γ −

κhj

1 + v
∥x̄k − xk∥1+v

≥ c1∥x̄k − xk∥
1
γ

≥ c2∥dk∥
1
γ

(30)

which holds for some c1, c2 > 0.
Case 2: ∥x̄k − xk∥ > ∥dk∥. It follows from Equation (30) that

∥Fk∥ − ∥Fk + Jkdk∥ ≥ ∥Fk∥ −
∥∥∥∥Fk +

∥dk∥
∥x̄k − xk∥

Jk(x̄k − xk)

∥∥∥∥
≥ ∥Fk∥ −

∥∥∥∥(1 − ∥dk∥
∥x̄k − xk∥

)
Fk +

∥dk∥
∥x̄k − xk∥

(Fk + Jk(x̄k − xk))

∥∥∥∥
≥ ∥dk∥

∥x̄k − xk∥
(∥Fk∥ − ∥Fk + Jk(x̄k − xk)∥)

≥ c1∥dk∥∥x̄k − xk∥
1
γ −1

≥ c3∥dk∥
1
γ

(31)

holds for some c3 > 0.
Therefore, from Equations (30) and (31), we have

Predk = (∥Fk∥+ ∥Fk + Jkdk∥)(∥Fk∥ − ∥Fk + Jkdk∥)
≥ ∥Fk∥(∥Fk∥ − ∥Fk + Jkdk∥)

≥ c4∥Fk∥∥dk∥
1
γ ,

(32)

which holds for some c4 > 0.
Because ∥Fk + Jkdk∥ ≤ ∥Fk∥, v > 1

γ − 1, from Equations (26) and (32) we have

|rk − 1| =
∣∣∣∣Aredk − Predk

Predk

∣∣∣∣
=

∣∣∣∣∣∥Fk + Jkdk∥2 − ∥F(xk + dk)∥2

Predk

∣∣∣∣∣
≤

(
κhj

1+v

)2
∥dk∥2+2v +

2κhj
1+v∥Fk + Jkdk∥∥dk∥1+v

c5∥Fk∥∥dk∥
1
γ

→ 0;

thus,
lim

k→+∞
rk = 1.

This, along with Equations (6), (8), (9) and (12), yields

r̂k =
Āredk
Predk

=
F2

l(k) − ∥F(xk + dk)∥2

Predk
≥ ∥Fk∥2 − ∥Fk+1∥2

Predk
= rk → 1.
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Therefore, there exists a positive constant M2 > m such that µk ≤ M2 holds for sufficiently
large k.

Next, we consider SVD technology. In view of the findings provided by Behling and
Iusem in [30], without loss of generality, we set rank(J(x̄)) = r for all x̄ ∈ N(x∗, b) ∩ X∗.
Suppose that the SVD of J(x̄k) is

J(x̄k) = ŪkΣ̄kV̄T
k = (Ūk,1, Ūk,2)

(
Σ̄k,1

0

)(
V̄T

k,1
V̄T

k,2

)
= Ūk,1Σ̄k,1V̄T

k,1,

where Σ̄k,1 = diag(σ̄k,1, . . . , σ̄k,r) > 0.
Correspondingly,

Jk = (Uk,1, Uk,2)

(
Σk,1

Σk,2

)(
VT

k,1
VT

k,2

)
= Uk,1Σk,1VT

k,1 + Uk,2Σk,2VT
k,2,

where Σk,2 = diag(σk,r+1, . . . , σk,n) > 0.
For clearness, we let

Jk = U1Σ1VT
1 + U2Σ2VT

2 ,

which neglects the subscription k in Uk,i, Σk,i and Vk,i.

Lemma 5 ([21]). Under Assumption 2, the following relationship holds:
(1)
∥∥U1UT

1 Fk
∥∥ ≤ κb f ∥x̄k − xk∥

(2)
∥∥U2UT

2 Fk
∥∥ ≤ 2κhj∥x̄k − xk∥1+v.

Theorem 2. Under the conditions of Lemma 3, we have the following:
(1) If ∥Fk∥ ≤ 1, then the {xk} generated by the ALLM algorithm converges to the solution set of
Equation (1) with order min{γ(1 + δ), γ(1 + v), γ(1 + v)(1 + v − δ

2γ )}.
(2) If ∥Fk∥ > 1, then the {xk} generated by the ALLM algorithm converges to the solution set of
Equation (1) with order γ.

Proof. (1) It follows from the SVD of Jk that

dk = −V1

(
Σ2

1 + λk I
)−1

Σ1UT
1 Fk − V2

(
Σ2

2 + λk I
)−1

Σ2UT
2 Fk

and

Fk + Jkdk = Fk − U1Σ1

(
Σ2

1 + λk I
)−1

Σ1UT
1 Fk − U2Σ2

(
Σ2

2 + λk I
)−1

Σ2UT
2 Fk

= λkU1

(
Σ2

1 + λk I
)−1

UT
1 Fk + λkU2

(
Σ2

2 + λk I
)−1

UT
2 Fk.

