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Abstract: In the present paper, we consider an effective computational method to analyze a coupled
dynamical system with Caputo–Fabrizio fractional derivative. The method is based on expanding
the approximate solution into a symmetry Haar wavelet basis. The Haar wavelet coefficients are
obtained by using the collocation points to solve an algebraic system of equations in mathematical
physics. The error analysis of this method is characterized by a good convergence rate. Finally, some
numerical examples are presented to prove the accuracy and effectiveness of this method.
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1. Introduction

Recently, various problems in the applied mathematics, physical, biological, and en-
gineering sciences are modeled using fractional calculus. Due to its property of memory
effect, this concept has received a great response in the applied sciences. In this regard,
many definitions have been given for both the integral and the fractional derivatives, such
as the Riemann–Liouville [1], Caputo [2] and Caputo–Fabrizio fractional integrals and
derivatives [1–5]. However, the concepts of Riemann–Liouville and Caputo were used
to model the phenomena first, which have singularity in their kernels. For this reason,
many new definitions of integrals and fractional derivatives have been introduced in the
literature. For instance, the Caputo–Fabrizio fractional integral and derivative [1] avoid the
singularity problem; this property makes it popular in the scientific community. The main
problem facing researchers in solving Caputo–Fabrizio fractional differential equations and
systems [6] is the difficulty in finding an analytical solution, which leads them to use nu-
merical methods. In fact, it is known that in many numerical methods, the solutions contain
discontinuities at some points, which negatively affects the accuracy and convergence
rate. Currently, the Haar wavelet method [7] is a common strategy that aims to improve
the convergence rate according to exponential decay. Confirming this, we find that it has
been applied to solve many problems, such as ODEs [8] and time-PDEs [9,10], differential
equations [11–14], and fractional differential equations (FDEs) [15–21]. Indeed, the Haar
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wavelet has the advantages of simplicity, orthogonality, and compact support. As a support
for the Haar wavelet method, in the present paper, we apply and investigate it to solve the
following system [6] for 0 ≤ t ≤ 1:

CFD(ν)u(t) = c1u(t) + c2v(t) + f (t),
CFD(ν)v(t) = c3u(t) + c4v(t) + h(t),
u(t = 0) = v(t = 0) = 0,

(1)

where 0 < ν < 1, f and h are two continuous functions, whereas the operator CFD(ν) is the
Caputo–Fabrizio derivative of order ν, and ci (i = 1, ..., 4) are real constants.

In fact, Ikram Mansouri et al. [6] considered the questions of the existence of a unique
solution for this system, where the Adomian Decomposition Method (ADM) is applied to
provide an approximate solution to it. However, the Adomian Decomposition Method has
a polynomial decay of the convergence rate, and it is expensive to compute its terms and
requires a large number of terms to obtain the exact solution. To overcome these defects, the
Haar wavelet collocation method is suitable in terms of computation costs and convergence
rates. As far as we know, the Haar wavelet approximation method has not been applied to
a coupled system with the Caputo–Fabrizio fractional derivative before.

This paper is structured as follows: In the second Section 2, we remember the definition
of the Caputo–Fabrizio fractional derivative and the associated fractional integral. In
Section 3, we introduce the Haar wavelet family that is associated with our proposed
numerical method of the solution. In Section 4, we give illustrative examples to prove the
accuracy and effectiveness of our proposed method. Finally, we finish this paper with a
concluding section.

2. Basic Knowledge
2.1. Caputo–Fabrizio Fractional Integral and Derivative

We state and recall some definitions and the main properties related to the Caputo–
Fabrizio fractional integral and derivative.

Definition 1 ([6]). Assume that the function f ∈ H1(a, b) and a constant ν ∈ (0, 1); then, the
Caputo–Fabrizio fractional derivative is defined by

CFD(ν)
a f (x) =

M(ν)

1 − ν

x∫
a

f ′(τ) exp
(
− ν

t − τ

1 − ν

)
dτ, (2)

and the associated fractional integral is defined as

CF Iν
a f (x) =

1
M(ν)

(1 − ν)( f (x)− f (a)) + ν

x∫
a

f (τ)dτ

, (3)

where M is a normalization function such as

M(ν = 0) = M(ν = 1) = 1.

