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Abstract: In the present paper, under certain assumptions, we establish the convergence of iterates
for self-mappings of complete metric spaces with graphs which are of a contractive type. The class of
mappings considered in the paper contains the so-called cyclical mappings introduced by W. A. Kirk,
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1. Introduction

Since the seminal result of Banach [1] was reported, the fixed-point theory of nonex-
pansive maps has been a rapidly growing area of research. See, for example, [2–11] and the
references mentioned therein. In particular, convergence of Bregman projections is studied
in [2], fixed-point results of Caristi type and Mizoguchi-Takahashi type are obtained in [3],
many fixed-point results are nicely collected in [4,5], fixed-point results in b-metric spaces
are obtained in [6], the fixed point theory in modular spaces is discussed in [7] and the
Rakotch contraction is introduced and studied in [8]. Many generic fixed-point results
are collected in [9]. The books [10,11] are devoted to approximate solutions of common
fixed-point problems. A great deal of progress has taken place in this area, including
studies of feasibility and common fixed-point problems, which find various important
applications [10–14]. In particular, the perturbation resilience and superiorization of it-
erative algorithms are discussed in [12]; inconsistent feasibility problems are considered
in [13]; and split inverse problems are analyzed in [14]. Note that the analysis of nonex-
pansive operators acting on complete metric spaces with graphs is of great interest. See,
for example, [15–25] and the references mentioned therein. Many useful examples can be
found there. In particular, fixed-point results on a metric spaces with a graph are obtained
in [15,16,19,24], Reich-type contractions are studied in [17], extensions of the Kelisky–Rivlin
theorem are obtained in [18], contractive mappings are studied in [20], fixed-point results
on intuitionistic fuzzy metric spaces with a graph are obtained in [21] and hybrid methods
are studied in [22,23,25].

In the present paper, under certain assumptions, we establish the convergence of
iterates of self-mappings of complete metric spaces with graphs which are of a contractive
type. The class of mappings considered in the paper contains, in particular, the so-called
cyclical mappings studied in [26–29]. Our results hold in the case of a symmetric graph.

Assume that (X, ρ) is a complete metric space endowed with the metric ρ. For every
point u ∈ X and every positive number r set

B(u, r) = {v ∈ X : ρ(u, v) ≤ r}.
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For each mapping S : X → X, denote by S0 the identity self-mapping of X and set

Si+1 = S ◦ Si

for each integer i ≥ 0.
Here, A and B are nonempty and closed subsets of X.
Assume that ϕ : [0, ∞) → [0, 1] is a decreasing function, such that

ϕ(t) < 1, t ∈ (0, ∞)

and T : A ∪ B → A ∪ B is a mapping such that

T(A) ⊂ B, T(B) ⊂ A

and that for any point a ∈ A and any point b ∈ B, we have

ρ(T(a), T(b)) ≤ ϕ(ρ(a, b))ρ(a, b).

The mapping T is called contractive [9].
In the paper [27], it was shown that the map T has a unique fixed point belonging to

the intersection A ∩ B. In [29], we generalized this result for the case when T : A ∪ B → X
is not necessarily a self-mapping of A ∪ B. Note that if A ∩ B ̸= ∅, then the result of [27] is
obvious. But this was not assumed in [27]. As a matter of fact, in [27], it was considered a
more general case when instead of two sets A, B we have a finite family of m sets where m
is any natural number.

More precisely, assume that m is a natural number Ai ⊂ X, i = 1, . . . , m are nonempty
closed sets, Am+1 = A1,

T : ∪m
i=1 Ai → ∪m

i=1 Ai

and for each i ∈ {1, . . . , m}, each a ∈ Ai, each b ∈ Ai+1,

T(Ai) ⊂ Ai+1,

ρ(T(a), T(b)) ≤ ϕ(ρ(a, b))ρ(a, b).