(33)

According to the theory of matrix perturbation [31] and Equation (25), we have∥∥diag(Σ1 − Σ̄k,1, Σ2)
∥∥ ≤ ∥Jk − J(x̄k)∥ ≤ κhj∥x̄k − xk∥v,

which indicates ∥∥Σ1 − Σ̄k,1
∥∥ ≤ κhj∥x̄k − xk∥v, ∥Σ2∥ ≤ κhj∥x̄k − xk∥v. (34)

As {xk} converges to X∗, without loss of generality, we let κhj∥x̄k − xk∥v ≤ σ̄
2 hold for all

large k. From Equation (34), we have∥∥∥∥(Σ2
1 + λk I

)−1
∥∥∥∥ ≤

∥∥∥Σ−2
1

∥∥∥ ≤ 1(
σ̄ − κhj∥x̄k − xk∥v

)2 ≤ 4
σ̄2 . (35)
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From Equations (34), (35), Lemma 5, and
(
Σ2

2 + λk I
)−1∥ ≤ λ−1

k , we have

∥Fk + Jkdk∥ ≤
4λkκb f

σ̄2 ∥x̄k − xk∥+ 2κhj∥x̄k − xk∥1+v. (36)

If ∥Fk∥ ≤ 1, then ∥Fk∥δ ≤ 1, while from Equation (27) and Lemma 4 we have

λk = µk

(
θ

∥Fk∥δ

1 + ∥Fk∥δ
+ (1 − θ)∥Fk∥δ

)
≤ M1

(
θ∥Fk∥δ + (1 − θ)∥Fk∥δ

)
≤ M1kδ

b f ∥xk − x̄k∥δ.

This, along with Equation (36), yields

∥Fk + Jkdk∥ ≤
4M1κ1+δ

b f

σ̄2 ∥x̄k − xk∥1+δ + 2κhj∥x̄k − xk∥1+v

≤

4M1κ1+δ
b f

σ̄2 + 2κhj

∥x̄k − xk∥min{1+δ,1+v}.
(37)

Letting c5 =
4M1κ1+δ

b f
σ̄2 + 2κhj, from Equations (24), (26), (28) and (37) we obtain

(c∥x̄k+1 − xk+1∥)
1
γ ≤ ∥F(xk + dk)∥
≤ ∥Fk + Jkdk∥+ κhj∥dk∥1+v

≤ c5∥x̄k − xk∥min{1+δ,1+v} + κhj c̄1+v∥x̄k − xk∥
min{1+v,(1+v)(1+v− δ

2γ )}

≤
(

c5 + κhj c̄1+v
)
∥x̄k − xk∥

min{1+δ,1+v,(1+v)(1+v− δ
2γ )}.

Thus,

c∥x̄k+1 − xk+1∥ ≤
(

c5 + κhj c̄1+v
)γ

∥x̄k − xk∥
min{γ(1+δ),γ(1+v),γ(1+v)(1+v− δ

2γ )}, (38)

which indicates that {xk} converges to the solution set X∗ of Equation (1) with convergence
rate min{γ(1+ δ), γ(1 + v), γ(1 + v)(1 + v − δ

2γ )}.

(2) The proof of ∥Fk∥ > 1 is similar to the proof of ∥Fk∥−δ ≤ 1. We obtain

c∥x̄k+1 − xk+1∥ ≤
(

c6 + κhj c̄1+v
)γ

∥x̄k − xk∥γ;

thus, {xk} converges to the solution set X∗ of Equation (1) with order γ.

Theorem 3. Under Assumption 2, we have the following:
(1) If ∥Fk∥ ≤ 1, v > 1

γ − 1, 1
γ − 1 < δ ≤ 2γv, then {xk} generated by the ALLM algorithm

converges to some solution of Equation (1) with order min{γ(1 + δ), γ(1 + v)}.
(2) If ∥Fk∥ > 1, v > 1

γ − 1, then {xk} generated by the ALLM algorithm converges to some
solution of Equation (1) with order γ.

Proof. (1) If ∥Fk∥ ≤ 1 and v ≥ δ
2γ , then from Equation (28) we obtain

∥dk∥ ≤ c̄∥x̄k − xk∥. (39)



Symmetry 2024, 16, 674 12 of 19

It follows from v > 1
γ − 1 and v ≥ δ

2γ that

(
1
γ
− 1
)
−
(

1 − γ

γ(1 + v)− δ
2

)
≥ 0

and (
1 − γ

γ(1 + v)− δ
2

)
−
(

1
γ(1 + v)− δ

2

− 1

)
≥ 0.