Lemma 1 ([6]). Assume that

ν ∈ (n, n + 1), n = [ν] ≥ 0.

Let f ∈ Cn([a, b]); then,

1. If f (a) = 0, then
CFD(ν)

a

(
CF Iν

a f (x)
)
= f (x).
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2. We have

CF Iν
a

(
CFD(ν)

a f (x)
)
= f (x) +

n

∑
i=0

aixi, ai ∈ R, i = 0, ..., n.

3. If ν ∈ (0, 1), then

CF Iν
a

(
CFD(ν)

a f (x)
)
= f (x)− f (a).

In the following theorem and in our study, it is assumed that M = 1.

Theorem 1 ([6]). Let us define L1(t, u, v) = c1u + c2v, L2(t, u, v) = c3u + c4v. Suppose that L1
and L2 are continuous functions; then, the system (1) has a unique solution such that

µ = µ1 + µ2 < 1, (4)

where µ1 = max(|c1|, |c2|), µ2 = max(|c3|, |c4|).

2.2. Haar Wavelet Basis

As in [1,7], the Haar wavelets basis on [0, 1) consists of the following functions:
The scaling function on [0, 1) is g1(t) = 1 for 0 ≤ t < 1 and also the wavelets functions

gi(t) =


1, i f t ∈ [ϱ1, ϱ2),
−1, i f t ∈ [ϱ2, ϱ3),
0, otherwise,

(5)

where ϱ1 = κ
m , ϱ2 = κ+0.5

m , and ϱ3 = κ+1
m , m = 2j, j = 0, 1, ..., J, and J is considered as

resolution level for wavelet approximation and κ = 0, ..., m − 1 is a translation parameter
where i = m + κ + 1. The value i can take i = 2M, M = 2J as a maximum value.

Any function f ∈ L2([0, 1)) can be expanded as

f (t) =
+∞

∑
i=1

aigi(t), (6)

where

ai =

1∫
0

f (t)gi(t)dt.

In reality, note that the first 2M terms of (6) can be considered, where M is a power of
2
(

M = 2J). That is,

f (t) ≡ f2M(t) =
2M

∑
i=1

aigi(t). (7)

The integration β times of g1(t) together with (5) is as follows:

Fi,β(t) =
t∫

0

t∫
0

...
t∫

0

gi(t)dtβ, (8)

and we obtain the following formula [1]: F1,β(t) = tβ

β! and ∀i ≥ 2,

Fi,β(t) =
1
β!


0, i f t ∈ [0, ϱ1),
(t − ϱ1)

β, i f t ∈ [ϱ1, ϱ2),
(t − ϱ1)

β − 2(t − ϱ2)
β, i f t ∈ [ϱ2, ϱ3),

(t − ϱ1)
β − 2(t − ϱ2)

β + (t − ϱ3)
β, i f t ∈ [ϱ3, 1).

(9)
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3. Haar Wavelet Approximation Method

Here, we propose our new numerical method.

3.1. Method of Solution

Consider the system (1) for 0 ≤ t ≤ 1:
CFD(ν)u(t) = c1u(t) + c2v(t) + f (t),
CFD(ν)v(t) = c3u(t) + c4v(t) + h(t),
u(t = 0) = v(t = 0) = 0.

(10)

Suppose that 
CFD(ν)u(t) ≡ ˜CFD(ν)u(t) =

2M
∑

i=1
aigi(t),

CFD(ν)v(t) ≡ ˜CFD(ν)v(t) =
2M
∑

i=1
bigi(t),

(11)

where ai, bi, i = 1, ..., 2M are the Haar wavelet coefficients to be determined.
By integrating (11) in the Caputo–Fabrizio sense and taking into account that

u(t = 0) = v(t = 0) = 0, we obtain
u(t) ≡ u2M(t) =

2M
∑

i=1
ai Iνgi(t),

v(t) ≡ v2M(t) =
2M
∑

i=1
bi Iνgi(t).