It was shown in [27] that the map T has a unique fixed point belonging to the intersec-
tion ∩m

i=1 Ai. In this paper, we show that this result follows from our fixed-point result for
G-nonexpansive mapping in the space X equipped with a graph G which is obtained in
our paper. We can consider the cyclical mapping T as a G-nonexpansive mapping in the
space X equipped with a graph G, such that its set of vertices V(G) is ∪m

i=1 Ai and

E(G) = ∪m
i=1(Ai × Ai+1)

is its set of edges. It is not difficult to see that for every (u, v) ∈ E(G),

(T(u), T(v)) ∈ E(G),

ρ(T(u), T(v)) ≤ ϕ(ρ(u, v))ρ(u, v),

(u, T(u)) ∈ E(G), u ∈ V(G),

and if u, v ∈ V(G), then there exists j ∈ {0, . . . , m − 1}, such that (u, T j(v)) ∈ E(G). Thus,
the analysis of cyclical mappings is reduced to the study of G-nonexpansive mappings in
the space X equipped with the graph G under the assumptions stated above. It should
be mentioned that there exists a rich literature on cyclical mappings. See, for example,
refs. [30–32] and the references mentioned therein. Note that we prove our results under
the assumptions which are weaker than the assumptions on T and G presented above.
Some of them hold for a general G-contractive mapping. The result, which can be applied
to cyclical mapping, is Theorem 3, which can be also applied to the class of monotone



Symmetry 2024, 16, 705 3 of 10

nonexpansive mappings. There is rich literature on the monotone nonexpansive mappings
containing numerous examples. See, for example, ref. [33] and the references mentioned
therein. Therefore we have two large classes of mappings studied in the literature for which
our results can be applied.

2. Strict G-Contractions

Assume that (X, ρ) is a complete metric space endowed with a graph G. We denote by
V(G) the set of its vertices and by E(G) the set of its edges. Assume that T : X → X is a
mapping such that for every pair of points x, y ∈ X satisfying (x, y) ∈ E(G),

(T(x), T(y)) ∈ E(G) and ρ(T(x), T(y)) ≤ ρ(x, y). (1)

It is called a G-nonexpansive mapping.
If α ∈ (0, 1) and for every (x, y) ∈ E(G), we have

ρ(T(x), T(y)) ≤ αρ(x, y),

then the map T is called a G-strict contraction.
The operator T is called G-contractive (or G-Rakotch contraction [8]) if there is a

decreasing function ϕ : [0, ∞) → [0, 1], such that

ϕ(t) < 1, t ∈ [0, ∞),

and for every (x, y) ∈ E(G) we have

ρ(T(x), T(y)) ≤ ϕ(ρ(x, y))ρ(x, y).

If T is a G-strict contraction, then under some conditions, T possesses a unique
fixed point [19]. In this section, we prove the following result which shows the con-
vergence of inexact orbits of a G-strict contraction under the presence of summable
computational errors.

Theorem 1. Assume that α ∈ (0, 1), for each (x, y) ∈ E(G),

ρ(T(x), T(y)) ≤ αρ(x, y), (2)

{xn}∞
n=0 ⊂ X, for each integer n ≥ 0,

(xn, xn+1) ∈ E(G) (3)

and
∞

∑
n=0

ρ(xn+1, T(xn)) < ∞. (4)

Then, the sequence {xn}∞
n=0 converges and its limit is a fixed point of T if the graph of T

is closed.