Therefore, the conditions of Lemma 4 (1) hold. In conjunction with δ > 1
γ − 1 and δ ≤ 2γv,

this yields

min
{

γ(1 + δ), γ(1 + v), γ(1 + v)
(

1 + v − δ

2γ

)}
=min{γ(1 + δ), γ(1 + v)}
>1.

(40)

Thus, {xk} converges superlinearly to X∗.
For clearness,

∥x̄k − xk∥ ≤ ∥x̄k+1 − xk+1∥+ ∥dk∥. (41)

In view of Equations (38) and (40), we know the existence of a constant M > 0, meaning
that

∥x̄k − xk∥ ≤ M∥dk∥ (42)

holds for large k. Thus, from Equations (38), (39), (40), and (42), we have

∥dk+1∥ ≤ O
(
∥dk∥min{γ(1+δ),γ(1+v)}

)
,

which means that the ALLM algorithm converges with order min{γ(1 + δ), γ(1 + v)}.
(2) The proof of ∥Fk∥ > 1 is similar to the proof of ∥Fk∥ ≤ 1. We obtain

∥dk+1∥ ≤ O
(
∥dk∥γ);

thus, ALLM algorithm converges with order γ.

4. Numerical Experiments

In this section, we verify the effectiveness of the ALLM algorithm by presenting some
numerical experiments. Algorithm 1 (named the AELM algorithm) from [22] is used for
comparison. All algorithms were tested in the MATLAB R2022b programming environment
on a personal PC with an i7-7500U CPU and 2.7 GHz. We selected the parameters of the
AELM algorithm as follows: p0 = 10−4, p1 = 0.25, p2 = 0.75, N0 = 5, µ1 = 0.01, m = 10−8.
We selected the parameters of the ALLM algorithm as follows: p0 = 10−4, p1 = 0.25, p2 =
0.75, N0 = 5, µ1 = 0.01, m = 10−8, θ = 0, 0.5, 1, δ = 1, 2. All algorithms were terminated
when

∥∥JT
k Fk
∥∥ ≤ 10−5 or when the number of iterations surpassed 1000.

Example 1. We consider four special functions [22] to verify that the ALLM algorithm satisfies
more theoretical applications. Functions 1–4 satisfy the Hölderian local error bound condition
around the zero point but do not satisfy the local error bound condition. Here, the J(x) for Functions
3–4 are Hölderian continuous but not Lipschitz continuous, while the J(x) for Functions 1–2 are
both Lipschitz continuous and Hölderian continuous.
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Function 1
f1(x) = x1 + 10x2,

f2(x) =
√

5(x3 − x4),

f3(x) = (x2 − 2x3)
2,

f4(x) =
√

10(x1 − x4)
2.

Initial point: x0 = (3,−1, 0, 1)T , zero point: (0, 0, 0, 0)T .
Function 2

f1(x) = x1x2,

f2(x) = x2
1 + x2

2.

Initial point: x0 = (1, 1)T , zero point: (0, 0)T .
Function 3

f1(x) = x1 + 10x2,

f2(x) = x3 − x4,

f3(x) = (x2 − 2x3)
3
2 ,

f4(x) = (x1 − x4)
3
2 .

Initial point: x0 = (3, 1, 0, 1)T , zero point: (0, 0, 0, 0)T .
Function 4

f1(x) = x1 + 10x2,

f2(x) = x3 − x4,

f3(x) = (x2 − 2x3)
4
3 ,

f4(x) = (x1 − x4)
4
3 .

Initial point: x0 = (3,−1, 0, 1)T , zero point: (0, 0, 0, 0)T .
We tested each function for three starting points, x0, 10x0 and 100x0, to study the

global convergence of the ALLM algorithm. Table 1 lists the numerical results achieved by
the AELM and ALLM algorithms on the four test functions. The symbols in Table 1 have
the following meanings:

• NF: The number of function calculations.
• NJ: The number of Jacobian calculations.
• NT: We generally use the ‘NT = NF + NJ ∗ n’ to indicate the total computations.

Table 1. Numerical results of the AELM and ALLM algorithms with various choices of δ and θ.