(12)

Using (3), we have

I(ν)gi(t) = (1 − ν)(gi(t)− gi(0)) + νFi,1(t), ∀i = 1, ..., 2M. (13)

Substituting (13) in (12), we find
u(t) ≡ u2M(t) =

2M
∑

i=1
ai[(1 − ν)(gi(t)− gi(0)) + νFi,1(t)],

v(t) ≡ v2M(t) =
2M
∑

i=1
bi[(1 − ν)(gi(t)− gi(0)) + νFi,1(t)].

(14)

Using (11) and (14) and (10), we obtain the next system of equations:
2M
∑

i=1
aiL(i, t) +

2M
∑

i=1
biG(i, t) = − f (t),

2M
∑

i=1
ai L̃(i, t) +

2M
∑

i=1
biG̃(i, t) = −h(t),

(15)

where 
L(i, t) = (c1(1 − ν)− 1)gi(t) + νc1Fi,1(t)− c1(1 − ν)gi(0),
G(i, t) = c2(1 − ν)gi(t) + νc2Fi,1(t)− c2(1 − ν)gi(0),
L̃(i, t) = c3(1 − ν)gi(t) + νc3Fi,1(t)− c3(1 − ν)gi(0),
G̃(i, t) = (c4(1 − ν)− 1)gi(t) + νc4Fi,1(t)− c4(1 − ν)gi(0).

(16)

Define the collocation points tℓ = ℓ−0.5
2M , ℓ = 1, ..., 2M, and replace them in the sys-

tem (15); we have the following 4M × 4M linear system of equations:
2M
∑

i=1
aiL(i, tℓ) +

2M
∑

i=1
biG(i, tℓ) = − f (tℓ), ℓ = 1, ..., 2M,

2M
∑

i=1
ai L̃(i, tℓ) +

2M
∑

i=1
biG̃(i, tℓ) = −h(tℓ), ℓ = 1, ..., 2M.

(17)
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By solving this system, we obtain the unknown coefficients ai, bi, i = 1, ..., 2M, and by
substituting them into (14), we obtain the numerical solution of the system (1).

3.2. Analysis of Error Estimations

The error of approximation using our proposed method of the solution is studied here.

Lemma 2 ([12]). Let f ∈ L2([0, 1)) be a differentiable function; then, f ′ is bounded on (0, 1) and
f̃ is its Haar wavelet approximation, defined by (7); then,∥∥∥ f − f̃

∥∥∥
L2([0,1))

≤ C2−J , (18)

where C is a constant.
The Haar wavelet coefficients that are given in (11) can be estimated as follows:

ai = O
(

1
2j+1

)
, i = 2j + κ + 1. (19)

Proof. We have, first,

ai =

1∫
0

CFD(ν)u(t)gi(t)dt

=

ϱ2∫
ϱ1

CFD(ν)u(t)dt −
ϱ3∫

ϱ2

CFD(ν)u(t)dt

= (ϱ2 − ϱ1)
CFD(ν)u(η1)− (ϱ3 − ϱ2)

CFD(ν)u(η2),

where η1 ∈ [ϱ1, ϱ2] and η2 ∈ [ϱ2, ϱ3].
Since ϱ2 − ϱ1 = ϱ3 − ϱ2 = 1

2m = 1
2j+1 ,

ai =
(η1 − η2)

2j+1
dCFD(ν)u

dt
(ϑ), ϑ ∈ [η1, η2],

which implies that

|ai| ≤
1

2j+1

∥∥∥∥∥dCFD(ν)u
dt

∥∥∥∥∥
∞

. (20)

On the other hand,

dCFD(ν)u
dt

(t) =
1

1 − ν

u′(t) +
t∫

0

u′(τ)

(
−ν

1 − ν

)
exp(−ν

t − τ

1 − ν
)dτ


=

1
1 − ν

[
u′(t)− νCFD(ν)u(t)

]
.