Proof. For every non-negative integer n, put

∆n = ρ(xn+1, T(xn)). (5)

In view of (4) and (5),
∞

∑
n=0

∆n < ∞. (6)

By (2), (3) and (5),

ρ(xn+1, xn+2) ≤ ρ(xn+1, T(xn)) + ρ(T(xn), T(xn+1)) + ρ(T(xn+1), xn+2)
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≤ ∆n + ∆n+1 + αρ(xn, xn+1). (7)

Assume that m ≥ 0 is an integer. In view of (7),

ρ(xm+1, xm+2) ≤ αρ(xm, xm+1) + ∆m + ∆m+1, (8)

ρ(xm+2, xm+3) ≤ αρ(xm+1, xm+2) + ∆m+1 + ∆m+2

≤ α2ρ(xm, xm+1) + α∆m + α∆m+1 + ∆m+1 + ∆m+2. (9)

We show that for each integer k ≥ 1,

ρ(xm+k, xm+k+1) ≤ αkρ(xm, xm+1) +
k−1

∑
i=0

(∆i+m + ∆m+1+i)α
k−1−i. (10)

It follows from (8), (9) that relation (10) is true for k = 1, 2. Assume that k ≥ 1 is an
integer and that relation (10) is true. In view of (7) and (10),

ρ(xm+k+1, xm+k+2) ≤ αρ(xm+k, xm+k+1) + ∆m+k + ∆m+k+1

≤ αk+1ρ(xm, xm+1) +
k−1

∑
i=0

(∆i+m + ∆m+1+i)α
k−i + ∆m+k + ∆m+k+1

= αk+1ρ(xm, xm+1) +
k

∑
i=0

(∆i+m + ∆m+1+i)α
k−i

and (10) holds for k + 1 too. Thus, we show by induction that (10) holds for each integer
k ≥ 1. By (6) and (10) (with m = 0),

∞

∑
k=0

ρ(xk, xk+1) ≤
∞

∑
k=0

αkρ(x0, x1) +
∞

∑
i=0

∞

∑
j=0

(∆i + ∆i+1)α
j < ∞.

Therefore, {xk}∞
k=0 is a Cauchy sequence and it has a limit. This completes the proof

of Theorem 1.

3. Rakotch G-Contraction

We continue to use the notation, definitions, and assumptions introduced in Section 2.
Assume that ϕ : [0, ∞) → [0, 1] is a decreasing function, such that

ϕ(t) < 1, t ∈ (0, ∞) (11)

and that for each (x, y) ∈ E(G),

ρ(T(x), T(y)) ≤ ϕ(ρ(x, y))ρ(x, y). (12)

The next result demonstrates that exact iterates of a G-contractive mapping are its
approximate fixed points.

Theorem 2. Assume that x ∈ X and that we have the natural number q and points yi ∈ X,
i = 0, . . . , q, such that

y0 = x, yq = T(x), (13)

(yi, yi+1) ∈ E(G), i = 0, . . . , q − 1. (14)

Then,
lim
i→∞

ρ(Ti(x), Ti+1(x)) = 0.
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Proof. It follows from (1), (13) and (14) that for each integer, n ≥ 0 and each i ∈ {0, . . . , q− 1},

(Tn(yi), Tn(yi+1)) ∈ E(G), (15)

Tn(y0) = Tn(x), Tn(yq) = Tn+1(x). (16)

In view of (16), it is sufficient to show that for every i ∈ {0, . . . , q − 1}, we have

lim
n→∞

ρ(Tn(yi), Tn(yi+1)) = 0.

Assume the contrary. Then, according to (12) and (14), we have i ∈ {0, . . . , q − 1} and
ϵ > 0 for which

ρ(Tn(yi), Tn(yi+1)) ≥ ϵ, n = 0, 1, . . . . (17)

According to (12), (15) and (17), for every non-negative integer n,

ρ(Tn+1(yi), Tn+1(yi+1)) ≤ ϕ(ρ(Tn(yi), Tn(yi+1)))ρ(Tn(yi), Tn(yi+1))

≤ ϕ(ϵ)ρ(Tn(yi), Tn(yi+1)),

ρ(Tn(yi), Tn(yi+1))− ρ(Tn+1(yi), Tn+1(yi+1))

≥ (1 − ϕ(ϵ))ρ(Tn(yi), Tn(yi+1)) ≥ ϵ(1 − ϕ(ϵ))

and for each natural number n,

ρ(yi, yi+1) ≥ ρ(yi, yi+1)− ρ(Tn(yi), Tn(yi+1))

=
n−1

∑
k=0

(ρ(Tk(yi), Tk(yi+1))− ρ(Tk+1(yi), Tk+1(yi+1))

≥ kϵ(1 − ϕ(ϵ)) → ∞ as k → ∞.