AELM ALLM

δ = 1 δ = 2

Function n x0 θ = 0 θ = 0.5 θ = 1 θ = 0 θ = 0.5 θ = 1

NF/NJ/NT NF/NJ/NT NF/NJ/NT NF/NJ/NT NF/NJ/NT NF/NJ/NT NF/NJ/NT

1 4 1 10/10/50 10/10/50 10/10/50 10/10/50 10/10/50 10/10/50 10/10/50
10 13/13/65 13/13/65 13/13/65 13/13/65 13/13/65 13/13/65 13/13/65

100 16/16/80 16/16/80 16/16/80 16/16/80 16/16/80 16/16/80 16/16/80

2 2 1 8/8/24 8/8/24 8/8/24 8/8/24 8/8/24 8/8/24 8/8/24
10 11/11/33 11/11/33 11/11/33 11/11/33 11/11/33 11/11/33 11/11/33

100 15/15/45 15/15/45 15/15/45 15/15/45 15/15/45 15/15/45 15/15/45

3 4 1 8/8/40 8/8/40 8/8/40 8/8/40 8/8/40 8/8/40 8/8/40
10 10/10/50 10/10/50 10/10/50 10/10/50 10/10/50 10/10/50 10/10/50

100 12/12/60 12/12/60 12/12/60 12/12/60 12/12/60 12/12/60 12/12/60

4 4 1 13/13/65 7/7/35 7/7/35 7/7/35 7/7/35 7/7/35 7/7/35
10 16/16/80 9/9/45 9/9/45 9/9/45 9/9/45 9/9/45 9/9/45

100 61/50/261 11/11/55 11/11/55 11/11/55 11/11/55 11/11/55 11/11/55
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As can be seen from Table 1, the ALLM algorithm is obviously superior to the AELM
algorithm for the numerical results of Function 4, while the two algorithms are the same
for the numerical results of Functions 1–3.

Example 2. We consider some singular problems which are created by the following form [32]:

F̂(x) = F(x)− J(x∗)A
(

AT A
)−1

AT(x − x∗),

where the test function F(x) is provided by Moré, Garbow, and Hillstrom in [33], x∗ is the root of
F(x), and A ∈ Rn×k has full column rank. It is clear that the Jacobian of F̂(x∗) is

Ĵ(x∗) = J(x∗)
(

I − A
(

AT A
)−1

AT
)

,

with rank n − k(1 ≤ k ≤ n) and F̂(x∗) = 0. Similar to [33], we choose

A = [1, 1, . . . , 1]T ∈ Rn×1,

which implies rank
(

Ĵ(x∗)
)
= n − 1.

Next, we ran all test problems for three starting points: −10x0,−x0, x0, 10x0, and
100x0, where x0 derives from [33]. Tables 2 and 3 display the numerical results achieved by
the algorithms for all test functions. The meanings of the symbols in Tables 2 and 3 are as
follows:

• Iter: Number of iterations.
• F: Final value of the norm of the function.
• Time: CPU time in seconds.

From Tables 2 and 3, it is evident that the ALLM algorithm generally outperforms
the AELM algorithm in terms of CPU time across most test functions. Compared with the
AELM algorithm, the performance of the ALLM algorithm exhibits superior performance
when θ = 0 and δ = 2, dominating approximately 90% of the CPU time results; about 4%
of the results of iterations of the two algorithms are the same. In particular, for certain
test functions it can be seen that the ALLM algorithm consistently outperforms the AELM
algorithm in terms of both iteration count and CPU time when the initial point is distant
from the solution set. From Table 2, for the extended helical valley function, when n = 501
and the initial point is −10x0, the number of iterations and the CPU time of the ALLM
algorithm are better than those of the AELM algorithm. From Table 3, for the discrete
boundary value function, when n = 1000 and the initial point is −10x0 or −x0 or x0 or 10x0
or 100x0, the number of iterations and CPU time of the ALLM algorithm are better than
those of the AELM algorithm.

To compare the numerical performance profile of the AELM and ALLM algorithms,
we chose the performance analysis method proposed by Dolan [34]. As can be seen
from Figure 1, when θ = 0 and δ = 2, the ALLM algorithm demonstrates the best
performance in terms of iteration count, while when θ = 1 and δ = 1, the performance
in terms of the number of iterations for both algorithms. As can be seen from Figure 2,
when θ = 0 and δ = 2, the CPU time of the ALLM algorithm has the best performance,
while when θ and δ take other values the ALLM algorithm maintains advantages in CPU
time performance.

In general, the ALLM algorithm proves more effective in solving nonlinear equa-
tions compared to the AELM algorithm. In particular, when δ is larger and θ is smaller,
the ALLM algorithm demonstrates superior performance. According to the needs of practi-
cal applications, the selection of λk is continuously optimized by changing the values of
δ and θ.
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Table 2. Numerical results of the AELM and ALLM algorithms with δ = 1 and various choices of θ.