This expression leads to∥∥∥∥∥dCFD(ν)u
dt

∥∥∥∥∥
∞

≤ 1
1 − ν

∥∥u′∥∥
∞ +

ν

1 − ν

∥∥∥CFD(ν)u
∥∥∥

∞
. (21)

Now, for
∥∥∥CFD(ν)u

∥∥∥
∞

, we have
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∣∣∣CFD(ν)u(t)
∣∣∣ ≤ 1

1 − ν

∥∥u′∥∥
∞

t∫
0

exp(−ν
t − τ

1 − ν
)dτ

≤ ∥u′∥∞
ν

[
1 − exp(−ν

t
1 − ν

)

]
≤ ∥u′∥∞

ν

[
1 − exp(

−ν

1 − ν
)

]
,

and thus, ∥∥∥CFD(ν)u(t)
∥∥∥

∞
≤ ∥u′∥∞

ν

[
1 − exp(

−ν

1 − ν
)

]
, (22)

and inserting (22) into (21) yields∥∥∥∥∥dCFD(ν)u
dt

∥∥∥∥∥
∞

≤
2 − exp( −ν

1−ν )

1 − ν

∥∥u′∥∥
∞.

Therefore,

|ai| ≤
(

2 − exp( −ν
1−ν )

1 − ν

∥∥u′∥∥
∞

)
1

2j+1 .

Lemma 3. The function Fi,1 for i ≥ 2 verifies the following inequality:

∥Fi,1∥∞ ≤ 1
2j+1 , i = 2j + κ + 1. (23)

Proof. From (9), we have, i ≥ 2

Fi,1(t) =


0, i f t ∈ [0, ϱ1),
t − ϱ1, i f t ∈ [ϱ1, ϱ2),
−t + 2ϱ2 − ϱ1, i f t ∈ [ϱ2, ϱ3),
2ϱ2 − ϱ3 − ϱ1, i f t ∈ [ϱ3, 1).

Note that in the interval [ϱ1, ϱ2), the function Fi,1 is positive and increasing; then,
|Fi,1| ≤ ϱ2 − ϱ1 = 1

2j+1 .
In the interval [ϱ2, ϱ3), the function Fi,1 is positive and decreasing; then, |Fi,1| ≤

ϱ2 − ϱ1 = 1
2j+1 .

Otherwise, the function Fi,1 is null.
Thus, ∥Fi,1∥∞ ≤ 1

2j+1 .

Lemma 4. For i ≥ 2, we define the function qi as

qi(t) = (1 − ν)(gi(t)− gi(0)) + νFi,1(t), i = 2j + κ + 1, 0 ≤ t < 1. (24)

Then, we have

1. ∀i ≥ 2, |qi(t)| ≤ 2 − ν.

2. If κ ̸= 0, then
1∫

0
|qi(t)|dt ≤

(
1 − ν

2
) 1

2j .
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Proof. 1. ∀i ≥ 2; we have

|qi(t)| ≤ (1 − ν)|gi(t)− gi(0)|+ ν∥Fi,1(t)∥∞

≤ 2(1 − ν) + ν
1

2j+1

≤ 2(1 − ν) + ν = 2 − ν.

2. If κ ̸= 0, then gi(0) = 0, and we have

1∫
0

|qi(t)|dt ≤ (1 − ν)

1∫
0

|gi(t)|dt + ν

1∫
0

∥Fi,1(t)∥∞dt.

Note that
1∫

0

|gi(t)|dt =

ϱ2∫
ϱ1

dt +

ϱ3∫
ϱ2

dt =
1
2j .

Hence,

1∫
0

|qi(t)|dt ≤ (1 − ν)
1
2j + ν

1
2j+1

≤ (1 − ν

2
)

1
2j .