The contradiction we have reached completes the proof of Theorem 2.

The next result shows that under certain assumptions, exact iterates of T converge to
its fixed point.

Theorem 3. Assume that x ∈ X and that there is an integer q ≥ 1, yi ∈ X, i = 0, . . . , q, such that

y0 = x, yq = T(x), (18)

(yi, yi+1) ∈ E(G), i = 0, . . . , q − 1. (19)

Assume that there exists a natural number m0, such that the following property holds:
(P) for each pair of natural numbers i < j, there exists

p ∈ {j, . . . , j + m0},

such that
(Ti(x), Tp(x)) ∈ E(G).

Then, the sequence {xn}∞
n=0 converges and its limit is a fixed point of T if the graph of T

is closed.

Proof. Using Theorem 2, based on (18) and (19), we determine that

lim
i→∞

ρ(Ti(x), Ti+1(x)) = 0. (20)
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Let ϵ > 0. Choose a positive number

δ < min{4−1ϵ(1 − ϕ(ϵ/2)), (2m0)
−1ϵ}. (21)

According to (20), there exists a natural number n0 such that for each integer i ≥ n0,

ρ(Ti(x), Ti+1(x)) ≤ δ. (22)

Assume that integers j, i satisfy

j > i ≥ n0.

Property (P) implies that there exists

p ∈ {j, . . . , j + m0}, (23)

such that
(Ti(x), Tp(x)) ∈ E(G). (24)

According to (12), (22), and (23),

ρ(Ti(x), Tp(x))

≤ ρ(Ti(x), Ti+1(x)) + ρ(Ti+1(x), Tp+1(x)) + ρ(Tp+1(x), Tp(x))

≤ 2δ + ϕ(ρ(Ti(x), Tp(x)))ρ(Ti(x), Tp(x)),

ρ(Ti(x), Tp(x))(1 − ϕ(ρ(Ti(x), Tp(x))) ≤ 2δ (25)

and if
ρ(Ti(x), Tp(x)) > ϵ/2,

then in view of (25),
2−1ϵ(1 − ϕ(ϵ/2)) < 2δ.

This contradicts (21). The contradiction we have reached proves that

ρ(Ti(x), Tp(x)) ≤ ϵ/2. (26)

Then, implementing (21)–(23) and (26),

ρ(Ti(x), T j(x))

≤ ρ(Ti(x), Tp(x)) + ρ(Tp(x), T j(x)) + ρ(Tp(x), T j(x))

≤ ϵ/2 + m0δ ≤ ϵ.

Thus, {Ti(x)}∞
i=0 is a Cauchy sequence and this completes the proof of Theorem 3.

The following result shows that inexact iterates of a G-contractive mapping are its
approximate fixed points.

Theorem 4. Assume that {xn}∞
n=0 ⊂ X, for each integer i ≥ 0,

(xi, xi+1) ∈ E(G), (27)

lim
i→∞

ρ(xi+1, T(xi)) = 0. (28)

Then,
lim
i→∞

ρ(xi, xi+1) = 0.
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Proof. Let ϵ ∈ (0, 1). Based on (12), for each integer i ≥ 0,

ρ(xi+1, xi+2) ≤ ρ(xi+1, T(xi)) + ρ(T(xi), T(xi+1)) + ρ(T(xi+1), xi+2)

≤ ρ(xi+1, T(xi)) + ρ(T(xi+1), xi+2) + ϕ(ρ(xi, xi+1))ρ(xi, xi+1). (29)