AELM ALLM

δ = 1

Function n x0 θ = 0 θ = 0.5 θ = 1

Iters/F/Time Iters/F/Time Iters/F/Time Iters/F/Time

Extended Rosenbrock 500 −10 19/2.7631 × 10−7/0.30 19/2.7858 × 10−7/0.27 19/2.7744 × 10−7/0.29 19/2.7631 × 10−7/0.28
−1 16/1.7341 × 10−7/0.23 14/2.5509 × 10−7/0.19 15/3.3852 × 10−7/0.20 16/1.7341 × 10−7/0.25

1 17/2.2186 × 10−7/0.24 17/1.9553 × 10−7/0.25 17/2.0901 × 10−7/0.22 17/2.2186 × 10−7/0.23
10 19/3.9252 × 10−7/0.29 19/3.8895 × 10−7/0.25 19/3.9066 × 10−7/0.27 19/3.9252 × 10−7/0.29

100 23/1.3154 × 10−7/0.42 23/1.3142 × 10−7/0.30 23/1.3150 × 10−7/0.34 23/1.3154 × 10−7/0.37
1000 −10 19/3.9156 × 10−7/1.63 19/3.9442 × 10−7/1.52 19/3.9299 × 10−7/1.53 19/3.9156 × 10−7/1.64

−1 16/2.5034 × 10−7/1.43 14/3.8204 × 10−7/1.10 16/1.2047 × 10−7/1.28 16/2.5034 × 10−7/1.34
1 17/3.1868 × 10−7/1.46 17/2.8057 × 10−7/1.40 17/2.9943 × 10−7/1.36 17/3.1868 × 10−7/1.46

10 20/1.3911 × 10−7/1.67 20/1.3781 × 10−7/1.93 20/1.3866 × 10−7/1.65 20/1.3911 × 10−7/1.57
100 23/1.8652 × 10−7/2.06 23/1.8646 × 10−7/1.90 23/1.8638 × 10−7/1.90 23/1.8652 × 10−7/1.98

Extended Helical valley 501 −10 42/1.3356 × 10−6/0.68 3/5.1316 × 10−7/0.03 13/3.7044 × 10−7/0.17 14/3.2573 × 10−7/0.23
−1 1/0.0000 × 100/0.01 1/0.0000 × 100/0.01 1/0.0000 × 100/0.01 1/0.0000 × 100/0.01

1 8/3.1758 × 10−7/0.13 8/1.4137 × 10−7/0.09 8/2.1648 × 10−7/0.10 8/3.1758 × 10−7/0.12
10 8/1.8981 × 10−9/0.12 8/8.0024 × 10−10/0.10 8/1.2568 × 10−9/0.10 8/1.8981 × 10−9/0.11

100 8/5.9124 × 10−10/0.12 8/3.9747 × 10−10/0.11 8/4.8399 × 10−10/0.11 8/5.9124 × 10−10/0.12
1000 −10 7/2.3766 × 10−13/0.53 6/3.0134 × 10−13/0.45 6/1.5143 × 10−9/0.44 7/2.3766 × 10−13/0.55

−1 1/0.0000 × 100/0.04 1/0.0000 × 100/0.04 1/0.0000 × 100/0.04 1/0.0000 × 100/0.04
1 8/1.8337 × 10−8/0.69 8/7.2043 × 10−9/0.68 8/1.1804 × 10−8/0.62 8/1.8337 × 10−8/0.67

10 8/1.6817 × 10−11/0.66 8/1.0758 × 10−11/0.61 8/1.4744 × 10−11/0.60 8/1.6817 × 10−11/0.65
100 26/9.3824 × 10−13/2.51 35/1.0739 × 10−7/3.29 26/6.6675 × 10−8/2.18 26/6.9835 × 10−11/2.16

Discrete boundary value 500 −10 6/3.3487 × 10−3/0.11 6/3.3666 × 10−3/0.07 6/3.3631 × 10−3/0.09 6/3.3487 × 10−3/0.12
−1 4/1.2234 × 10−3/0.06 4/1.2579 × 10−3/0.04 4/1.2417 × 10−3/0.05 4/1.2234 × 10−3/0.04

1 3/3.5633 × 10−4/0.04 3/3.6008 × 10−4/0.03 3/3.5823 × 10−4/0.03 3/3.5633 × 10−4/0.03
10 5/6.7290 × 10−3/0.08 5/6.7739 × 10−3/0.06 5/6.7614 × 10−3/0.06 5/6.7290 × 10−3/0.08

100 12/1.3651 × 10−4/0.23 13/1.3834 × 10−5/0.16 12/1.5752 × 10−4/0.17 12/1.3651 × 10−4/0.16
1000 −10 6/3.6656 × 10−3/0.52 6/3.6804 × 10−3/0.50 6/3.6780 × 10−3/0.47 6/3.6656 × 10−3/0.48