Theorem 2. Let (u, v) be the exact solution of (1), and let (u2M, v2M) be its approximation
formula, which is expressed in (14), so the convergence rate is estimated by

∥u − u2M∥L2([0,1)) = O
(

1√
M

)
, (25)

and

∥v − v2M∥L2([0,1)) = O
(

1√
M

)
. (26)

Proof. From (14), the error square at the Jth-level resolution for the function u can be
written as

E2
M(u) = ∥u − u2M∥2

L2([0,1)) =

∥∥∥∥∥ +∞

∑
i=2M+1

ai[(1 − ν)(gi(t)− gi(0)) + νFi,1(t)]

∥∥∥∥∥
2

L2([0,1))

=
+∞

∑
ℓ=2M+1

+∞

∑
i=2M+1

aiaℓ

1∫
0

qi(t)qℓ(t)dt.
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By putting i = 2j + κ + 1 and ℓ = 2r + s + 1, we obtain

E2
M(u) =

+∞

∑
r=J+1

2r−1

∑
s=0

+∞

∑
j=J+1

2j−1

∑
κ=0

a2j+κ+1a2r+s+1

1∫
0

q2j+κ+1(t)q2r+s+1(t)dt

=
+∞

∑
r=J+1

+∞

∑
j=J+1

a2j+1a2r+1

1∫
0

q2j+1(t)q2r+1(t)dt

+
+∞

∑
r=J+1

2r−1

∑
s=1

+∞

∑
j=J+1

a2j+1a2r+s+1

1∫
0

q2j+1(t)q2r+s+1(t)dt

+
+∞

∑
r=J+1

+∞

∑
j=J+1

2j−1

∑
κ=1

a2j+κ+1a2r+1

1∫
0

q2j+κ+1(t)q2r+1(t)dt

+
+∞

∑
r=J+1

2r−1

∑
s=1

+∞

∑
j=J+1

2j−1

∑
κ=1

a2j+κ+1a2r+s+1

1∫
0

q2j+κ+1(t)q2r+s+1(t)dt.

This implies that

E2
M ≤

+∞

∑
r=J+1

+∞

∑
j=J+1

∣∣a2j+1

∣∣|a2r+1|
1∫

0

∣∣q2j+1(t)
∣∣|q2r+1(t)|dt

+
+∞

∑
r=J+1

2r−1

∑
s=1

+∞

∑
j=J+1

∣∣a2j+1

∣∣|a2r+s+1|
1∫

0

∣∣q2j+1(t)
∣∣|q2r+s+1(t)|dt

+
+∞

∑
r=J+1

+∞

∑
j=J+1

2j−1

∑
κ=1

∣∣a2j+κ+1

∣∣|a2r+1|
1∫

0

∣∣q2j+κ+1(t)
∣∣|q2r+1(t)|dt

+
+∞

∑
r=J+1

2r−1

∑
s=1

+∞

∑
j=J+1

2j−1

∑
κ=1

∣∣a2j+κ+1

∣∣|a2r+s+1|
1∫

0

∣∣q2j+κ+1(t)
∣∣|q2r+s+1(t)|dt.

By using Lemma (2), Lemma (3), and Lemma (4), we obtain

E2
M(u) ≤

+∞

∑
r=J+1

+∞

∑
j=J+1

C
1

2j+1
1

2r+1

1∫
0

(2 − ν)2dt

+
+∞

∑
r=J+1

2r−1

∑
s=1

+∞

∑
j=J+1

C
1

2j+1
1

2r+1

1∫
0

(2 − ν)|q2r+s+1(t)|dt

+
+∞

∑
r=J+1

+∞

∑
j=J+1

2j−1

∑
κ=1

C
1

2j+1
1

2r+1

1∫
0

(2 − ν)
∣∣q2j+κ+1(t)

∣∣dt

+
+∞

∑
r=J+1

2r−1

∑
s=1

+∞

∑
j=J+1

2j−1

∑
κ=1

C
1

2j+1
1

2r+1

√√√√√ 1∫
0

∣∣q2j+κ+1(t)
∣∣2dt

1∫
0

|q2r+s+1(t)|2dt.