Let
δ ∈ (0, 4−1ϵ(1 − ϕ(ϵ/2)). (30)

In view of (28), there exists a natural number n0, such that for each integer i ≥ n0,

ρ(xi+1, T(xi)) ≤ δ/8. (31)

Assume that i ≥ n0 is an integer, such that

ρ(xi, xi+1) > ϵ/2. (32)

It follows from (29)–(32) that

ρ(xi+1, xi+2) ≤ δ/4 + ϕ(ρ(xi, xi+1))ρ(xi, xi+1),

ρ(xi, xi+1)− ρ(xi+1, xi+2)

≥ ρ(xi, xi+1)(1 − ϕ(ρ(xi, xi+1)))− δ/4

≥ 2−1ϵ(1 − ϕ(ϵ/2))− δ/4 ≥ 4−1ϵ(1 − ϕ(ϵ/2)).

Thus, the following property holds:
(a) if an integer i ≥ n0 satisfies ρ(xi, xi+1) > ϵ/2, then

ρ(xi, xi+1)− ρ(xi+1, xi+2) ≥ 4−1ϵ(1 − ϕ(ϵ/2)). (33)

Assume that for each integer i ≥ n0,

ρ(xi, xi+1) > ϵ/2.

Property (a) implies that for each integer i ≥ n0, relation (33) holds and for each
natural number Q,

ρ(xn0 , xn0+1) ≥ ρ(xn0 , xn0+1)− ρ(xn0+Q, xn0+Q+1)

=
Q−1

∑
i=0

(ρ(xn0+i, xn0+1+i)− ρ(xn0+i+1, xn0+i+2))

≥ 4−1Qϵ(1 − ϕ(ϵ/2)) → ∞

as Q → ∞. The contradiction we have reached proves that there exists an integer n1 ≥ n0
for which

ρ(xi, xi+1) ≤ ϵ/2.

We show that for each integer i ≥ n1,

ρ(xi, xi+1) ≤ ϵ.

Assume that an integer i ≥ n1 and

ρ(xi, xi+1) ≤ ϵ. (34)

In order to complete the proof, it is sufficient to show that

ρ(xi+1, xi+2) ≤ ϵ.
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There are two cases:
ρ(xi, xi+1) ≤ ϵ/2; (35)

ρ(xi, xi+1) > ϵ/2. (36)

If (35) holds, then based on (29)–(31) and (35),

ρ(xi+1, xi+2) ≤ ρ(xi, xi+1) + δ/4 ≤ ϵ.

If (36) holds, then property (a) implies that

ρ(xi+1, xi+2) ≤ ρ(xi, xi+1) ≤ ϵ.

This completes the proof of Theorem 4.

Our final result shows that under certain assumptions, inexact iterates of T converge
to its fixed point.

Theorem 5. Assume that {xi}∞
i=0 ⊂ X, for each integer i ≥ 0,

(xi, xi+1) ∈ E(G), (37)

lim
i→∞

ρ(xi+1, T(xi)) = 0 (38)

and that there exists a natural number m0 such that property (P) of Theorem 3 holds. Then, the
sequence {xn}∞

n=0 converges and its limit is a fixed point of T if the graph of T is closed.

Proof. Using Theorem 4, and (37) and (38), we find that

lim
i→∞

ρ(xi, xi+1) = 0. (39)

Let ϵ ∈ (0, 1). Choose a positive number δ, such that

δ < 4−1ϵ(1 − ϕ(ϵ/2)) (40)

and
δ < (4m0)

−1ϵ. (41)

According to (38) and (39), there exists a natural number n0, such that for each integer
i ≥ n0,

ρ(xi, xi+1), ρ(xi, T(xi)) ≤ δ. (42)

Assume that integers j, i satisfy

j > i ≥ n0.