−1 4/1.4253 × 10−3/0.30 4/1.4669 × 10−3/0.30 4/1.4474 × 10−3/0.30 4/1.4253 × 10−3/0.31
1 3/1.3022 × 10−4/0.22 3/1.3092 × 10−4/0.20 3/1.3058 × 10−4/0.21 3/1.3022 × 10−4/0.21

10 5/6.5900 × 10−3/0.40 5/6.6346 × 10−3/0.38 5/6.6209 × 10−3/0.35 5/6.5900 × 10−3/0.39
100 13/9.9458 × 10−5/1.09 13/1.0869 × 10−4/1.06 13/1.0505 × 10−4/1.07 13/9.9458 × 10−5/1.08

Discrete integral equation 500 −10 12/1.2304 × 10−5/1.06 12/1.2171 × 10−5/1.03 12/1.2238 × 10−5/1.04 12/1.2304 × 10−5/1.06
−1 9/1.5928 × 10−5/0.76 9/1.4153 × 10−5/0.76 9/1.5162 × 10−5/0.75 9/1.5928 × 10−5/0.76

1 7/1.3357 × 10−5/0.59 7/1.3770 × 10−5/0.58 7/1.3592 × 10−5/0.58 7/1.3357 × 10−5/0.58
10 10/9.3502 × 10−6/0.86 8/9.0151 × 10−6/0.67 9/1.5419 × 10−5/0.76 10/9.3502 × 10−6/0.86

100 10/4.5155 × 10−9/0.91 10/4.5463 × 10−9/0.89 10/4.5306 × 10−9/0.88 10/4.5155 × 10−9/0.91
1000 −10 12/1.7452 × 10−5/4.50 12/1.7265 × 10−5/4.48 12/1.7358 × 10−5/4.50 12/1.7452 × 10−5/4.51

−1 10/6.0308 × 10−6/3.71 10/5.2005 × 10−6/3.73 10/5.6998 × 10−6/3.70 10/6.0308 × 10−6/3.67
1 8/5.1495 × 10−6/2.86 8/5.3838 × 10−6/2.90 8/5.2754 × 10−6/2.50 8/5.1495 × 10−6/2.86

10 10/1.4251 × 10−5/3.73 9/5.0675 × 10−6/3.30 10/5.7297 × 10−6/3.59 10/1.4251e × 10−5/3.66
100 10/6.3828 × 10−9/3.86 10/6.4261 × 10−9/3.83 10/6.4040 × 10−9/3.81 10/6.3828 × 10−9/3.83

Broyden banded 500 −10 10/3.8446 × 10−12/0.17 10/3.9166 × 10−12/0.16 10/4.3882 × 10−12/0.14 10/3.8446 × 10−12/0.17
−1 26/6.9212 × 10−6/0.52 31/1.2468 × 10−5/0.53 28/1.6756 × 10−5/0.50 25/1.2128 × 10−5/0.50

1 12/1.5063 × 10−5/0.20 12/1.5060 × 10−5/0.20 12/1.5061 × 10−5/0.19 12/1.5063 × 10−5/0.20
10 18/1.7636 × 10−5/0.33 18/1.7636 × 10−5/0.30 18/1.7636 × 10−5/0.28 18/1.7636 × 10−5/0.28

100 24/1.0280 × 10−5/0.44 24/1.0280 × 10−5/0.36 24/1.0280 × 10−5/0.37 24/1.0280 × 10−5/0.37
1000 −10 10/3.5499 × 10−12/0.90 10/3.8124 × 10−12/0.91 10/4.6220 × 10−12/0.90 10/3.5499 × 10−12/0.99

−1 33/9.9927 × 10−6/3.35 27/9.6110 × 10−6/2.54 33/2.6949 × 10−5/3.04 28/9.7912 × 10−6/2.62
1 12/2.1201 × 10−5/1.22 12/2.1196 × 10−5/1.08 12/2.1199 × 10−5/1.09 12/2.1201 × 10−5/1.17

10 18/2.4886 × 10−5/1.82 18/2.4886 × 10−5/1.59 18/2.4886 × 10−5/1.68 18/2.4886 × 10−5/1.68
100 24/1.4499 × 10−5/2.80 24/1.4499 × 10−5/2.42 24/1.4499 × 10−5/2.37 24/1.4499 × 10−5/2.54
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Table 3. Numerical results of the AELM and ALLM algorithms with δ = 2 and various choices of θ.