Note that √√√√√ 1∫
0

∣∣q2j+κ+1(t)
∣∣2dt

1∫
0

|q2r+s+1(t)|2dt =
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√√√√√ 1∫
0

∣∣q2j+κ+1(t)
∣∣∣∣q2j+κ+1(t)

∣∣dt
1∫

0

|q2r+s+1(t)||q2r+s+1(t)|dt

≤ (2 − ν)

√√√√√ 1∫
0

∣∣q2j+κ+1(t)
∣∣dt

1∫
0

|q2r+s+1(t)|dt

≤ (2 − ν)
(

1 − ν

2

) 1

2
j
2

1

2
r
2

.

Then,

E2
M(u) ≤

+∞

∑
r=J+1

+∞

∑
j=J+1

C
1

2j+1
1

2r+1 (2 − ν)2

+
+∞

∑
r=J+1

2r−1

∑
s=1

+∞

∑
j=J+1

C
1

2j+1
1

2r+1 (2 − ν)
(

1 − ν

2

) 1
2r

+
+∞

∑
r=J+1

+∞

∑
j=J+1

2j−1

∑
κ=1

C
1

2j+1
1

2r+1 (2 − ν)
(

1 − ν

2

) 1
2j

+
+∞

∑
r=J+1

+∞

∑
j=J+1

C
1

2
j
2+1

1

2
r
2+1

(2 − ν)
(

1 − ν

2

)
≤ C(2 − ν)2

4

(
1
2J

)2
+

C(2 − ν)
(
1 − ν

2
)

4

(
1
2J

)2

+
C(2 − ν)

(
1 − ν

2
)

4

(
1
2J

)2
+

C(2 − ν)
(
1 − ν

2
)

4
(√

2 − 1
)2

(
1

2
J
2

)2

≤

C(2 − ν)2

4
+

C(2 − ν)
(
1 − ν

2
)

2
+

C(2 − ν)
(
1 − ν

2
)

4
(√

2 − 1
)2

( 1

2
J
2

)2
.

Therefore,

EM(u) = O
(

1√
M

)
.

In a similar way, we prove that EM(v) = O
(

1√
M

)
.

Now, to verify the convergence analysis, we must prove that the following system
converges to the system (1): ˜CFD(ν)u(t) = c1u2M(t) + c2v2M(t) + f (t) + R1

M(t), 0 ≤ t ≤ 1,
˜CFD(ν)v(t) = c3u2M(t) + c4v2M(t) + h(t) + R2

M(t), 0 ≤ t ≤ 1,
(27)

where R1
M and R2

M represent the remainders.
By subtracting (27) from (1), we obtain

R1
M(t) = c1(u(t)− u2M(t)) + c2(v(t)− v2M(t))−

(
CFD(ν)u(t)− ˜CFD(ν)u(t)

)
, 0 ≤ t ≤ 1,

R2
M(t) = c3(u(t)− u2M(t)) + c4(v(t)− v2M(t))−

(
CFD(ν)v(t)− ˜CFD(ν)v(t)

)
, 0 ≤ t ≤ 1.

(28)

Then,
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
∥∥R1

M
∥∥

L2([0,1]) ≤ c1∥u − u2M∥L2([0,1]) + c2∥v − v2M∥L2([0,1]) +

∥∥∥∥CFD(ν)u − ˜CFD(ν)u
∥∥∥∥

L2([0,1])
,∥∥R2

M
∥∥

L2([0,1]) ≤ c3∥u − u2M∥L2([0,1]) + c4∥v − v2M∥L2([0,1]) +

∥∥∥∥CFD(ν)v − ˜CFD(ν)v
∥∥∥∥

L2([0,1])
,

when M → +∞, we obtain ∥u − u2M∥L2([0,1]) → 0, ∥v − v2M∥L2([0,1]) → 0,∥∥∥∥CFD(ν)u − ˜CFD(ν)u
∥∥∥∥

L2([0,1])
→ 0 and

∥∥∥∥CFD(ν)v − ˜CFD(ν)v
∥∥∥∥

L2([0,1])
→ 0.