Property (P) implies that there exists

p ∈ {j, . . . , j + m0}, (43)

such that
(xi, xp) ∈ E(G). (44)

Based on (12) and (44),

ρ(T(xi), T(xp)) ≤ ϕ(ρ(xi, xp))ρ(xi, xp). (45)
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It follows from (42), (43) and (45) that

ρ(xi, xp) ≤ ρ(xi, T(xi)) + ρ(T(xi), T(xp)) + ρ(T(xp), xp+1)

≤ 2δ + ϕ(ρ(xi, xp))ρ(xi, xp). (46)

Assume that
ρ(xi, xp) > ϵ/2.

In view of (46),

2δ ≥ ρ(xi, xp)(1 − ϕ(ρ(xi, xp)) ≥ 2−1ϵ(1 − ϕ(ϵ/2)).

This contradicts (40). The contradiction we have reached proves that

ρ(xi, xp) ≤ ϵ/2,

and together with (41)–(43) this implies that

ρ(xi, xj) ≤ ρ(xi, xp) + ρ(xp, xj) ≤ ϵ/2 + m0δ ≤ ϵ.

Thus, {Ti(x)}∞
i=0 is a Cauchy sequence and this completes the proof of Theorem 5.

4. Conclusions

The main goal of the fixed-point theory is to study the existence of fixed point of
nonlinear mappings and convergence of their (inexact) iterates to these fixed points. In this
paper, we study a class of G-contractive mappings in a complete metric space equipped
with a graph under certain assumptions. For this class of mappings, we obtain convergence
and existence results. The class contains the class of cyclical nonexpansive mappings and
the class of monotone nonexpansive mappings.
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18. Gwóźdź-Łukawska, G.; Jachymski, J. IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem.

J. Math. Anal. Appl. 2009, 356, 453–463. [CrossRef]
19. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373.

[CrossRef]
20. Reich, S.; Zaslavski, A.J. Contractive mappings on metric spaces with graphs. Mathematics 2021, 9, 2774. [CrossRef]
21. Samei, M.E. Some fixed point results on intuitionistic fuzzy metric spaces with a graph. Sahand Commun. Math. Anal. 2019, 13,

141–152. [CrossRef]
22. Suantai, S.; Donganont, M.; Cholamjiak, W. Hybrid methods for a countable family of G-nonexpansive mappings in Hilbert

spaces endowed with graphs. Mathematics 2019, 7, 936. [CrossRef]
23. Suantai, S.; Kankam, K.; Cholamjiak, P.; Cholamjiak, W. A parallel monotone hybrid algorithm for a finite family of G-

nonexpansive mappings in Hilbert spaces endowed with a graph applicable in signal recovery. Comp. Appl. Math. 2021,
40, 145. [CrossRef]

24. Suparatulatorn, R.; Cholamjiak, W.; Suantai, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces
with graphs. Numer. Algorithms 2018, 77, 479–490. [CrossRef]

25. Suparatulatorn, R.; Suantai, S.; Cholamjiak, W. Hybrid methods for a finite family of G-nonexpansive mappings in Hilbert spaces
endowed with graphs. AKCE Int. J. Graphs Comb. 2017, 14, 101–111. [CrossRef]

26. Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006.
[CrossRef]

27. Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory
2003, 4, 79–89.

28. Wlodarczyk, K.; Plebaniak, R.; Banach, A. Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic
contractions in uniform spaces. Nonlinear Anal. 2009, 70, 3332–3341. [CrossRef]

29. Zaslavski, A.J. Existence of a fixed point for a cyclical contractive mapping. Pan-Am. Math. J. 2022, 32, 57–64.
30. Radenovic, S. A note on fixed point theory for cyclic ϕ-contractions. Fixed Point Theory Appl. 2015, 2015, 189 . [CrossRef]
31. Radenovic, S. Some remarks on mappings satisfying cyclical contractive conditions. Afr. Mat. 2015, 27, 291–295. [CrossRef]
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