AELM ALLM

δ = 2

Function n x0 θ = 0 θ = 0.5 θ = 1

Iters/F/Time Iters/F/Time Iters/F/Time Iters/F/Time

Extended Rosenbrock 500 −10 19/2.7631 × 10−7/0.30 19/2.7841 × 10−7/0.26 19/2.7734 × 10−7/0.26 19/2.7635 × 10−7/0.30
−1 16/1.7341 × 10−7/0.23 14/1.7729 × 10−7/0.17 15/3.2343 × 10−7/0.21 16/1.7288 × 10−7/0.20

1 17/2.2186 × 10−7/0.24 17/1.8677 × 10−7/0.25 17/2.0435 × 10−7/0.25 17/2.2121 × 10−7/0.22
10 19/3.9252 × 10−7/0.29 19/3.8875 × 10−7/0.24 19/3.9061 × 10−7/0.26 19/3.9243 × 10−7/0.25

100 23/1.3154 × 10−7/0.42 23/1.3134 × 10−7/0.29 23/1.3145 × 10−7/0.33 23/1.3149 × 10−7/0.33
1000 −10 19/3.9156 × 10−7/1.63 19/3.9423 × 10−7/1.50 19/3.9284 × 10−7/1.54 19/3.9140 × 10−7/1.56

−1 16/2.5034 × 10−7/1.43 14/2.3878 × 10−7/1.05 15/4.5237 × 10−7/1.24 16/2.4969 × 10−7/1.32
1 17/3.1868 × 10−7/1.46 17/2.7048 × 10−7/1.33 17/2.9369 × 10−7/1.36 17/3.1809 × 10−7/1.33

10 20/1.3911 × 10−7/1.67 20/1.3786 × 10−7/1.53 20/1.3857 × 10−7/1.57 20/1.3919e × 10−7/1.59
100 23/1.8652 × 10−7/2.06 23/1.8649 × 10−7/1.83 23/1.8655 × 10−7/1.80 23/1.8633 × 10−7/1.81

Extended Helical valley 501 −10 42/1.3356 × 10−6/0.68 3/7.5853 × 10−13/0.04 13/1.7643 × 10−7/0.18 14/2.0341 × 10−7/0.19
−1 1/0.0000 × 100/0.01 1/0.0000 × 100/0.01 1/0.0000 × 100/0.01 1/0.0000 × 100/0.01

1 8/3.1758 × 10−7/0.13 8/1.0595 × 10−7/0.11 8/1.9230 × 10−7/0.11 8/3.2101 × 10−7/0.09
10 8/1.8981 × 10−9/0.12 8/4.7841 × 10−10/0.11 8/9.5278 × 10−10/0.10 8/1.6935 × 10−9/0.10

100 8/5.9124 × 10−10/0.12 8/2.0055 × 10−10/0.10 8/3.2729 × 10−10/0.13 8/4.9161 × 10−10/0.13
1000 −10 7/2.3766 × 10−13/0.53 5/7.4481 × 10−10/0.36 6/1.7998 × 10−12/0.51 6/4.6416 × 10−7/0.42

−1 1/0.0000 × 100/0.04 1/0.0000 × 100/0.04 1/0.0000 × 100/0.04 1/0.0000 × 100/0.04
1 8/1.8337 × 10−8/0.69 8/4.1226 × 10−9/0.59 8/9.1462 × 10−9/0.62 8/1.7753 × 10−8/0.63

10 8/1.6817 × 10−11/0.66 8/2.2703 × 10−11/0.59 8/3.2386 × 10−11/0.60 8/4.0803 × 10−11/0.64
100 26/9.3824 × 10−13/2.51 46/2.6770 × 10−11/3.70 26/8.5493 × 10−9/2.09 26/2.8466 × 10−10/2.15

Discrete boundary value 500 −10 6/3.3487 × 10−3/0.11 4/3.1555 × 10−3/0.04 4/4.2613 × 10−3/0.04 4/4.7919 × 10−3/0.05
−1 4/1.2234 × 10−3/0.06 3/7.2588 × 10−4/0.03 3/7.1034 × 10−4/0.03 3/6.9394 × 10−4/0.04

1 3/3.5633 × 10−4/0.04 3/4.1479 × 10−6/0.03 3/4.1402 × 10−6/0.04 3/4.1324 × 10−6/0.04
10 5/6.7290 × 10−3/0.08 4/2.4328 × 10−3/0.05 4/ 3.0758 × 10−3/0.05 4/3.4218 × 10−3/0.05

100 12/1.3651 × 10−4/0.23 11/4.2188 × 10−5/0.16 12/1.5591 × 10−5/0.18 12/1.3814 × 10−5/0.18
1000 −10 6/3.6656 × 10−3/0.52 4/3.5180 × 10−3/0.29 4/4.5349 × 10−3/0.29 4/5.0429 × 10−3/0.28