Therefore,
∥∥R1

M
∥∥

L2([0,1]) → 0 and
∥∥R2

M
∥∥

L2([0,1]) → 0.

4. Numerical Examples

Here, we examine examples of the problem (1) to show the efficiency of our proposed
method. All computations are performed using Matlab, and the numerical results are
represented in Figures 1–4.

Example 1. The next coupled system is considered for 0 ≤ t ≤ 1:
CFD(0.25)u(t) = − 1

2 u(t) + 1
2 v(t) + f (t),

CFD(0.25)v(t) = − 1
4 u(t) + 1

4 v(t) + h(t),
u(t = 0) = v(t = 0) = 0,

where

f (t) =
(

17
10

t − 8
25

)
sin(t) +

(
13
50

+
9

10
t
)

cos(t) +
6
25

e−
t
3 − 1

2
(1 + t),

and

h(t) =
(

4
25

+
13
20

t
)

sin(t) +
(
−63
100

− 19
20

t
)

cos(t)− 78
25

e−
t
3 − t

4
+

15
4

.

The exact solution is given by
u(t) = t sin(t),

and
v(t) = (1 + t)(1 − cos(t)).

Figure 1. Numerical solution of Example 1 at level J = 3.
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Example 2. Let us consider the problem for 0 ≤ t ≤ 1:
CFD(0.5)u(t) = 1

3 u(t)− 1
2 v(t) + f (t),

CFD(0.5)v(t) = 1
8 u(t) + 1

6 v(t) + h(t),
u(t = 0) = v(t = 0) = 0,

where

f (t) =
(
− 1

10
cos(t) +

13
15

sin(t) +
1
2

)
et − 2

5
e−t,

and

h(t) =
(
−31

30
cos(t) +

11
40

sin(t) +
5
6

)
et +

1
5

e−t.

The exact solution is defined as
u(t) = sin(t)et,

and
v(t) = (1 − cos(t))et.

Figure 2. Numerical solution to Example 2 at level J = 3.

Example 3. Let the next problem for 0 ≤ t ≤ 1 be
CFD(0.75)u(t) = − 1

5 u(t) + 2
3 v(t) + f (t),

CFD(0.75)v(t) = 1
6 u(t) + 1

12 v(t) + h(t),
u(t = 0) = v(t = 0) = 0,

where

f (t) =

(
60

169
+

93
65

t
)

sin(2t) +
(

48
13

t − 288
169

)
cos2(t)

+
144
169

e−3t − 24
13

t +
144
169

− 2
3
(t − 1)(1 − cos(t)),
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and

h(t) =

(
−48

25
+

6
5

t
)

sin(t) +
(
−14

25
− 2

5
t
)

cos(t)− 1
6

t sin(2t)− 58
75

e−3t

− 1
12

(t − 1)(1 − cos(t)) +
4
3

.

The exact solution is given by
u(t) = t sin(2t),

and
v(t) = (t − 1)(1 − cos(t)).

Figure 3. Numerical solution of Example 3 at level J = 3.

Example 4. We consider the following problem:
CFD0.9u(t) = − 1

3 u(t) + 2
7 ν(t) + f (t),

CFD0.9ν(t) = 1
11 u(t) + 5

13 ν(t) + h(t),

u(t = 0) = ν(t = 0) = 0,

where

f (t) =
1

1313

[
715e2t cos(t)− 585e2t sin(t) + 707 cos(t) + 909 sin(t)

et

]
−1422

1313
e−9t +

1
3

cos(t) sinh(t)− 2
7

t sin(t) cosh(t),

h(t) =
1

8619845et

[
− 4641455t sin(t) + 5783967 sin(t)

+4693975e2tt sin(t) + 5967585t cos(t)
]

− 1
8619845et

[
1468944 cos(t) + 3764475e2t sin(t)

−760500e2t cos(t) + 3840525te2t cos(t)Big]

+
2229444
8619845

e−9t − 1
11

cos(t) sinh(t)− 5
13

t sin(t) cosh(t).
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The exact solution is given by
u(t) = cos(t) sinh(t)

and
ν(t) = t sin(t) cosh(t)

Figure 4. Numerical solution to Example 4 at the level J = 3.

We have computed the maximum absolute errors L∞ and the rate of convergence RM,
which is defined by

RM =
log(E∞(M/2)/E∞(M))

log 2
,

of our proposed method; then, we have obtained the above results, which are presented in
Tables 1–4.

Table 1. Comparison of the L∞ norm with the proposed and ADM methods for Example 1.

J M 2M L∞(M) = max|ui − ũi| RM of Proposed Method L∞ of ADM

0 1 2 3.14 × 10−2 3.02 × 10−1

1 2 4 1.06 × 10−2 1.5656 1.32 × 10−1

2 4 8 3.15 × 10−3 1.7485 4.28 × 10−2

3 8 16 8.02 × 10−4 1.9709 1.52 × 10−2

4 16 32 2.01 × 10−4 1.9964 4.19 × 10−3

Table 2. Comparison of the L∞ norm with the proposed and ADM methods for Example 2.

J M 2M L∞(M) = max|νi − ν̃i| RM of Proposed Method L∞ of ADM

0 1 2 4.01 × 10−2 2.50 × 10−1

1 2 4 1.25 × 10−2 1.6781 1.15 × 10−1

2 4 8 3.8 × 10−3 1.7137 3.92 × 10−2

3 8 16 9.8 × 10−4 1.9523 1.27 × 10−2

4 16 32 2.50 × 10−4 1.9709 3.50 × 10−3



Symmetry 2024, 16, 713 14 of 15

Table 3. Comparison of the L∞ norm with the proposed and ADM methods for Example 3.

J M 2M L∞(M) = max|νi − ν̃i| RM of Proposed Method L∞ of ADM

0 1 2 3.23 × 10−2 4.11 × 10−1

1 2 4 1.15 × 10−2 1.4854 1.75 × 10−1

2 4 8 3.55 × 10−3 1.6915 4.90 × 10−2

3 8 16 9.0 × 10−4 1.9781 1.65 × 10−2

4 16 32 2.4 × 10−4 1.9069 4.8 × 10−3

Table 4. Comparison of the L∞ norm with the proposed and ADM methods for Example 4.

J M 2M L∞(M) = max|νi − ν̃i| RM of Proposed Method L∞ of ADM

0 1 2 3.80 × 10−2 3.41 × 10−1

1 2 4 1.16 × 10−2 1.7093 1.12 × 10−1

2 4 8 3.35 × 10−3 1.7908 3.20 × 10−2

3 8 16 9.01 × 10−4 1.8914 1.02 × 10−2

4 16 32 2.30 × 10−4 1.9672 3.11 × 10−3

5. Conclusions

In this work, the Haar wavelet collocation method has been used to solve coupled
dynamical systems with the Caputo–Fabrizio fractional derivative. Error analysis shows
that our proposed method has an exponential convergence rate. Furthermore, for four
examples, the numerical solutions agree very well with the exact solutions. In addition,
this method is effective and recommended. As our next work, we will apply the symmetry
Haar wavelet collocation method to solve different types of the Caputo–Fabrizio implicit
fractional differential equations and coupled systems; see [22,23]. The Haar wavelet
collocation method is preferred to investigate the discussed problem. The advantages
of this method compared to the conventional collocation method (see [24–26]), like, for
example, shooting methods, are as follows:

1. It can decrease computational efforts and is suitable in terms of computation costs
and the convergence rate.

2. It is suitable for the analysis of the dynamical system with fractional derivatives.
3. The convergence properties of this class of methods are very helpful.
4. The error analysis of this method is characterized by a good convergence rate.
5. Unlike the collocation method, other methods have several limitations in their appli-

cations to unlimited classes of singular problems.
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