−1 4/1.4253 × 10−3/0.30 3/9.3230 × 10−4/0.21 3/9.1090 × 10−4/0.21 3/8.8813 × 10−4/0.23
1 3/1.3022 × 10−4/0.22 2/2.6311 × 10−4/0.13 2/2.6303 × 10−4/0.13 2/2.6296 × 10−4/0.13

10 5/6.5900 × 10−3/0.40 4/2.5604 × 10−3/0.29 4/3.0932 × 10−3/0.30 4/3.4004 × 10−3/0.27
100 13/9.9458 × 10−5/1.09 11/1.2743 × 10−4/0.88 11/2.1884 × 10−4/0.93 11/2.1536 × 10−4/0.85

Discrete integral equation 500 −10 12/1.2304 × 10−5/1.06 12/1.2047 × 10−5/1.03 12/1.2171 × 10−5/1.05 12/1.2294 × 10−5/1.04
−1 9/1.5928 × 10−5/0.76 9/1.0655 × 10−5/0.75 9/1.2735 × 10−5/0.76 9/ 1.4195 × 10−5/0.76

1 7/1.3357 × 10−5/0.59 7/1.0869 × 10−5/0.57 7/1.0772 × 10−5/0.58 7/1.0633 × 10−5/0.57
10 10/9.3502 × 10−6/0.86 9/4.8669 × 10−6/0.75 9/1.3758 × 10−5/0.76 10/9.7578 × 10−6/0.84

100 10/4.5155 × 10−9/0.91 10/4.5453 × 10−9/0.89 10/4.5300 × 10−9/0.90 10/4.5154 × 10−9/0.88
1000 −10 12/1.7452 × 10−5/4.50 12/1.7133 × 10−5/4.41 12/1.7285 × 10−5/4.46 12/1.7441 × 10−5/4.47

−1 10/6.0308 × 10−6/3.71 9/1.5092 × 10−5/3.25 9/1.8533 × 10−5/3.27 10/5.2150 × 10−6/3.66
1 8/5.1495 × 10−6/2.86 7/1.5749 × 10−5/2.48 7/1.5610 × 10−5/2.50 7/1.5367 × 10−5/2.62

10 10/1.4251 × 10−5/3.73 9/8.5398 × 10−6/3.25 10/5.1845 × 10−6/3.62 10/1.4626 × 10−5/3.71
100 10/6.3828 × 10−9/3.86 10/6.4246 × 10−9/3.76 10/6.4031 × 10−9/3.79 10/6.3825 × 10−9/3.77

Broyden banded 500 −10 10/3.8446 × 10−12/0.17 10/3.795 × 10−12/0.16 10/4.3814 × 10−12/0.17 10/3.8105 × 10−12/0.16
−1 26/6.9212 × 10−6/0.52 29/6.5177 × 10−6/0.45 28/1.6459 × 10−5/0.44 25/1.1907 × 10−5/0.42

1 12/1.5063 × 10−5/0.20 12/1.5059 × 10−5/0.20 12/1.5061 × 10−5/0.20 12/1.5063 × 10−5/0.18
10 18/1.7636 × 10−5/0.33 18/1.7636 × 10−5/0.30 18/1.7636 × 10−5/0.33 18/1.7636 × 10−5/0.31

100 24/1.0280 × 10−5/0.44 24/1.0280 × 10−5/0.36 24/1.0280 × 10−5/0.40 24/1.0280 × 10−5/0.36
1000 −10 10/3.5499 × 10−12/0.90 10/4.5936 × 10−12/0.86 10/3.810 × 10−12/0.89 10/5.7143 × 10−12/0.93

−1 33/9.9927 × 10−6/3.35 29/1.5374 × 10−5/2.76 31/1.8408 × 10−5 /2.84 28/9.7968 × 10−6/2.61
1 12/2.1201 × 10−5/1.22 12/2.1194 × 10−5/1.07 12/2.1198 × 10−5/1.08 12/2.1201 × 10−5/1.13

10 18/2.4886 × 10−5/1.82 18/2.4886 × 10−5/1.69 18/2.4886 × 10−5/1.64 18/2.4886 × 10−5/1.65
100 24/1.4499 × 10−5/2.80 24/1.4499 × 10−5/2.30 24/1.4499 × 10−5/2.33 24/1.4499 × 10−5/2.51
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Figure 1. Performance profile of AELM and ALLM based on number of iterations for example 1–10.
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Figure 2. Performance profile of AELM and ALLM based on CPU time for example 1–10.

5. Conclusions

In this paper, inspired by the Hölderian local error bound condition, we studied the
convergence properties of our ALLM algorithm under different conditions. We used the
new modified adaptive LM parameter and incorporated the non-monotone technique to
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modify the Levenberg–Marquardt algorithm. The numerical results show that our new
algorithm is efficient and stable.
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